1
|
Sun J, Sun R, Li C, Luo X, Chen J, Hong J, Zeng Y, Wang QM, Wen H. NgR1 pathway expression in cerebral ischemic Sprague-Dawley rats with cognitive impairment. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:767-775. [PMID: 34630954 PMCID: PMC8487595 DOI: 10.22038/ijbms.2021.53316.12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Objective(s): This study aimed to determine the effect of ischemic occlusion duration and recovery time course on motor and cognitive function, identify optimal conditions for assessing cognitive function with minimal interference from motor deficits, and elucidate the underlying mechanism of axonal inhibitors. Materials and Methods: Sprague-Dawley (SD) rats were randomly allocated to the transient middle cerebral artery occlusion (tMCAO) 60-min (tMCAO60min), tMCAO90min, tMCAO120min, and sham groups. We conducted forelimb grip strength, two-way shuttle avoidance task, and novel object recognition task (NORT)tests at three time points (14, 21, and 28 days). Expression of Nogo receptor-1 (NgR1), the endogenous antagonist lateral olfactory tract usher substance, ras homolog family member A (Rho-A), and RhoA-activated Rho kinase (ROCK) was examined in the ipsilateral thalamus. Results: There was no difference in grip strength between sham and tMCAO90min rats at 28 days. tMCAO90min and tMCAO120min rats showed lower discrimination indices in the NORT than sham rats on day 28. Compared with that in sham rats, the active avoidance response rate was lower in tMCAO90min rats on days 14, 21, and 28 and in tMCAO120min rats on days 14 and 21. Furthermore, 50-54% of rats in the tMCAO90min group developed significant cognitive impairment on day 28, and thalamic NgR1, RhoA, and ROCK expression were greater in tMCAO90min rats than in sham rats. Conclusion: Employing 90-min tMCAO in SD rats and assessing cognitive function 28 days post-stroke could minimize motor dysfunction effects in cognitive function assessments. Axonal inhibitor deregulation could be involved in poststroke cognitive impairment.
Collapse
Affiliation(s)
- Ju Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.,Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, No.8 Fuyu east Road, Guangzhou 511400, Guangdong Province, China
| | - Ruifang Sun
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Chao Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen 518048, Guangdong Province, China.,Shenzhen Dapeng New District Nan'ao People's Hospital Shenzhen 518048, Guangdong Province, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jiena Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Qing Mei Wang
- Stroke Biological Recovery Laboratory, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School,96 13 Street, Charlestown, MA 02129, USA
| | - Hongmei Wen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
2
|
van Noordt SJ, Wu J, Thomas C, Schlund MW, Mayes LC, Crowley MJ. Medial frontal theta dissociates unsuccessful from successful avoidance and is modulated by lack of perseverance. Brain Res 2018; 1694:29-37. [DOI: 10.1016/j.brainres.2018.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023]
|
3
|
Deliano M, Brunk MGK, El-Tabbal M, Zempeltzi MM, Happel MFK, Ohl FW. Dopaminergic neuromodulation of high gamma stimulus phase-locking in gerbil primary auditory cortex mediated by D1/D5-receptors. Eur J Neurosci 2018. [PMID: 29514417 DOI: 10.1111/ejn.13898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cortical release of the neurotransmitter dopamine has been implied in adapting cortical processing with respect to various functions including coding of stimulus salience, expectancy, error prediction, behavioral relevance and learning. Dopamine agonists have been shown to modulate recurrent cortico-thalamic feedback, and should therefore also affect synchronization and amplitude of thalamo-cortical oscillations. In this study, we have used multitaper spectral and time-frequency analysis of stimulus-evoked and spontaneous current source density patterns in primary auditory cortex of Mongolian gerbils to characterize dopaminergic neuromodulation of the oscillatory structure of current sources and sinks. We systemically applied D1/D5-receptor agonist SKF-38393 followed by competitive D1/D5-receptor antagonist SCH-23390. Our results reveal an increase in stimulus phase-locking in the high gamma-band (88-97 Hz) by SKF-38393, specifically in layers III/IV at the best frequency, which occurred at 20 ms after tone onset, and was reversed by SCH-23390. However, changes in induced oscillatory power after SKF-38393 treatment occurred stimulus-independently in the background activity in different layers than phase-locking effects and were not reversed by SCH-23390. These effects might either reflect longer-lasting changes in neural background noise, non-specific changes due to ketamine anesthesia, or an interaction of both. Without concomitant stimulus-induced power increase, increased stimulus phase-locking in layers III/IV indicates enhanced phase-resetting of neural oscillations by the stimulus after D1/D5-receptor activation. The frequency characteristics, together with the demonstrated stimulus specificity and layer specificity, suggest that changes in phase-resetting originate from dopaminergic neuromodulation of thalamo-cortical interactions. Enhanced phase-resetting might be a key step in the recruitment of cortical activity modes interpreting sensory input.
