1
|
Ashaat EA, Sabry S, Zaki ME, Mohamed R, Abdelsattar HA, Bawady SA, Ashaat NA, Elnaggar W, Ganem MMF, El-Hariri HM, El-Bassyouni HT, Saleh DA. Sialic acid and anti-ganglioside M1 antibodies are invaluable biomarkers correlated with the severity of autism spectrum disorder. Brain Dev 2023; 45:212-219. [PMID: 36522215 DOI: 10.1016/j.braindev.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) are devastating neurodevelopmental disorders that showed global increased prevalence. They are characterized by impairment of social communication and stereotyped patterns. OBJECTIVE This study aimed at measuring the levels of total sialic acid (SA) and anti-ganglioside M1 (anti- GM1) IgG antibodies as essential biomarkers in a cohort of children with ASD to identify their diagnostic yield as well as their correlation with the severity of autistic behaviors. METHODS The demographic characteristics, anthropometric measurements, and clinical data were recorded. The levels of total plasma SA and serum anti-GM1 IgG antibodies levels were measured in 100 children with ASD and 100 healthy controls. The severity of ASD-related symptoms was assessed by using the Childhood Autism Rating Scale (CARS). RESULTS Children with ASD had significantly higher levels of both SA and anti-GM1 antibodies than healthy controls (p < 0.001). SA showed a statistically significant moderate diagnostic performance while anti-GM1 antibody showed a statistically significant high diagnostic in differentiating severe from mild to moderate autism. Moreover, both SA and anti-GM1 antibodies levels were significantly correlated to the severity of ASD symptoms (p < 0.001). CONCLUSION The significantly increased levels of SA and anti-GM1 antibodies in children with ASD and their correlation with autism-related symptoms suggest their possible etiopathogenic role in autism as one of the pediatric autoimmune neuropsychiatric disorders. However, further large-scale studies are still needed to explore their possible bidirectional relationship as biomarkers for autism.
Collapse
Affiliation(s)
- Engy A Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Sahar Sabry
- Biochemical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Moushira E Zaki
- Biological Anthropology Department, National Research Centre, Cairo, Egypt
| | - Ramy Mohamed
- Biological Anthropology Department, National Research Centre, Cairo, Egypt
| | | | - Somia A Bawady
- Clinical Pathology Departments, Ain Shams University, Cairo, Egypt
| | - Neveen A Ashaat
- Professor of Human Genetics, Ain Shams University, Cairo, Egypt
| | - Walaa Elnaggar
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona M F Ganem
- Internal Medicine Research Department, National Research Centre, Cairo, Egypt
| | - Hazem M El-Hariri
- Community Medicine Department, National Research Centre, Cairo, Egypt
| | - Hala T El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Dina Amin Saleh
- Pediatric Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
West RJH, Briggs L, Perona Fjeldstad M, Ribchester RR, Sweeney ST. Sphingolipids regulate neuromuscular synapse structure and function in Drosophila. J Comp Neurol 2018; 526:1995-2009. [PMID: 29761896 PMCID: PMC6175220 DOI: 10.1002/cne.24466] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 12/27/2022]
Abstract
Sphingolipids are found in abundance at synapses and have been implicated in regulation of synapse structure, function, and degeneration. Their precise role in these processes, however, remains obscure. Serine Palmitoyl-transferase (SPT) is the first enzymatic step for synthesis of sphingolipids. Analysis of the Drosophila larval neuromuscular junction (NMJ) revealed mutations in the SPT enzyme subunit, lace/SPTLC2 resulted in deficits in synaptic structure and function. Although NMJ length is normal in lace mutants, the number of boutons per NMJ is reduced to ∼50% of the wild type number. Synaptic boutons in lace mutants are much larger but show little perturbation to the general ultrastructure. Electrophysiological analysis of lace mutant synapses revealed strong synaptic transmission coupled with predominance of depression over facilitation. The structural and functional phenotypes of lace mirrored aspects of Basigin (Bsg), a small Ig-domain adhesion molecule also known to regulate synaptic structure and function. Mutant combinations of lace and Bsg generated large synaptic boutons, while lace mutants showed abnormal accumulation of Bsg at synapses, suggesting that Bsg requires sphingolipid to regulate structure of the synapse. In support of this, we found Bsg to be enriched in lipid rafts. Our data points to a role for sphingolipids in the regulation and fine-tuning of synaptic structure and function while sphingolipid regulation of synaptic structure may be mediated via the activity of Bsg.
