1
|
Abstract
Verifying causal effects of neural circuits is essential for proving a direct circuit-behavior relationship. However, techniques for tagging only active neurons with high spatiotemporal precision remain at the beginning stages. Here we develop the soma-targeted Cal-Light (ST-Cal-Light) which selectively converts somatic calcium rise triggered by action potentials into gene expression. Such modification simultaneously increases the signal-to-noise ratio of reporter gene expression and reduces the light requirement for successful labeling. Because of the enhanced efficacy, the ST-Cal-Light enables the tagging of functionally engaged neurons in various forms of behaviors, including context-dependent fear conditioning, lever-pressing choice behavior, and social interaction behaviors. We also target kainic acid-sensitive neuronal populations in the hippocampus which subsequently suppress seizure symptoms, suggesting ST-Cal-Light's applicability in controlling disease-related neurons. Furthermore, the generation of a conditional ST-Cal-Light knock-in mouse provides an opportunity to tag active neurons in a region- or cell-type specific manner via crossing with other Cre-driver lines. Thus, the versatile ST-Cal-Light system links somatic action potentials to behaviors with high temporal precision, and ultimately allows functional circuit dissection at a single cell resolution.
Collapse
|
2
|
Kalati ZH, Gholami O, Amin B, Pejhan A, Sahab-Negah S, Gholami M, Azhdari-Zarmehri H, Mohammad-Zadeh M. The Role of 5-HT1A Receptors and Neuronal Nitric Oxide Synthase in a Seizur Induced Kindling Model in Rats. Neurochem Res 2022; 47:1934-1942. [PMID: 35305199 DOI: 10.1007/s11064-022-03577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Dentate gyrus (DG) has a high density of 5-HT1A receptors. It has neural nitric oxide synthase (nNOS), which is involved in neural excitability. The purpose of this study was to investigate the role of 5-HT1A receptors and nNOS of DG in perforant path kindling model of epilepsy. MATERIAL AND METHODS To achieve this purpose, a receptor antagonist (WAY100635, 0.1 mg/kg, intracerebroventricular, i.c.v) and neuronal nitric oxide synthase inhibitor (7-NI, 15 mg/kg, intraperitoneal, i.p.) were injected during kindling aquisition. Adult male Wistar rats (280 ± 20 g) were used in this study Animals were kindled through the daily administration of brief electrical stimulations (10 stimulations per day) to the perforant pathway. Field potential recordings were performed for 20 min in DG beforehand. Additionally, glial fibrillary acidic protein (GFAP) expression rate in the DG was determined using immunohistochemistry as a highly specific marker for glia. RESULTS WAY100635 (0.1 mg/kg) significantly attenuated the kindling threshold compared to the kindled + vehicle group (P < 0.001). The co-administration of WAY100635 with 7-NI, exerted a significant anticonvulsive effect. Furthermore, the slope of field Excitatory Post Synaptic Potentials (fEPSP) at the end of 10 days in the kindled + 7-NI + WAY100635 group was significantly lower than in the kindled + vehicle group (P < 0.001). Furthermore, immunohistochemistry showed that the density of GAFP+ cells in the kindled + 7-NI + WAY100635 group was significantly higher than in the kindled + vehicle group (P < 0.001). CONCLUSION Our data demonstrate that antagonists of 5-HT1A receptors have proconvulsive effects and that astrocyte cells are involved in this process, while nNOS has an inhibitory effect on neuronal excitability.
Collapse
Affiliation(s)
- Zinat Heydarnia Kalati
- Student Research Committee, Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Omid Gholami
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Bahareh Amin
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Akbar Pejhan
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Physiology and Pharmacology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hassan Azhdari-Zarmehri
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Mohammad Mohammad-Zadeh
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Mumtaz F, Rashki A, Imran Khan M, Shadboorestan A, Abdollahi A, Ghazi-Khansari M, Alotaibi G, Dehpour AR. Neuroprotective effect of sumatriptan in pentylenetetrazole-induced seizure is mediated through N-methyl-D-aspartate/nitric oxide and cAMP response element-binding protein signaling pathway. Fundam Clin Pharmacol 2021; 36:250-261. [PMID: 34545607 DOI: 10.1111/fcp.12728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/29/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Seizure occurs as a result of uncontrolled electrical disturbances within the brain. Various biomolecules such as N-methyl-D-aspartate (NMDA), nitric oxide (NO), and cAMP response element-binding protein (CREB) have been implicated in the pathophysiology of seizure. Sumatriptan is a specific 5-Hydroxytryptamine 1B/1D receptor agonist and has neuroprotective effects in various neuropsychiatric disorders. In the current study, we tried to investigate the possible interaction of sumatriptan with NMDA/NO and CREB signaling pathway in PTZ induced seizure. For this purpose, various agonist and antagonist of NMDA such as MK-801 and Ketamine, NO precursor L-ARG, and NOS inhibitors L-NAME and 7-NI were co-administered with sumatriptan in PTZ induced seizure model. The level of nitrite in mice hippocampus was determined by Griess reaction. The gene expression of NR1, NR2A, NR2B, and CREB were quantified by quantitative real time-polymerase chain reaction (qRT-PCR). Furthermore, the involved neuronal nitric oxide synthase (nNOS) protein expression was examined via western blot analysis. Effective dose of sumatriptan (1.2 mg/kg) alone and subeffective dose of sumatriptan (0.3 mg/kg) in combination with NMDA and/or NO antagonist showed significant (P < 0.001) anticonvulsant activity in mice. Furthermore, sumatriptan significantly inhibited the PTZ-induced mRNA expression of NR2A (P < 0.0001), NR2B (P < 0.05), and CREB (P < 0.01). Also, the expression of nNOS protein in PTZ treated group was reversed by sumatriptan (P < 0.01). Hence, current findings suggest that the anticonvulsant effect of sumatriptan was due to down regulation of NMDA/NO and CREB signaling pathway.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,International Campus of Tehran University of Medical Sciences, Tehran, Iran
| | - Asma Rashki
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Muhammad Imran Khan
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Kingdom of Saudi Arabia
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Identification of a G-Protein-Independent Activator of GIRK Channels. Cell Rep 2021; 31:107770. [PMID: 32553165 DOI: 10.1016/j.celrep.2020.107770] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/24/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
G-protein-gated inwardly rectifying K+ (GIRK) channels are essential effectors of inhibitory neurotransmission in the brain. GIRK channels have been implicated in diseases with abnormal neuronal excitability, including epilepsy and addiction. GIRK channels are tetramers composed of either the same subunit (e.g., homotetramers) or different subunits (e.g., heterotetramers). Compounds that specifically target subsets of GIRK channels in vivo are lacking. Previous studies have shown that alcohol directly activates GIRK channels through a hydrophobic pocket located in the cytoplasmic domain of the channel. Here, we report the identification and functional characterization of a GIRK1-selective activator, termed GiGA1, that targets the alcohol pocket. GiGA1 activates GIRK1/GIRK2 both in vitro and in vivo and, in turn, mitigates the effects of a convulsant in an acute epilepsy mouse model. These results shed light on the structure-based development of subunit-specific GIRK modulators that could provide potential treatments for brain disorders.