Collapse
Affiliation(s)
- Matthias Deliano
- Department Systems Physiology of Learning (SPL), Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, Magdeburg, 39118, Germany
| | - Michael G K Brunk
- Department Systems Physiology of Learning (SPL), Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, Magdeburg, 39118, Germany
| | - Mohamed El-Tabbal
- Department Systems Physiology of Learning (SPL), Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, Magdeburg, 39118, Germany
| | - Maria M Zempeltzi
- Department Systems Physiology of Learning (SPL), Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, Magdeburg, 39118, Germany
| | - Max F K Happel
- Department Systems Physiology of Learning (SPL), Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, Magdeburg, 39118, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning (SPL), Leibniz Institute for Neurobiology (LIN), Brenneckestr. 6, Magdeburg, 39118, Germany.,Otto von Guericke University (OVGU), Magdeburg, Germany.,Center for Behavioral Brain Sciences (OVGU), Magdeburg, Germany
| |
Collapse
|
4
|
Deliano M, Tabelow K, König R, Polzehl J. Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis. PLoS One 2016; 11:e0157355. [PMID: 27303809 PMCID: PMC4909298 DOI: 10.1371/journal.pone.0157355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/27/2016] [Indexed: 11/21/2022] Open
Abstract
Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.
Collapse
Affiliation(s)
- Matthias Deliano
- Department Systems Physiology of Learning/AG Brain-Machine-Interfaces, Leibniz Institute for Neurobiology, Magdeburg, Germany
- * E-mail:
| | - Karsten Tabelow
- Research Group Stochastic Algorithms and Nonparametric Statistics, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
| | - Reinhard König
- Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Jörg Polzehl
- Research Group Stochastic Algorithms and Nonparametric Statistics, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
| |
Collapse
|
5
|
Happel MFK, Deliano M, Ohl FW. Combined Shuttle-Box Training with Electrophysiological Cortex Recording and Stimulation as a Tool to Study Perception and Learning. J Vis Exp 2015:e53002. [PMID: 26556300 DOI: 10.3791/53002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Shuttle-box avoidance learning is a well-established method in behavioral neuroscience and experimental setups were traditionally custom-made; the necessary equipment is now available by several commercial companies. This protocol provides a detailed description of a two-way shuttle-box avoidance learning paradigm in rodents (here Mongolian gerbils; Meriones unguiculatus) in combination with site-specific electrical intracortical microstimulation (ICMS) and simultaneous chronical electrophysiological in vivo recordings. The detailed protocol is applicable to study multiple aspects of learning behavior and perception in different rodent species. Site-specific ICMS of auditory cortical circuits as conditioned stimuli here is used as a tool to test the perceptual relevance of specific afferent, efferent and intracortical connections. Distinct activation patterns can be evoked by using different stimulation electrode arrays for local, layer-dependent ICMS or distant ICMS sites. Utilizing behavioral signal detection analysis it can be determined which stimulation strategy is most effective for eliciting a behaviorally detectable and salient signal. Further, parallel multichannel-recordings using different electrode designs (surface electrodes, depth electrodes, etc.) allow for investigating neuronal observables over the time course of such learning processes. It will be discussed how changes of the behavioral design can increase the cognitive complexity (e.g. detection, discrimination, reversal learning).