Collapse
Affiliation(s)
- Ryan J. H. West
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| | - Laura Briggs
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| | - Maria Perona Fjeldstad
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Discovery Brain SciencesUniversity of EdinburghEdinburgh EH8 9JZUK
| | - Richard R. Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Discovery Brain SciencesUniversity of EdinburghEdinburgh EH8 9JZUK
| | - Sean T. Sweeney
- Department of Biology and Hull York Medical SchoolUniversity of YorkHeslingtonYork YO10 5DDUK
| |
Collapse
|
3
|
Sandhoff R, Schulze H, Sandhoff K. Ganglioside Metabolism in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:1-62. [DOI: 10.1016/bs.pmbts.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Aoki K, Tiemeyer M. Applying Glycomic Technology to Investigate the Consequences of Altered Glycosylation in Human ST3GAL5 Deficiency. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1604.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia
- Department of Biochemistry and Molecular Biology, University of Georgia
| |
Collapse
|
5
|
Plomp JJ, Morsch M, Phillips WD, Verschuuren JJGM. Electrophysiological analysis of neuromuscular synaptic function in myasthenia gravis patients and animal models. Exp Neurol 2015; 270:41-54. [PMID: 25620417 DOI: 10.1016/j.expneurol.2015.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/07/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Study of the electrophysiological function of the neuromuscular junction (NMJ) is instrumental in the understanding of the symptoms and pathophysiology of myasthenia gravis (MG), an autoimmune disorder characterized by fluctuating and fatigable muscle weakness. Most patients have autoantibodies to the acetylcholine receptor at the NMJ. However, in recent years autoantibodies to other crucial postsynaptic membrane proteins have been found in previously 'seronegative' MG patients. Electromyographical recording of compound and single-fibre muscle action potentials provides a crucial in vivo method to determine neuromuscular transmission failure while ex vivo (miniature) endplate potential recordings can reveal the precise synaptic impairment. Here we will review these electrophysiological methods used to assess NMJ function and discuss their application and typical results found in the diagnostic and experimental study of patients and animal models of the several forms of MG.
Collapse
Affiliation(s)
- Jaap J Plomp
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Marco Morsch
- Motor Neuron Disease Research Group, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
6
|
Harschnitz O, Jongbloed BA, Franssen H, Straver DCG, van der Pol WL, van den Berg LH. MMN: from immunological cross-talk to conduction block. J Clin Immunol 2014; 34 Suppl 1:S112-9. [PMID: 24728842 PMCID: PMC4050293 DOI: 10.1007/s10875-014-0026-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022]
Abstract
Multifocal motor neuropathy (MMN) is a rare inflammatory neuropathy characterized by progressive, asymmetric distal limb weakness and conduction block (CB). Clinically MMN is a pure motor neuropathy, which as such can mimic motor neuron disease. GM1-specific IgM antibodies are present in the serum of approximately half of all MMN patients, and are thought to play a key role in the immune pathophysiology. Intravenous immunoglobulin (IVIg) treatment has been shown to be effective in MMN in five randomized placebo-controlled trials. Despite long-term treatment with intravenous immunoglobulin (IVIg), which is efficient in the majority of patients, slowly progressive axonal degeneration and subsequent muscle weakness cannot be fully prevented. In this review, we will discuss the current understanding of the immune pathogenesis underlying MMN and how this may cause CB, available treatment strategies and future therapeutic targets.