Collapse
|
5
|
Mumtaz F, Shafaroodi H, Nezamoleslami S, Zubair M, Sheibani M, Nikoui V, Ghazi-Khansari M, Dehpour AR. Involvement of nNOS, and α1, α2, β1, and β2 Subunits of Soluble Guanylyl Cyclase Genes Expression in Anticonvulsant Effect of Sumatriptan on Pentylenetetrazole-Induced Seizure in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 19:181-192. [PMID: 33841534 PMCID: PMC8019868 DOI: 10.22037/ijpr.2020.112594.13844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Epileptic seizure is phenomenon of abnormal synchronous neuronal discharge of a set of neurons in brain as a result of neuronal excitation. Evidence shows the nitric oxide (NO) involvement in neuronal excitability. Moreover, the role of cyclic guanosine monophosphate (cGMP) activation in seizure pathogenesis is well-established. Sumatriptan is a selective agonist of 5-Hydroxytryptamine1B/D auto-receptor, has been reassessed for its neuroprotection. This study was aimed to explore the anticonvulsant effect of sumatriptan through possible involvement of NO-cGMP pathway in mice. For this purpose, the protective effect of sumatriptan on PTZ-induced clonic seizure threshold (CST) was measured using NO-cGMP pathway inhibitors including N(G)-nitro-L-arginine (L-NNA, 1, 5, and 10 mg/kg), 7-nitroindazole (7-NI, 30, 45, and 60 mg/kg), aminoguanidine (AG, 30, 50, and 100 mg/kg), methylene blue (MB, 0.1, 0.5, and 1 mg/kg) and sildenafil (5, 10, and 20 mg/kg). The involvement of nitrergic system was further confirmed by measurement of nitrite levels by Griess reaction. The gene expression of neuronal nitric oxide synthase (nNOS) and subunits of soluble guanylyl cyclase (sGC) was studied using qRT-PCR analysis. Acute administration of sumatriptan (1.2 and 0.3 mg/kg) in combination with subeffective doses of NOS, sGC, and phosphodiesterase 5 inhibitors significantly reversed the PTZ-induced CST (P ≤ 0.001). The nitrite level in prefrontal cortex was significantly attenuated by sumatriptan (P ≤ 0.01). Furthermore, sumatriptan downregulated the PTZ-induced mRNA expression of nNOS (P ≤ 0.01), α1 (P ≤ 0.001), α2 (P ≤ 0.05), and β1 (P ≤ 0.05) genes in cerebral cortex of mice. In conclusion, the anticonvulsant activity of sumatriptan at least, in part, is mediated through inhibiting NO-cGMP pathway.
Collapse
Affiliation(s)
- Faiza Mumtaz
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadaf Nezamoleslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Zubair
- Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, PR China
| | - Mohammad Sheibani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Proconvulsant effects of Nepeta menthoides hydro alcoholic extract in different seizure tests: behavioral and biochemical studies. Heliyon 2020; 6:e05579. [PMID: 33294706 PMCID: PMC7701200 DOI: 10.1016/j.heliyon.2020.e05579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/30/2020] [Accepted: 11/19/2020] [Indexed: 01/31/2023] Open
Abstract
In Iran, both Nepeta menthoides - the endemic species of Nepeta genus - and Lavandula officinalis are known as Ustukhuddoos and used widely as medicinal herbs. In Iranian traditional medicine, Ustukhuddoos has been recommended for several neuronal diseases including depression and epilepsy. While the antiepileptic effects of Lavandula officinalis have been investigated in a number of studies, no reports are available taking into account the effect of Nepeta menthoides on epilepsy. Since convulsion is an important side effect of some medicinal plants, a thorough study of the effects of Nepeta menthoides on epilepsy seems necessary. This study was designed to investigate the potential anti- or pro-convulsant activity of Nepeta menthoides and its effects on oxidative stress markers. Since an herbal medicine showed opposite effects in two animal models of epilepsy in our laboratory, authers decided to study Nepeta effects through several seizure tests including the intravenous pentylenetetrazol (i.v. PTZ) infusion, the maximal electroshock (MES), acute PTZ and PTZ-kindling tests. These seizure models are generally used for screening pro- or anti-epileptic drugs. Nepeta menthoides (400 mg/kg) significantly reduced the dose of PTZ necessary for clonus seizure induction. Combining either phenytoin (Phen) or Valproate (Val) with Nepeta decreased their antiepileptic effects. Therefore, Nepeta menthoides not only failed to prevent the seizures but also increased sensitivity to them. Nepeta raised brain NO levels in different seizure tests. It seems there is a relation between NO elevation by Nepeta and increased sensitivity to seizures that should be investigated later.