Collapse
Affiliation(s)
- Max F K Happel
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Otto-von-Guericke University, Magdeburg, Germany;
| | | | - Frank W Ohl
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
6
|
Dopamine-modulated recurrent corticoefferent feedback in primary sensory cortex promotes detection of behaviorally relevant stimuli. J Neurosci 2014; 34:1234-47. [PMID: 24453315 DOI: 10.1523/jneurosci.1990-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Dopaminergic neurotransmission in primary auditory cortex (AI) has been shown to be involved in learning and memory functions. Moreover, dopaminergic projections and D1/D5 receptor distributions display a layer-dependent organization, suggesting specific functions in the cortical circuitry. However, the circuit effects of dopaminergic neurotransmission in sensory cortex and their possible roles in perception, learning, and memory are largely unknown. Here, we investigated layer-specific circuit effects of dopaminergic neuromodulation using current source density (CSD) analysis in AI of Mongolian gerbils. Pharmacological stimulation of D1/D5 receptors increased auditory-evoked synaptic currents in infragranular layers, prolonging local thalamocortical input via positive feedback between infragranular output and granular input. Subsequently, dopamine promoted sustained cortical activation by prolonged recruitment of long-range corticocortical networks. A detailed circuit analysis combining layer-specific intracortical microstimulation (ICMS), CSD analysis, and pharmacological cortical silencing revealed that cross-laminar feedback enhanced by dopamine relied on a positive, fast-acting recurrent corticoefferent loop, most likely relayed via local thalamic circuits. Behavioral signal detection analysis further showed that activation of corticoefferent output by infragranular ICMS, which mimicked auditory activation under dopaminergic influence, was most effective in eliciting a behaviorally detectable signal. Our results show that D1/D5-mediated dopaminergic modulation in sensory cortex regulates positive recurrent corticoefferent feedback, which enhances states of high, persistent activity in sensory cortex evoked by behaviorally relevant stimuli. In boosting horizontal network interactions, this potentially promotes the readout of task-related information from cortical synapses and improves behavioral stimulus detection.
Collapse
|
7
|
Ilango A, Shumake J, Wetzel W, Scheich H, Ohl FW. The role of dopamine in the context of aversive stimuli with particular reference to acoustically signaled avoidance learning. Front Neurosci 2012; 6:132. [PMID: 23049495 PMCID: PMC3442182 DOI: 10.3389/fnins.2012.00132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/25/2012] [Indexed: 11/13/2022] Open
Abstract
Learning from punishment is a powerful means for behavioral adaptation with high relevance for various mechanisms of self-protection. Several studies have explored the contribution of released dopamine (DA) or responses of DA neurons on reward seeking using rewards such as food, water, and sex. Phasic DA signals evoked by rewards or conditioned reward predictors are well documented, as are modulations of these signals by such parameters as reward magnitude, probability, and deviation of actually occurring from expected rewards. Less attention has been paid to DA neuron firing and DA release in response to aversive stimuli, and the prediction and avoidance of punishment. In this review, we first focus on DA changes in response to aversive stimuli as measured by microdialysis and voltammetry followed by the change in electrophysiological signatures by aversive stimuli and fearful events. We subsequently focus on the role of DA and effect of DA manipulations on signaled avoidance learning, which consists of learning the significance of a warning cue through Pavlovian associations and the execution of an instrumental avoidance response. We present a coherent framework utilizing the data on microdialysis, voltammetry, electrophysiological recording, electrical brain stimulation, and behavioral analysis. We end by outlining current gaps in the literature and proposing future directions aimed at incorporating technical and conceptual progress to understand the involvement of reward circuit on punishment based decisions.