Collapse
Affiliation(s)
- Oliver Harschnitz
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| | - Bas A. Jongbloed
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
- Department of Neurology, St. Elisabeth Hospital, Tilburg, 5000 LC The Netherlands
| | - Hessel Franssen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| | - Dirk C. G Straver
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| | - Leonard H. van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, 3584 CG The Netherlands
| |
Collapse
|
7
|
Park H, Zhou Y, Costello CE. Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces. J Lipid Res 2014; 55:773-81. [PMID: 24482490 DOI: 10.1194/jlr.d046128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gangliosides and sulfatides (STs) are acidic glycosphingolipids (GSLs) that have one or more sialic acids or sulfate substituents, in addition to neutral sugars, attached to the C-1 hydroxyl group of the ceramide long chain base. TLC is a widely employed and convenient technique for separation and characterization of GSLs. When TLC is directly coupled to MS, it provides both the molecular mass and structural information without further purification. Here, after development of the TLC plates, the structural analyses of acidic GSLs, including gangliosides and STs, were investigated using the liquid extraction surface analysis (LESA™) and CAMAG TLC-MS interfaces coupled to an ESI QSTAR Pulsar i quadrupole orthogonal TOF mass spectrometer. Coupling TLC with ESI-MS allowed the acquisition of high resolution mass spectra of the acidic GSLs with high sensitivity and mass accuracy, without the loss of sialic acid residues that frequently occurs during low-pressure MALDI MS. These systems were then applied to the analysis of total lipid extracts from bovine brain. This allowed profiling of many different lipid classes, not only gangliosides and STs, but also SMs, neutral GSLs, and phospholipids.
Collapse
Affiliation(s)
- Hyejung Park
- Mass Spectrometry Resource and Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | | | | |
Collapse
|
8
|
Khedoe PPSJ, Wong MC, Wagenaar GTM, Plomp JJ, van Eck M, Havekes LM, Rensen PCN, Hiemstra PS, Berbée JFP. The effect of PPE-induced emphysema and chronic LPS-induced pulmonary inflammation on atherosclerosis development in APOE*3-LEIDEN mice. PLoS One 2013; 8:e80196. [PMID: 24303000 PMCID: PMC3841138 DOI: 10.1371/journal.pone.0080196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/30/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by pulmonary inflammation, airways obstruction and emphysema, and is a risk factor for cardiovascular disease (CVD). However, the contribution of these individual COPD components to this increased risk is unknown. Therefore, the aim of this study was to determine the contribution of emphysema in the presence or absence of pulmonary inflammation to the increased risk of CVD, using a mouse model for atherosclerosis. Because smoke is a known risk factor for both COPD and CVD, emphysema was induced by intratracheal instillation of porcine pancreatic elastase (PPE). METHODS Hyperlipidemic APOE*3-Leiden mice were intratracheally instilled with vehicle, 15 or 30 µg PPE and after 4 weeks, mice received a Western-type diet (WTD). To study the effect of emphysema combined with pulmonary inflammation on atherosclerosis, mice received 30 µg PPE and during WTD feeding, mice were intranasally instilled with vehicle or low-dose lipopolysaccharide (LPS; 1 µg/mouse, twice weekly). After 20 weeks WTD, mice were sacrificed and emphysema, pulmonary inflammation and atherosclerosis were analysed. RESULTS Intratracheal PPE administration resulted in a dose-dependent increase in emphysema, whereas atherosclerotic lesion area was not affected by PPE treatment. Additional low-dose intranasal LPS administration induced a low-grade systemic IL-6 response, as compared to vehicle. Combining intratracheal PPE with intranasal LPS instillation significantly increased the number of pulmonary macrophages and neutrophils. Plasma lipids during the study were not different. LPS instillation caused a limited, but significant increase in the atherosclerotic lesion area. This increase was not further enhanced by PPE. CONCLUSION This study shows for the first time that PPE-induced emphysema both in the presence and absence of pulmonary inflammation does not affect atherosclerotic lesion development.