Collapse
|
7
|
Ebrahimi F, Sadr SS, Roghani M, Khamse S, Mohammadian Haftcheshmeh S, Navid Hamidi M, Mohseni-Moghaddam P, Zamani E. Assessment of the protective effect of KN-93 drug in systemic epilepsy disorders induced by pilocarpine in male rat. J Cell Biochem 2019; 120:15906-15914. [PMID: 31074121 DOI: 10.1002/jcb.28864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Epileptic seizures occur as a consequence of a sudden imbalance between the stimuli and inhibitors within the network of cortical neurons in favor of the stimulus. One of the drugs that induce epilepsy is pilocarpine. Systemic injection of pilocarpine affects on muscarinic receptors. Increasing evidence has addressed the implication of KN-93 by blocking Ca2+ /calmodulin-dependent protein kinase II (CaMKII), suppressing oxidative stress and inflammation, and also reducing neuron decay. So, we aimed to evaluate the potential preventive effects of KN-93 in systemic epilepsy disorders induced by pilocarpine. MATERIALS AND METHODS In this animal study, male rats were divided into five groups including treatment group (KN-93 with the dose of 5 mM/10 µL dimethyl sulfoxide (DMSO) before inducing epilepsy by 380 mg/kg pilocarpine) KN-93 group (received 5 mM KN-93), control group, epilepsy group (received 380 mg/kg pilocarpine Intraperitoneal), and sham group (received 10 µL DMSO). Oxidative stress was assessed by measuring its indicators including the concentration of malondialdehyde (MDA), nitrite, glutathione (GSH), as well as the antioxidant activity of catalase. In addition, serum levels of proinflammatory mediators including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were determined. RESULTS Pretreatment with KN-93 significantly reduced oxidative stress index by reducing the concentration of MDA, nitrite, and increasing the level of GSH. In addition, low concentrations of TNF-α and IL-1β were observed in hippocampus supernatant of KN-93 pretreated rats in comparison with the pilocarpine groups. Moreover, administration of KN-93 improved neuronal density and attenuated the seizure activity and behavior. CONCLUSIONS Overall, our findings suggest that KN-93 can effectively suppress oxidative stress and inflammation. Furthermore, KN-93 is able to attenuate seizure behaviors by preventing its effects on neuron loss, so, it is valuable for the treatment of epileptic seizures.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Department of Physiology, School of Medicine, Shahed University and Medicinal Plant Research Center, Tehran, Iran
| | - Safoura Khamse
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadian Haftcheshmeh
- Department of Medical Immunology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojdeh Navid Hamidi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Elham Zamani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Hu L, Xu B, Wang Y, Wang M, Wang H. Influence of arginine on enzymes related to arginine metabolism in bovine mammary epithelial cells in vitro. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2017-0215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bovine mammary epithelial cells were used to evaluate the effects of different levels of Arginine (Arg) on enzymes related to Arg metabolism. A series of seven Arg concentrations in the medium as treatments were T0 (0.00 mg L−1) as control group, and T0.25 (69.50 mg L−1), T0.5 (139.00 mg L−1), T1 (278.00 mg L−1), T2 (556.00 mg L−1), T4 (1112.00 mg L−1), and T8 (2224.00 mg L−1) as experiment groups, respectively. The quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analysis showed that the nitric oxide concentration, the expressions of endothelial nitric oxide synthase in mRNA, and enzyme level were all increased in response to enhanced Arg doses such that the T8 was the greatest group (P < 0.05). Four-fold Arg concentration improved gene expression and synthesis of arginase which then deceased when excessive Arg was supplied (P < 0.05). The expressions of ornithine aminotransferase mRNA and enzyme in T1 and T2 groups were significantly greater than that in the other groups (P < 0.05). Two-fold Arg was the optimum level for ornithine decarboxylase gene expression and enzyme synthesis among all seven treatments (P < 0.05). These somewhat various effects of Arg concentrations on four kinds of enzymes in different Arg metabolic pathways suggest that Arg might participate in regulating bovine mammary physiological function with an optimum concentration by influencing the enzymes in related metabolic pathways.
Collapse
Affiliation(s)
- Liangyu Hu
- School of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Bolin Xu
- School of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Yifan Wang
- Medical School of Southeast University, Nanjing, Jiangsu 210009, People’s Republic of China
| | - Mengzhi Wang
- School of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| | - Hongrong Wang
- School of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, People’s Republic of China
| |
Collapse
|
9
|
Abstract
Pentylenetetrazole (PTZ) is a GABA-A receptor antagonist. An intraperitoneal injection of PTZ into an animal induces an acute, severe seizure at a high dose, whereas sequential injections of a subconvulsive dose have been used for the development of chemical kindling, an epilepsy model. A single low-dose injection of PTZ induces a mild seizure without convulsion. However, repetitive low-dose injections of PTZ decrease the threshold to evoke a convulsive seizure. Finally, continuous low-dose administration of PTZ induces a severe tonic-clonic seizure. This method is simple and widely applicable to investigate the pathophysiology of epilepsy, which is defined as a chronic disease that involves repetitive seizures. This chemical kindling protocol causes repetitive seizures in animals. With this method, vulnerability to PTZ-mediated seizures or the degree of aggravation of epileptic seizures was estimated. These advantages have led to the use of this method for screening anti-epileptic drugs and epilepsy-related genes. In addition, this method has been used to investigate neuronal damage after epileptic seizures because the histological changes observed in the brains of epileptic patients also appear in the brains of chemical-kindled animals. Thus, this protocol is useful for conveniently producing animal models of epilepsy.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Synaptic Plasticity Project, Tokyo Metropolitan Institute of Medical Science;
| | - Kanato Yamagata
- Synaptic Plasticity Project, Tokyo Metropolitan Institute of Medical Science;
| |
Collapse
|
10
|
Satb2 ablation decreases PTZ-induced seizure susceptibility and pyramidal neuronal excitability. Brain Res 2018; 1695:102-107. [PMID: 29750936 DOI: 10.1016/j.brainres.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
Abstract
Special AT-rich sequence-binding protein 2 (Satb2) is a transcriptional regulator and people with SATB2 mutation or duplication could display epilepsy. However, whether Satb2 is related with epilepsy and its mechanisms are largely unexplored. Here we found that the expression of Satb2 was decreased following the neuronal hyperactivities. Ablation of Satb2 in mice would decrease incidence and stage of seizure induced by intraperitoneal injection of pentylenetetrazol (PTZ). At cellular levels, we found pyramidal neuronal excitability and excitatory synaptic inputs in CA1 were decreased in Satb2 mutant mice. Taking together, we proved that deletion of Satb2 in mice increased PTZ seizure threshold probably by modulating neuronal excitability.