Collapse
Affiliation(s)
- Anton Ilango
- Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | |
Collapse
|
8
|
Steenland HW, Wu V, Fukushima H, Kida S, Zhuo M. CaMKIV over-expression boosts cortical 4-7 Hz oscillations during learning and 1-4 Hz delta oscillations during sleep. Mol Brain 2010; 3:16. [PMID: 20497541 PMCID: PMC2888801 DOI: 10.1186/1756-6606-3-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
Mounting evidence suggests that neural oscillations are related to the learning and consolidation of newly formed memory in the mammalian brain. Four to seven Hertz (4-7 Hz) oscillations in the prefrontal cortex are also postulated to be involved in learning and attention processes. Additionally, slow delta oscillations (1-4 Hz) have been proposed to be involved in memory consolidation or even synaptic down scaling during sleep. The molecular mechanisms which link learning-related oscillations during wakefulness to sleep-related oscillations remain unknown. We show that increasing the expression of calcium/calmodulin dependent protein kinase IV (CaMKIV), a key nucleic protein kinase, selectively enhances 4-7.5 Hz oscillation power during trace fear learning and slow delta oscillations during subsequent sleep. These oscillations were found to be boosted in response to the trace fear paradigm and are likely to be localized to regions of the prefrontal cortex. Correlation analyses demonstrate that a proportion of the variance in 4-7.5 Hz oscillations, during fear conditioning, could account for some degree of learning and subsequent memory formation, while changes in slow delta power did not share this predictive strength. Our data emphasize the role of CaMKIV in controlling learning and sleep-related oscillations and suggest that oscillatory activity during wakefulness may be a relevant predictor of subsequent memory consolidation.
Collapse
Affiliation(s)
- Hendrik W Steenland
- Department of Physiology, University of Toronto, Centre for the Study of Pain, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
9
|
Theta oscillations during holeboard training in rats: different learning strategies entail different context-dependent modulations in the hippocampus. Neuroscience 2009; 165:642-53. [PMID: 19896522 DOI: 10.1016/j.neuroscience.2009.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/02/2009] [Indexed: 11/24/2022]
Abstract
A functional connection between theta rhythms, information processing, learning and memory formation is well documented by studies focusing on the impact of theta waves on motor activity, global context or phase coding in spatial learning. In the present study we analyzed theta oscillations during a spatial learning task and assessed which specific behavioral contexts were connected to changes in theta power and to the formation of memory. Therefore, we measured hippocampal dentate gyrus theta modulations in male rats that were allowed to establish a long-term spatial reference memory in a holeboard (fixed pattern of baited holes) in comparison to rats that underwent similar training conditions but could not form a reference memory (randomly baited holes). The first group established a pattern specific learning strategy, while the second developed an arbitrary search strategy, visiting increasingly more holes during training. Theta power was equally influenced during the training course in both groups, but was significantly higher when compared to untrained controls. A detailed behavioral analysis, however, revealed behavior- and context-specific differences within the experimental groups. In spatially trained animals theta power correlated with the amounts of reference memory errors in the context of the inspection of unbaited holes and exploration in which, as suggested by time frequency analyses, also slow wave (delta) power was increased. In contrast, in randomly trained animals positive correlations with working memory errors were found in the context of rearing behavior. These findings indicate a contribution of theta/delta to long-lasting memory formation in spatially trained animals, whereas in pseudo trained animals theta seems to be related to attention in order to establish trial specific short-term working memory. Implications for differences in neuronal plasticity found in earlier studies are discussed.
Collapse
|
10
|
Rothe T, Deliano M, Scheich H, Stark H. Segregation of task-relevant conditioned stimuli from background stimuli by associative learning. Brain Res 2009; 1297:143-59. [DOI: 10.1016/j.brainres.2009.08.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/25/2009] [Accepted: 08/17/2009] [Indexed: 11/28/2022]
|