Collapse
Affiliation(s)
- P. Padmini S. J Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Man C. Wong
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerry T. M. Wagenaar
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap J. Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Miranda van Eck
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Louis M. Havekes
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Organization for Applied Scientific Research, Metabolic Health Research, Gaubius Laboratory, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F. P. Berbée
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Fewou SN, Plomp JJ, Willison HJ. The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies. J Anat 2013; 224:36-44. [PMID: 23937354 DOI: 10.1111/joa.12088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
The pre-synaptic motor nerve terminal is a highly complex and dynamic compartment within the lower motor neuron responsible for converting electrical signals into secreted chemicals. This self-renewing process of synaptic transmission is accomplished by the calcium-triggered fusion of neurotransmitter-containing vesicles with the plasma membrane and the subsequent retrieval and recycling of vesicle components. Besides this conventional physiological role, the highly active process of vesicle fusion and re-uptake into endosomal sorting pathways acts as a conduit for entry of a range of substances into the intracellular compartment of the motor nerve terminal. Whilst this entry portal sub-serves many vital physiological processes, such as those mediated by neurotrophin trafficking, there is also the potential for substantial pathological consequences resulting from uptake of noxious agents, including autoantibodies, viruses and toxins. These may act locally to induce disease within the nerve terminal, or traffic beyond to the motor neuron cell body and central nervous system to exert their pathological effects. This review focuses on the recent evidence that the ganglioside-rich pre-synaptic membrane acts as a binding site for potentially neurotoxic serum autoantibodies that are present in human autoimmune motor neuropathies. Autoantibodies that bind surface antigens induce membrane lytic effects, whereas their uptake attenuates local injury and transfers any potential pathological consequences to the intracellular compartment. Herein the thesis is explored that a balance exists between local injury at the exofacial leaflet of the pre-synaptic membrane and antibody uptake, which dictates the overall level and site of motor nerve injury in this group of disorders.
Collapse
Affiliation(s)
- Simon N Fewou
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
10
|
Rupp A, Cunningham ME, Yao D, Furukawa K, Willison HJ. The effects of age and ganglioside composition on the rate of motor nerve terminal regeneration following antibody-mediated injury in mice. Synapse 2013; 67:382-9. [PMID: 23401234 PMCID: PMC4495252 DOI: 10.1002/syn.21648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/01/2013] [Indexed: 01/08/2023]
Abstract
Gangliosides are glycosphingolipids highly enriched in neural plasma membranes, where they mediate a diverse range of functions and can act as targets for auto-antibodies present in human immune-mediated neuropathy sera. The ensuing autoimmune injury results in axonal and motor nerve terminal (mNT) degeneration. Both aging and ganglioside-deficiency have been linked to impaired axonal regeneration. To assess the effects of age and ganglioside expression on mNT regeneration in an autoimmune injury paradigm, anti-ganglioside antibodies and complement were applied to young adult and aged mice wildtype (WT) mice, mice deficient in either b- and c-series (GD3sKO) or mice deficient in all complex gangliosides (GM2sKO). The extent of mNT injury and regeneration was assessed immediately or after 5 days, respectively. Depending on ganglioside expression and antibody-specificity, either a selective mNT injury or a combined injury of mNTs and neuromuscular glial cells was elicited. Immediately after induction of the injury, between 1.5% and 11.8% of neuromuscular junctions (NMJs) in the young adult groups exhibited healthy mNTs. Five days later, most NMJs, regardless of age and strain, had recovered their mNTs. No significant differences could be observed between young and aged WT and GM2sKO mice; aged GD3sKO showed a mildly impaired rate of mNT regeneration when compared with their younger counterparts. Comparable rates were observed between all strains in the young and the aged mice. In summary, the rate of mNT regeneration following anti-ganglioside antibody and complement-mediated injury does not differ majorly between young adult and aged mice irrespective of the expression of particular gangliosides.