Collapse
|
11
|
Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, Chang H, Chao J, Yao H. Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling-Induced Cognitive Impairment and Depressive-Like Behavior. Front Behav Neurosci 2017; 11:203. [PMID: 29093670 PMCID: PMC5651248 DOI: 10.3389/fnbeh.2017.00203] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/06/2017] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a chronic neurological disease which is usually associated with psychiatric comorbidities. Depsression and cognition impairment are considered to be the most common psychiatric comorbidities in epilepsy patients. However, the specific contribution of epilepsy made to these psychiatric comorbidities remains largely unknown. Here we use pentylenetetrazole (PTZ) kindling, a chronic epilepsy model, to identify neuronal nitric oxide synthase (nNOS) as a signaling molecule triggering PTZ kindling-induced cognitive impairment and depressive-like behavior. Furthermore, we identified that both hippocampal MAPK and PI3K/AKT signaling pathways were activated in response to PTZ kindling, and the increased MAPK and PI3K/AKT signaling activation was paralleled by increased level of reactive oxygen species (ROS) in the hippocampus. However, the PTZ kindling-induced MAPK, PI3K/AKT signaling activities and the ROS level were attenuated by nNOS gene deficiency, suggesting that nNOS may act through ROS-mediated MAPK and PI3K/AKT signaling pathways to trigger cognition deficit and depressive-like behavior in PTZ-kindled mice. Our findings thus define a specific mechanism for chronic epilepsy-induced cognitive impairment and depressive-like behavior, and identify a potential therapeutic target for psychiatric comorbidities in chronic epilepsy patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Rongrong Huang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Zhengrong Xia
- Analysis and Test Center of Nanjing Medical University, Nanjing, China
| | - Huanhuan Chang
- Nanjing Biomedical Research Institute of Nanjing University, Nanjing, China
| | - Jie Chao
- Department of Physiology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
12
|
Taiwe GS, Tchoya TB, Menanga JR, Dabole B, De Waard M. Anticonvulsant activity of an active fraction extracted from Crinum jagus L. (Amaryllidaceae), and its possible effects on fully kindled seizures, depression-like behaviour and oxidative stress in experimental rodent models. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:421-433. [PMID: 27725241 DOI: 10.1016/j.jep.2016.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/27/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaf extract of Crinum jagus L. (Amaryllidaceae) is widely used in traditional Cameroonian medicine as antiepileptic remedy and for the treatment of convulsion, depression and mood disorders associated with epilepsy. AIM OF THE STUDY Hence, this study was conducted to evaluate the effects of an active fraction extracted from the leaves of Crinum jagus against seizures, depression-like behaviour and oxidative stress in pentylenetetrazole (PTZ)-induced kindling in mice. MATERIALS AND METHODS Bioactive-guided fractionation of the leaf extract of Crinum jagus by using 70mg/kg PTZ-induced convulsions in mice, afforded a potent anticonvulsant fraction (flavonol kaempferol; C4.4). The effects of C4.4 on 30mg/kg PTZ-induced kindling, kindling-induced depression like-behaviour and oxidative stress was evaluated. Mice were injected PTZ (30mg/kg, i.p.) once every alternate day (48±1h) until the development of kindling. Depression was assessed using tail suspension test and forced swim test while the oxidative stress parameters were estimated in the whole brain at the end of experiments. Mice were submitted to the rota-rod task and open-field test in order to assess any non-specific muscle-relaxant or sedative effects of C4.4. Acute toxicity of C4.4 was also assessed in mice. RESULTS Convulsions-induced by 70mg/kg PTZ were strongly antagonized by C4.4. Oral administration of C4.4 significantly increased the latency to myoclonic jerks, clonic seizures as well as generalized tonic-clonic seizures, improved the seizure mean stage and decreased the number of myoclonic jerks in PTZ-kindled mice. The data indicated also that C4.4 significantly reduced the immobility times in the tail suspension test and the forced swim test. This active fraction has also antioxidant properties by decreasing the lipid peroxidation, and augmenting endogenous antioxidant enzymes in brain. C4.4 administered (12.5-50mg/kg) did not alter the locomotion of animals in the open-field or rotarod tests, which suggest a lack of a central depressant effect. The animals did not exhibit any acute toxicity to C4.4 at the therapeutic doses. CONCLUSION These results suggest that pretreatment with C4.4 ameliorates convulsions-induced by PTZ, protects mice against kindling development, depression-like behaviour and oxidative stress in PTZ-kindled mice. These finding provides scientific rationale for the use of Crinum jagus extracts for the amelioration of epilepsy observed in traditional medicine in Cameroon.
Collapse
Affiliation(s)
- Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea , Cameroon.
| | - Thierry Bang Tchoya
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Joseph Renaud Menanga
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Bernard Dabole
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Michel De Waard
- Institut du Thorax, Inserm UMR 1087/CNRS UMR 6291, Nante, France; University of Nante, Nante, France; Smartox Biotechnology, Saint Martin d'Hères, France
| |
Collapse
|
13
|
Singh T, Goel RK. Adjuvant neuronal nitric oxide synthase inhibition for combined treatment of epilepsy and comorbid depression. Pharmacol Rep 2016; 69:143-149. [PMID: 27923157 DOI: 10.1016/j.pharep.2016.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elevated nitric oxide (NO) levels in the brain have been apparently associated with depression in kindled animals. Owing to the major role of neuronal nitric oxide synthase (nNOS) in brain and ineffectiveness of antiepileptic drugs (AEDs) in restoring nitrosative stress, the present study was envisaged to evaluate the adjuvant nNOS inhibitor, 7-nitroindazole (7-NI) with valproic acid for combined treatment of epilepsy and associated depression. METHODS Pentylenetetrazole kindled animals associated with depression were treated with vehicle, valproate (300mg/kg/day ip), valproate with 7-NI (10mg/kg; 20mg/kg; 40mg/kg)/day ip and 7-NI (40mg/kg/day ip) for 15days. Except naïve, all groups were challenged with pentylenetetrazole (35mg/kg ip) on days 5, 10, and 15 to evaluate seizure severity. Depression was evaluated in all experimental groups using the tail suspension and forced swim test on days 1, 5, 10 and 15. On day 15, biochemical (corticosterone levels) and neurochemical (serotonin, kynurenine, tryptophan, glutamate, GABA, nitrite levels) estimations were carried out in cortical and hippocampal area of mice brain. RESULTS Vehicle treated kindled animals were significantly associated with depression. Chronic valproate treatment in kindled animals significantly reduced seizure severity, but could not reverse associated depression. 7-NI per se treatment in kindled animals was also reported unable to restore the associated depression completely. However, 7-NI supplementation with valproate significantly reduced seizure severity score and completely ameliorated depression with restoration of altered biochemical and neurochemical milieu. CONCLUSION Adjuvant nNOS inhibition can be previewed as safe therapy with AEDs for the combined management of epilepsy and associated depression.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
14
|
Evidence in support of using a neurochemistry approach to identify therapy for both epilepsy and associated depression. Epilepsy Behav 2016; 61:248-257. [PMID: 27423076 DOI: 10.1016/j.yebeh.2016.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
The present study aimed to develop a neurochemistry-based single or adjuvant therapy approach for comprehensive management of epilepsy and associated depression employing pentylenetetrazole-kindled animals. Kindling was induced in two-month-old male Swiss albino mice by administering a subconvulsant pentylenetetrazole dose (35mg/kg, i.p.) at an interval of 48±2h. These kindled animals were treated with saline and sodium valproate (300mg/kg/day, i.p.) for 15days. Except for the naïve group, all other groups were challenged with pentylenetetrazole (35mg/kg, i.p.) on days 5, 10, and 15 to evaluate the seizure severity. Depression was evaluated in all experimental groups after normalization of locomotor activity, using tail suspension and forced swim test on days 1, 5, 10, and 15. Four hours after behavioral evaluations on day 15, all animals were euthanized to collect their serum and discrete brain parts. Corticosterone levels were estimated in all the experimental groups as a marker of a dysregulated hypothalamus pituitary adrenal axis. Neurochemical alterations (norepinephrine, dopamine, tryptophan, kynurenine, serotonin, glutamate, GABA, and total nitrate levels) were also estimated in the cortical and hippocampal areas of the mouse brain. Results revealed that saline-treated kindled animals were associated with significant depression and altered neurochemical milieu in comparison with naïve animals. Chronic valproate treatment in kindled animals significantly reduced seizure severity score bud did not ameliorate associated depression or completely restore altered biochemical and neurochemical milieu. Based on the observation of neurochemical changes in all the groups, we propose that restoration of altered neurochemical milieu, elevated indoleamine 2,3-dioxygenase enzyme activity, and corticosterone levels using pharmacological tools with/out valproic acid may be explored for management of both epilepsy and comorbid depression.