Collapse
Affiliation(s)
- Angie Rupp
- Neuroimmunology Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 2012; 37:1230-44. [PMID: 22410735 DOI: 10.1007/s11064-012-0744-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/21/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nervous system. They are localized primarily in the outer leaflets of plasma membranes and participated in cell-cell recognition, adhesion, and signal transduction and are integral components of cell surface microdomains or lipid rafts along with proteins, sphingomyelin and cholesterol. Ganglioside-rich lipid rafts play an important role in signaling events affecting neural development and the pathogenesis of certain diseases. Disruption of gangloside synthase genes in mice induces developmental defects and neural degeneration. Targeting ganglioside metabolism may represent a novel therapeutic strategy for intervention in certain diseases. In this review, we focus on recent advances on metabolic and functional studies of gangliosides in normal brain development and in certain neurological disorders.
Collapse
|
12
|
Fewou SN, Rupp A, Nickolay LE, Carrick K, Greenshields KN, Pediani J, Plomp JJ, Willison HJ. Anti-ganglioside antibody internalization attenuates motor nerve terminal injury in a mouse model of acute motor axonal neuropathy. J Clin Invest 2012; 122:1037-51. [PMID: 22307327 PMCID: PMC3287221 DOI: 10.1172/jci59110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 12/21/2011] [Indexed: 01/17/2023] Open
Abstract
In the Guillain-Barré syndrome subform acute motor axonal neuropathy (AMAN), Campylobacter jejuni enteritis triggers the production of anti-ganglioside Abs (AGAbs), leading to immune-mediated injury of distal motor nerves. An important question has been whether injury to the presynaptic neuron at the neuromuscular junction is a major factor in AMAN. Although disease modeling in mice exposed to AGAbs indicates that complement-mediated necrosis occurs extensively in the presynaptic axons, evidence in humans is more limited, in comparison to the extensive injury seen at nodes of Ranvier. We considered that rapid AGAb uptake at the motor nerve terminal membrane might attenuate complement-mediated injury. We found that PC12 rat neuronal cells rapidly internalized AGAb, which were trafficked to recycling endosomes and lysosomes. Consequently, complement-mediated cytotoxicity was attenuated. Importantly, we observed the same AGAb endocytosis and protection from cytotoxicity in live mouse nerve terminals. AGAb uptake was attenuated following membrane cholesterol depletion in vitro and ex vivo, indicating that this process may be dependent upon cholesterol-enriched microdomains. In contrast, we observed minimal AGAb uptake at nodes of Ranvier, and this structure thus remained vulnerable to complement-mediated injury. These results indicate that differential endocytic processing of AGAbs by different neuronal and glial membranes might be an important modulator of site-specific injury in acute AGAb-mediated Guillain-Barré syndrome subforms and their chronic counterparts.
Collapse
Affiliation(s)
- Simon N. Fewou
- Institute of Infection, Immunity and Inflammation and
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Angie Rupp
- Institute of Infection, Immunity and Inflammation and
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lauren E. Nickolay
- Institute of Infection, Immunity and Inflammation and
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kathryn Carrick
- Institute of Infection, Immunity and Inflammation and
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kay N. Greenshields
- Institute of Infection, Immunity and Inflammation and
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - John Pediani
- Institute of Infection, Immunity and Inflammation and
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jaap J. Plomp
- Institute of Infection, Immunity and Inflammation and
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hugh J. Willison
- Institute of Infection, Immunity and Inflammation and
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
Department of Neurology and
Department of Molecular Cell Biology — Group Neurophysiology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
13
|
Ribchester RR. Quantal Analysis of Endplate Potentials in Mouse Flexor Digitorum Brevis Muscle. ACTA ACUST UNITED AC 2011; 1:429-44. [PMID: 26068999 DOI: 10.1002/9780470942390.mo110127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The isolated flexor digitorum brevis (FDB) muscle from mice is extremely well suited to rapid acquisition of data and analysis of neurotransmitter release and action at neuromuscular junctions, because the muscle and its tibial nerve supply are simple to dissect and its constituent muscle fibers are short (<1 mm) and isopotential along their length. Methods are described here for dissection of FDB, stimulation of the tibial nerve, microelectrode recording from individual muscle fibers, and quantal analysis of endplate potentials (EPPs) and miniature endplate potentials (MEPPs). Curr. Protoc. Mouse Biol. 1:429-444 © 2011 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Richard R Ribchester
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, George Square, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
14
|
Zitman FMP, Greenshields KN, Kuijf ML, Ueda M, Kaida KI, Broos LAM, Tio-Gillen AP, Jacobs BC, Kusunoki S, Willison HJ, Plomp JJ. Neuropathophysiological potential of Guillain-Barré syndrome anti-ganglioside-complex antibodies at mouse motor nerve terminals. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1759-1961.2011.00022.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Mostafa GA, Al-Ayadhi LY. Increased serum levels of anti-ganglioside M1 auto-antibodies in autistic children: relation to the disease severity. J Neuroinflammation 2011; 8:39. [PMID: 21513576 PMCID: PMC3104945 DOI: 10.1186/1742-2094-8-39] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/25/2011] [Indexed: 12/30/2022] Open
Abstract
Background Autoimmunity to the central nervous system (CNS) may play a pathogenic role in a subgroup of patients with autism. This study aimed to investigate the frequency of serum anti-ganglioside M1 auto-antibodies, as indicators of the presence of autoimmunity to CNS, in a group of autistic children. We are the first to measure the relationship between these antibodies and the degree of the severity of autism. Methods Serum anti-ganglioside M1 antibodies were measured, by ELISA, in 54 autistic children, aged between 4 and 12 years, in comparison to 54 healthy-matched children. Autistic severity was assessed by using the Childhood Autism Rating Scale (CARS). Results Autistic children had significantly higher serum levels of anti-ganglioside M1 antibodies than healthy children (P < 0.001). The seropositivity of anti-ganglioside M1 antibodies was found in 74% (40/54) of autistic children. Serum levels of anti-ganglioside M1 antibodies were significantly higher in autistic children with severe autism (63%) than those with mild to moderate autism (37%), P = 0.001. Moreover, serum anti-ganglioside M1 antibodies had significant positive correlations with CARS (P < 0.001). Conclusions Serum levels of anti-ganglioside M1 antibodies were increased in many autistic children. Also, their levels had significant positive correlations with the degree of the severity of autism. Thus, autism may be, in part, one of the pediatric autoimmune neuropsychiatric disorders. Further wide-scale studies are warranted to shed light on the possible etiopathogenic role of anti-ganglioside M1 auto-antibodies in autism. The role of immunotherapy in autistic patients who have increased serum levels of anti-ganglioside M1 antibodies should also be studied.
Collapse
Affiliation(s)
- Gehan A Mostafa
- Autism Research and Treatment Center, Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
16
|
Valdes-Gonzalez T, Goto-Inoue N, Hirano W, Ishiyama H, Hayasaka T, Setou M, Taki T. New approach for glyco- and lipidomics - Molecular scanning of human brain gangliosides by TLC-Blot and MALDI-QIT-TOF MS. J Neurochem 2011; 116:678-83. [DOI: 10.1111/j.1471-4159.2010.07152.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Mostafa GA, Ibrahim DH, Shehab AA, Mohammed AK. The role of measurement of serum autoantibodies in prediction of pediatric neuropsychiatric systemic lupus erythematosus. J Neuroimmunol 2010; 227:195-201. [PMID: 20724007 DOI: 10.1016/j.jneuroim.2010.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/15/2010] [Accepted: 07/20/2010] [Indexed: 12/19/2022]
Abstract
UNLABELLED Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the most difficult manifestations of lupus to diagnose. Measurement of serum brain antibodies has contributed to early diagnosis and management of NPSLE before development of a debilitating disease. We aimed to assess the value of serum anti-ganglioside M1 antibodies in prediction of NPSLE, in comparison to other antibodies used in routine laboratory diagnosis of NPSLE. In addition, we are the first to study the relationship between these antibodies and cognitive function in lupus patients. Serum anti-ganglioside M1, anti-ribosomal P protein and anti-cardiolipin antibodies were measured in 30 lupus patients without clinical evidence of NPSLE, aged 8-16 years, and 30 healthy matched-subjects. Patients were followed-up clinically by monthly neuropsychiatric evaluation and assessment of cognitive function for 12 months. Twelve patients developed neuropsychiatric manifestations during follow-up. Of those patients, 83.3%, 50% and 16.7% were seropositive for anti-ganglioside M1, anti-ribosomal P and anti-cardiolipin antibodies, respectively