Collapse
|
15
|
Singh T, Goel RK. Adjuvant indoleamine 2,3-dioxygenase enzyme inhibition for comprehensive management of epilepsy and comorbid depression. Eur J Pharmacol 2016; 784:111-20. [PMID: 27189423 DOI: 10.1016/j.ejphar.2016.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the major neurological disorders frequently associated with psychiatric disorders such as depression. Alteration of tryptophan metabolism towards kynurenine pathway may be one of the plausible reasons for association of depression in epilepsy. Hence, this study was envisaged to evaluate the dose dependent inhibition of indoleamine 2,3-dioxygenase (IDO) enzyme (responsible for shifting tryptophan metabolism) employing minocycline with valproic acid for comprehensive management of epilepsy and comorbid depression. Kindling was induced in male swiss albino mice by administration of pentylenetetrazole subconvulsive dose (35mg/kg, i.p.) at an interval of 48±2h. Kindled animals were treated with saline, valproate (300mg/kg/day i.p.), valproate in combination with different doses of minocycline (10mg/kg; 20mg/kg; 40mg/kg)/day i.p. and minocycline per se (40mg/kg/day i.p.) for 15 days. Except naïve, all the groups were challenged with pentylenetetrazole (35mg/kg i.p.) on day 5, 10, and 15 to evaluate the seizure severity score. Depression was evaluated in all experimental groups using tail suspension and forced swim test on days 1, 5, 10 and 15, 2h after pentylenetetrazole challenge. Results suggested that saline treated kindled animals were significantly associated with depression. Chronic valproate treatment significantly reduced seizure severity score but unable to ameliorate the associated depression. Minocycline supplementation with valproic acid dose dependently ameliorated depression associated with epilepsy. Neurochemical and biochemical findings also supported the behavioural findings of the study. Thus, our results suggested that supplementation of IDO enzyme inhibitors with valproic acid could be explored further for comprehensive management of epilepsy and associated depression.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
16
|
Zhu X, Dong J, Shen K, Bai Y, Chao J, Yao H. Neuronal nitric oxide synthase contributes to pentylenetetrazole-kindling-induced hippocampal neurogenesis. Brain Res Bull 2016; 121:138-47. [DOI: 10.1016/j.brainresbull.2016.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/07/2023]
|
17
|
Design, synthesis and pharmacological evaluation of N-[4-(4-(alkyl/aryl/heteroaryl)-piperazin-1-yl)-phenyl]-carbamic acid ethyl ester derivatives as novel anticonvulsant agents. Bioorg Med Chem Lett 2015; 25:1092-9. [DOI: 10.1016/j.bmcl.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 12/14/2014] [Accepted: 01/05/2015] [Indexed: 01/22/2023]
|
18
|
BROŽÍČKOVÁ C, MIKULECKÁ A, OTÁHAL J. Effect of 7-Nitroindazole, a Neuronal Nitric Oxide Synthase Inhibitor, on Behavioral and Physiological Parameters. Physiol Res 2014; 63:637-48. [DOI: 10.33549/physiolres.932781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The role of brain derived nitric oxide in the physiology and behavior remains disputable. One of the reasons of the controversies might be systemic side effects of nitric oxide synthase inhibitors. Therefore, under nNOS inhibition by 7-nitroindazole (7-NI) we carried out recordings of blood gasses, blood pressure and spontaneous EEG in conscious adult rats. Locomotion and spontaneous behavior were assessed in an open field. In addition skilled walking and limb coordination were evaluated using a ladder rung walking test. The blood gas analysis revealed a significant increase in pCO2 180 min and 240 min after the application of 7-NI. The power and entropy decreased simultaneously with a shift of the mean frequency of the spontaneous EEG toward slow oscillations after 7-NI treatment. The thresholds of evoked potentials underwent a significant drop and a trend towards a slight increase in the I-O curve slope was observed. 7-NI significantly suppressed open field behavior expressed as distance moved, exploratory rearing and grooming. As for the ladder rung walking test the 7-NI treated animals had more errors in foot placement indicating impairment in limb coordination. Therefore our findings suggest that 7-NI increased cortical excitability and altered some physiological and behavioral parameters.