at the time of initial evaluation before clinical presentation of NPSLE. There was a significant positive association between anti-ganglioside seropositivity and cognitive dysfunction (P<0.001). In addition, anti-ganglioside seropositivity had a significant risk for association with cognitive dysfunction (odds ratio: 36; 95% CI: 4.3-302.8). CONCLUSIONS Serum anti-ganglioside M1 antibodies had a higher predictive value for NPSLE than other antibodies used in routine laboratory diagnosis of this disease. Thus, they may be reliable parameters for early diagnosis and management of NPSLE before clinical manifestations ensue. In addition, anti-ganglioside M1 antibodies may play a role in cognitive dysfunction found in some lupus patients.
Collapse
Affiliation(s)
- Gehan A Mostafa
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | | | | |
Collapse
|
18
|
Zitman FMP, Todorov B, Furukawa K, Furukawa K, Willison HJ, Plomp JJ. Total ganglioside ablation at mouse motor nerve terminals alters neurotransmitter release level. Synapse 2010; 64:335-8. [PMID: 19957367 DOI: 10.1002/syn.20747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuronal membrane gangliosides, forming a large family of sialylated glycosphingolipids, have been hypothesized to play important roles in synaptic transmission. We studied the ex vivo electrophysiological function of neuromuscular junctions of GM2/GD2-synthase*GD3-synthase compound null-mutant mice after acute removal of GM3, the only remaining ganglioside in this mouse, by in vitro treatment with neuraminidase. We found 16% enhancement of the acetylcholine release per nerve impulse at low-rate (0.3 Hz) nerve stimulation. Conversely, the treatment reduced the acetylcholine release evoked by high-rate (40 Hz) nerve stimulation. Also, 25 ms paired-pulse facilitation of endplate potentials was reduced by the neuraminidase-treatment. These effects may indicate a modest modulatory influence of the negative electrical charges carried by the sialic acid molecules of gangliosides on the function of presynaptic Ca(v)2.1 channels, affecting the magnitude and kinetics of the Ca(2+) influx that induces neurotransmitter release from the motor nerve terminal. Our results show that gangliosides are to some extent involved in neurotransmission at the neuromuscular junction, but that their presence is not an absolute requirement in this process.
Collapse
Affiliation(s)
- Femke M P Zitman
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Plomp JJ, Willison HJ. Pathophysiological actions of neuropathy-related anti-ganglioside antibodies at the neuromuscular junction. J Physiol 2009; 587:3979-99. [PMID: 19564393 PMCID: PMC2756433 DOI: 10.1113/jphysiol.2009.171702] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 06/24/2009] [Indexed: 12/17/2022] Open
Abstract
The outer leaflet of neuronal membranes is highly enriched in gangliosides. Therefore, specific neuronal roles have been attributed to this family of sialylated glycosphingolipids, e.g. in modulation of ion channels and transporters, neuronal interaction and recognition, temperature adaptation, Ca(2+) homeostasis, axonal growth, (para)node of Ranvier stability and synaptic transmission. Recent developmental, ageing and injury studies on transgenic mice lacking subsets of gangliosides indicate that gangliosides are involved in maintenance rather than development of the nervous system and that ganglioside family members are able to act in a mutually compensatory manner. Besides having physiological functions, gangliosides are the likely antigenic targets of autoantibodies present in Guillain-Barré syndrome (GBS), a group of neuropathies with clinical symptoms of motor- and/or sensory peripheral nerve dysfunction. Antibody binding to peripheral nerves is thought to either interfere with ganglioside function or activate complement, causing axonal damage and thereby disturbed action potential conduction. The presynaptic motor nerve terminal at the neuromuscular junction (NMJ) may be a prominent target because it is highly enriched in gangliosides and lies outside the blood-nerve barrier, allowing antibody access. The ensuing neuromuscular synaptopathy might contribute to the muscle weakness in GBS patients. Several groups, including our own, have studied the effects of anti-ganglioside antibodies in ex vivo and in vivo experimental settings at mouse NMJs. Here, after providing a background overview on ganglioside synthesis, localization and physiology, we will review those studies, which clearly show that anti-ganglioside antibodies are capable of binding to NMJs and thereby can exert a variety of pathophysiological effects. Furthermore, we will discuss the human clinical electrophysiological and histological evidence produced so far of the existence of a neuromuscular synaptopathy contributing to muscle weakness in GBS patients.