Collapse
Affiliation(s)
| | | | - J. OTÁHAL
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
19
|
Swamy M, Suhaili D, Sirajudeen KNS, Mustapha Z, Govindasamy C. Propolis ameliorates tumor nerosis factor-α, nitric oxide levels, caspase-3 and nitric oxide synthase activities in kainic acid mediated excitotoxicity in rat brain. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:48-53. [PMID: 25395704 DOI: 10.4314/ajtcam.v11i5.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA). MATERIALS AND METHODS Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant. RESULTS The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA. CONCLUSION Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mummedy Swamy
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Dian Suhaili
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - K N S Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zulkarnain Mustapha
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chandran Govindasamy
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
20
|
Kir HM, Sahin D, Oztaş B, Musul M, Kuskay S. Effects of single-dose neuropeptide Y on levels of hippocampal BDNF, MDA, GSH, and NO in a rat model of pentylenetetrazole-induced epileptic seizure. Bosn J Basic Med Sci 2014; 13:242-7. [PMID: 24289760 DOI: 10.17305/bjbms.2013.2332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders, characterized by recurrent seizures, which may increase the content of reactive oxygen and nitrogen species. The objective of this study was to investigate the effects of Neuropeptide Y on oxidative and nitrosative balance and brain-derived neurotrophic factor levels induced by pentylenetetrazole (a standard convulsant drug) in the hippocampus of Wistar rats. Three groups of seven rats were treated intraperitoneally as follows: group 1 (saline + saline) 1 ml saline, group 2 (salin + Pentylenetetrazole) 1 ml saline 30 min before Pentylenetetrazole; and group 3 (Neuropeptide Y + Pentylenetetrazole) 60 μg/kg Neuropeptide Y 30 min before 60 mg/kg Pentylenetetrazole. After 24 h, the animals were euthanized by decapitation. Hippocampus were isolated to evaluate the malondialdehyde, glutathione, nitric oxide, and brain-derived neurotrophic factor levels in three rat groups. The results of this study demonstrated that while intraperitoneally administered neuropeptide Y did not result in a statistically significant difference in BDNF levels, its administration caused a statistically significant decrease in malondialdehyde and nitric oxide levels and an increase in glutathione levels in rats with pentylenetetrazole-induced epileptic seizure. Neuropeptide Y were able to reduce nitroxidative damage induced by pentylenetetrazole in the hippocampus of Wistar rats.
Collapse
Affiliation(s)
- Hale Maral Kir
- Department of Biochemistry, School of Medicine, Kocaeli University, Umuttepe Kampusu, 41380, Kocaeli, Turkey
| | | | | | | | | |
Collapse
|
21
|
Pei JC, Liu CM, Lai WS. Distinct phenotypes of new transmembrane-domain neuregulin 1 mutant mice and the rescue effects of valproate on the observed schizophrenia-related cognitive deficits. Front Behav Neurosci 2014; 8:126. [PMID: 24782733 PMCID: PMC3995064 DOI: 10.3389/fnbeh.2014.00126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/26/2014] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that neuregulin 1 (NRG1) might be involved in the neurodevelopment, neural plasticity, GABAergic neurotransmission, and pathogenesis of schizophrenia. NRG1 is abundantly expressed in the hippocampus, and emerging studies have begun to reveal the link between NRG1 signaling and cognitive deficits in schizophrenic patients. Because the transmembrane domain of NRG1 is vital for both forward and reverse signaling cascades, new Nrg1-deficient mice that carry a truncation of the transmembrane domain of the Nrg1 gene were characterized and used in this study to test a NRG1 loss-of-function hypothesis for schizophrenia. Both male and female Nrg1 heterozygous mutant mice and their wild-type littermates were used in a series of 4 experiments to characterize the impact of Nrg1 on behavioral phenotypes and to determine the importance of Nrg1 in the regulation of hippocampal neuromorphology and local GABAergic interneurons. First, a comprehensive battery of behavioral tasks indicated that male Nrg1-deficient mice exhibited significant impairments in cognitive functions. Second, pharmacological challenges were conducted and revealed that Nrg1 haploinsufficiency altered GABAergic activity in males. Third, although no genotype-specific neuromorphological alterations were found in the hippocampal CA1 pyramidal neurons, significant reductions in the hippocampal expressions of GAD67 and parvalbumin were revealed in the Nrg1-deficient males. Fourth, chronic treatment with valproate rescued the observed behavioral deficits and hippocampal GAD67 reduction in Nrg1-deficient males. Collectively, these results indicate the potential therapeutic effect of valproate and the importance of Nrg1 in the regulation of cognitive functions and hippocampal GABAergic interneurons, especially in males.
Collapse
Affiliation(s)
- Ju-Chun Pei
- Laboratory of Integrated Neuroscience and Ethology, Department of Psychology, National Taiwan University Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital Taipei, Taiwan
| | - Wen-Sung Lai
- Laboratory of Integrated Neuroscience and Ethology, Department of Psychology, National Taiwan University Taipei, Taiwan ; Graduate Institute of Brain and Mind Sciences, National Taiwan University Taipei, Taiwan ; Neurobiology and Cognitive Science Center, National Taiwan University Taipei, Taiwan
| |
Collapse
|
22
|
Swamy M, Norlina W, Azman W, Suhaili D, Sirajudeen KNS, Mustapha Z, Govindasamy C. Restoration of glutamine synthetase activity, nitric oxide levels and amelioration of oxidative stress by propolis in kainic acid mediated excitotoxicity. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:458-63. [PMID: 25435633 DOI: 10.4314/ajtcam.v11i2.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Propolis has been proposed to be protective on neurodegenerative disorders. To understand the neuroprotective effects of honeybee propolis, glutamine synthetase (GS) activity, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and total antioxidant status (TAS) were studied in different brain regions-cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of rats supplemented with propolis and subjected to kainic acid (KA) mediated excitotoxicity. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into four groups; Control group and KA group received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150mg/kg body weight), five times every 12 hours. KA group and propolis + KA group were injected subcutaneously with kainic acid (15mg/kg body weight) and were sacrificed after 2 hrs and CC, CB and BS were separated homogenized and used for estimation of GS activity, NO, TBARS, and TAS concentrations by colorimetric methods. Results were analyzed by one-way ANOVA, reported as mean + SD from 6 animals, and p<0.05 considered statistically significant. RESULTS NO was increased (p< 0.001) and GS activity was decreased (p< 0.001) in KA treated group compared to control group as well as propolis + KA treated group. TBARS was decreased and TAS was increased (p< 0.001) in propolis + KA treated group compared KA treated group. CONCLUSION This study clearly demonstrated the restoration of GS activity, NO levels and decreased oxidative stress by propolis in kainic acid mediated excitotoxicity. Hence the propolis can be a possible potential candidate (protective agent) against excitotoxicity and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mummedy Swamy
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wan Norlina
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wan Azman
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Dian Suhaili
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - K N S Sirajudeen
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zulkarnain Mustapha
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Chandran Govindasamy
- Department of Chemical Pathology, School of Medical Sciences, Health campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
23
|
Bartsch V, Díaz J, González I, Cavada G, Ocampo-Garcés A, Wyneken U. Electroencephalographic Characterization of Pentylenetetrazole Kindling in Rats and Modulation of Epileptiform Discharges by Nitric Oxide. Neurochem Res 2014; 39:408-18. [DOI: 10.1007/s11064-014-1237-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/28/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
|
24
|
The threshold of pentylenetetrazole-induced convulsive seizures, but not that of nonconvulsive seizures, is controlled by the nitric oxide levels in murine brains. Exp Neurol 2013; 247:645-52. [DOI: 10.1016/j.expneurol.2013.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 11/19/2022]
|
25
|
Danjo S, Ishihara Y, Watanabe M, Nakamura Y, Itoh K. Pentylentetrazole-induced loss of blood-brain barrier integrity involves excess nitric oxide generation by neuronal nitric oxide synthase. Brain Res 2013; 1530:44-53. [PMID: 23831997 DOI: 10.1016/j.brainres.2013.06.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 11/16/2022]
Abstract
Dysfunction of the blood-brain barrier (BBB) is one of the major pathophysiological consequences of epilepsy. The increase in the permeability caused by BBB failure is thought to contribute to the development of epileptic outcomes. We developed a method by which the BBB permeability can be demonstrated by gadolinium-enhanced T1 weighted imaging (GdET1WI). The present study examined the changes in the BBB permeability in mice with generalized convulsive seizures (GCS) induced by acute pentylentetrazole (PTZ) injection. At 15min after PTZ-induced GCS, the BBB temporarily leaks BBB-impermeable contrast agent into the parenchyma of the diencephalon, hippocampus and cerebral cortex in mice, and the loss of BBB integrity was gradually recovered by 24h. The temporary BBB failure is a critical link to the glutamatergic activities that occur following the injection of PTZ. PTZ activates the glutamatergic pathway via the NMDA receptor, then nitric oxide (NO) is generated by NMDA receptor-coupled neuronal NO synthase (nNOS). To examine the influence of nNOS-derived NO induced by PTZ on the increases of the BBB permeability, GdET1WI was performed using conventional nNOS gene-deficient mice with or without PTZ injection. The failure of the BBB induced by PTZ was completely protected by nNOS deficiency in the brain. These results suggest that nNOS-derived excess NO in the glutamatergic pathway plays a key role in the failure of the BBB during PTZ-induced GCS. The levels of NO synthetized by nNOS in the brain may represent an important target for the future development of drugs to protect the BBB.
Collapse
Key Words
- (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine maleate
- (E)-(±)-2-amino-4-methyl-5-phospho no-3-pentenoic acid ethyl ester
- 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide
- AEDs
- AMPA
- BBB
- Blood–brain barrier
- CBF
- CBZ
- CGP39551
- CNS
- CSM
- DETC
- DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- DMSO
- GABA
- Gd
- Gd-HP-DO3A
- GdET1WI
- Generalized convulsive seizures
- MK-801
- MRI
- N,N-diethyldithiocarbamate Na
- N-methyl-d-aspartate
- NBQX
- NMDA
- NO
- Nitric oxide
- PTZ
- Pentylenetetrazole
- SI
- TBARS
- VPA
- antiepileptic drugs
- blood–brain barrier
- carbamazepine
- central nervous system
- cerebral blood flow
- cerebral smooth muscle
- dimethyl sulfoxide
- gadolinium
- gadolinium-1,4,7-tris(carbonylmethyl)-10-(2′-hydroxypropyl)-1,4,7,10-tetraazacyclo-dodecane
- gadolinium-enhanced T1 weighted image
- gamma-aminobutyric acid
- magnetic resonance imaging
- nNOS
- neuronal nitric oxide synthase
- nitric oxide
- pentylentetrazole
- signal intensities
- thiobarbituric acid-reactive substance
- valproic acid
Collapse
Affiliation(s)
- Sonoko Danjo
- Department of Neuropsychiatry, School of Medicine, Kagawa University, Kita, Kagawa 761-0793, Japan
| | | | | | | | | |
Collapse
|
26
|
Rahmati B, Khalili M, Roghani M, Ahghari P. Anti-epileptogenic and antioxidant effect of Lavandula officinalis aerial part extract against pentylenetetrazol-induced kindling in male mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:152-7. [PMID: 23603193 DOI: 10.1016/j.jep.2013.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/08/2013] [Accepted: 04/04/2013] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Repeated application of Lavandula officinalis (L. officinalis) has been recommended for a long time in Iranian traditional medicine for some of nervous disorders like epilepsy and dementia. However, there is no available report for the effect of chronic administration of Lavandula extract in development (acquisition) of epilepsy. Therefore, this study was designed to investigate the anti-epileptogenic and antioxidant activity of repeated administration of Lavandula officinalis extract on pentylenetetrazol (PTZ) kindling seizures in mice model. MATERIALS AND METHODS Lavandula officinalis was tested for its ability (i) to suppress the seizure intensity and lethal effects of PTZ in kindled mice (anti-epileptogenic effect), (ii) to attenuate the PTZ-induced oxidative injury in the brain tissue (antioxidant effect) when given as a pretreatment prior to each PTZ injection during kindling development. Valproate (Val), a major antiepileptic drug, was also tested for comparison. RESULTS Val and Lavandula officinalis extract showed anti-epileptogenic properties as they reduced seizure score of kindled mice and PTZ-induced mortality. In this regard, Lavandula officinalis was more effective than Val. Both Lavandula officinalis and Val suppressed brain nitric oxide (NO) level of kindled mice in comparison with the control and PTZ group. Meanwhile, Lavandula officinalis suppressed NO level more than Val and Lavandula officinalis also decreased brain MDA level relative to PTZ group. CONCLUSION This is the first report to demonstrate NO suppressing and anti-epileptogenic effect of chronic administration of Lavandula officinalis extract on acquisition of epilepsy in PTZ kindling mice model. In this regard, Lavandula officinalis extract was more effective than Val, possibly and in part via brain NO suppression.