Collapse
Affiliation(s)
- Jaap J Plomp
- Glasgow Biomedical Research Centre, Room B330, 120 University Place, University of Glasgow, Glasgow G12 8TA, UK
| | | |
Collapse
|
20
|
Zitman FMP, Todorov B, Verschuuren JJ, Jacobs BC, Furukawa K, Furukawa K, Willison HJ, Plomp JJ. Neuromuscular synaptic transmission in aged ganglioside-deficient mice. Neurobiol Aging 2009; 32:157-67. [PMID: 19233512 DOI: 10.1016/j.neurobiolaging.2009.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/08/2008] [Accepted: 01/15/2009] [Indexed: 11/30/2022]
Abstract
Gangliosides are sialylated glycosphingolipids that are present in high density on neuronal membranes, especially at synapses, where they are assumed to play functional or modulating roles. Mice lacking GM2/GD2-synthase express only the simple gangliosides GD3 and GM3 and develop progressive motor behaviour deficits upon ageing, apparently due to failing complex ganglioside-dependent maintenance and/or repair processes or, alternatively, toxic GM3/GD3 accumulation. We investigated the function of neuromuscular junctions (NMJs) of aged (>9 month-old) GM2/GD2-synthase null-mutant mice, because synaptic dysfunction might develop with age and could potentially contribute to the late-onset motor phenotype. In addition, we studied NMJs of old mice lacking GD3-synthase (expressing only O- and a-series gangliosides), which do not show an overt neurological phenotype but may develop subclinical synaptic deficits. Detailed electrophysiological analyses showed subtle changes in presynaptic neurotransmitter release. Acetylcholine release at 40 Hz nerve stimulation at aged GM2/GD2-synthase null-mutant NMJs ran down slightly more pronounced than at wild-type NMJs, and spontaneous acetylcholine release rate at GD3-synthase null-mutant NMJs was somewhat higher than at wild-type, selectively at 25 °C bath temperature. Interestingly, we observed faster kinetics of postsynaptic electrophysiological responses at aged GD3-synthase null-mutant NMJs, not previously seen by us at NMJs of young GD3-synthase null-mutants or other types of (aged or young) ganglioside-deficient mice. These kinetic changes might reflect a change in postsynaptic acetylcholine receptor behaviour. Our data indicate that it is highly unlikely that transmission failure at NMJs contributes to the progressive motor defects of aged GM2/GD2-synthase null-mutants and that, despite some kinetic changes of synaptic signals, neuromuscular transmission remains successful in aged GD3-synthase null-mutant mice. Apparently, mutual redundancy of the different gangliosides in supporting presynaptic function, as observed previously by us in young mice, remains adequate upon ageing or, alternatively, gangliosides have only relatively little direct impact on neuromuscular synaptic function, even in aged mice.
Collapse
Affiliation(s)
- Femke M P Zitman
- Department of Neurology, Leiden University Medical Centre, PO Box 9600, NL-2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|