Collapse
Affiliation(s)
- Batool Rahmati
- Neurophysiology Research Center, Shahed University, Tehran, Iran; Department of Physiology, School of Medicine, Shahed University, Tehran, Iran.
| | | | | | | |
Collapse
|
27
|
Sun HL, Zhang SH, Zhong K, Xu ZH, Feng B, Yu J, Fang Q, Wang S, Wu DC, Zhang JM, Chen Z. A Transient Upregulation of Glutamine Synthetase in the Dentate Gyrus Is Involved in Epileptogenesis Induced by Amygdala Kindling in the Rat. PLoS One 2013; 8:e66885. [PMID: 23825580 PMCID: PMC3688959 DOI: 10.1371/journal.pone.0066885] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/13/2013] [Indexed: 02/06/2023] Open
Abstract
Reduction of glutamine synthetase (GS) function is closely related to established epilepsy, but little is known regarding its role in epileptogenesis. The present study aimed to elucidate the functional changes of GS in the brain and its involvement in epileptogenesis using the amygdala kindling model of epilepsy induced by daily electrical stimulation of basolateral amygdala in rats. Both expression and activity of GS in the ipsilateral dentate gyrus (DG) were upregulated when kindled seizures progressed to stage 4. A single dose of L-methionine sulfoximine (MSO, in 2 µl), a selective GS inhibitor, was administered into the ipsilateral DG on the third day following the first stage 3 seizure (just before GS was upregulated). It was found that low doses of MSO (5 or 10 µg) significantly and dose-dependently reduced the severity of and susceptibility to evoked seizures, whereas MSO at a high dose (20 µg) aggravated kindled seizures. In animals that seizure acquisition had been successfully suppressed with 10 µg MSO, GS upregulation reoccurred when seizures re-progressed to stage 4 and re-administration of 10 µg MSO consistently reduced the seizures. GLN at a dose of 1.5 µg abolished the alleviative effect of 10 µg MSO and deleterious effect of 20 µg MSO on kindled seizures. Moreover, appropriate artificial microRNA interference (1 and 1.5×10(6) TU/2 µl) of GS expression in the ipsilateral DG also inhibited seizure progression. In addition, a transient increase of GS expression and activity in the cortex was also observed during epileptogenesis evoked by pentylenetetrazole kindling. These results strongly suggest that a transient and region-specific upregulation of GS function occurs when epilepsy develops into a certain stage and eventually promotes the process of epileptogenesis. Inhibition of GS to an adequate degree and at an appropriate timing may be a potential therapeutic approach to interrupting epileptogenesis.
Collapse
Affiliation(s)
- Hong-Liu Sun
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Shi-Hong Zhang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Zhong
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheng-Hao Xu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Feng
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jie Yu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Fang
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang Wang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Deng-Chang Wu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian-Min Zhang
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Hrnčić D, Rašić-Marković A, Macut D, Šušić V, Djuric D, Stanojlović O. Homocysteine thiolactone-induced seizures in adult rats are aggravated by inhibition of inducible nitric oxide synthase. Hum Exp Toxicol 2013; 33:496-503. [DOI: 10.1177/0960327113491510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Homocysteine and its metabolites (homocysteine thiolactone (HT)) induce seizures via different but still not well-known mechanisms. The role of nitric oxide (NO) in epileptogenesis is highly contradictory and depends on, among other factors, the source of NO production. The aim of the present study was to examine the effects of aminoguanidine, selective inhibitor of inducible NO synthase (iNOS), on HT-induced seizures. Aminoguanidine (50, 75, and 100 mg/kg, intraperitoneally (i.p.)) was injected to rats 30 min prior to inducing HT (5.5 mmol/kg, i.p.). Seizure behavior was assessed by seizure incidence, latency time to first seizure onset, number of seizure episodes, and their severity during observational period of 90 min. Number and duration of spike and wave discharges (SWDs) were determined in electroencephalogram (EEG). Seizure latency time was significantly shortened, while seizure incidence, number, and duration of HT-induced SWD in EEG significantly increased in rats receiving aminoguanidine 100 mg/kg before subconvulsive dose of HT. Aminoguanidine in a dose-dependent manner also significantly increased the number of seizure episodes induced by HT and their severity. It could be concluded that iNOS inhibitor (aminoguanidine) markedly aggravates behavioral and EEG manifestations of HT-induced seizures in rats, showing functional involvement of iNOS in homocysteine convulsive mechanisms.
Collapse
Affiliation(s)
- D Hrnčić
- Laboratory of Neurophysiology, Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - A Rašić-Marković
- Laboratory of Neurophysiology, Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - D Macut
- Institute of Endocrinology, Diabetes and Metabolic Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V Šušić
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - D Djuric
- Laboratory of Neurophysiology, Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - O Stanojlović
- Laboratory of Neurophysiology, Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
29
|
Fujii HG, Sato-Akaba H, Emoto MC, Itoh K, Ishihara Y, Hirata H. Noninvasive mapping of the redox status in septic mouse by in vivo electron paramagnetic resonance imaging. Magn Reson Imaging 2013; 31:130-8. [DOI: 10.1016/j.mri.2012.06.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/19/2012] [Indexed: 12/21/2022]
|
30
|
Beamer E, Otahal J, Sills GJ, Thippeswamy T. N (w) -propyl-L-arginine (L-NPA) reduces status epilepticus and early epileptogenic events in a mouse model of epilepsy: behavioural, EEG and immunohistochemical analyses. Eur J Neurosci 2012; 36:3194-203. [PMID: 22943535 DOI: 10.1111/j.1460-9568.2012.08234.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We investigated the anticonvulsant and neurobiological effects of a highly selective neuronal nitric oxide synthase (nNOS) inhibitor, N (w) -propyl-l-arginine (L-NPA), on kainic acid (KA)-induced status epilepticus (SE) and early epileptogenesis in C57BL/6J mice. SE was induced with 20 mg/kg KA (i.p.) and seizures terminated after 2 h with diazepam (10 mg/kg, i.p). L-NPA (20 mg/kg, i.p.) or vehicle was administered 30 min before KA. Behavioural seizure severity was scored using a modified Racine score and electrographic seizure was recorded using an implantable telemetry device. Neuronal activity, activity-dependent synaptogenesis and reactive gliosis were quantified immunohistochemically, using c-Fos, synaptophysin and microglial and astrocytic markers. L-NPA treatment reduced the severity and duration of convulsive motor seizures, the power of electroencephalogram in the gamma band, and the frequency of epileptiform spikes during SE. It also reduced c-Fos expression in dentate granule cells at 2 h post-KA, and reduced the overall rate of epileptiform spiking (by 2- to 2.5-fold) in the first 7 days after KA administration. Furthermore, treatment with L-NPA suppressed both hippocampal gliosis and activity-dependent synaptogenesis in the outer and middle molecular layers of the dentate gyrus in the early phase of epileptogenesis (72 h post-KA). These results suggest that nNOS facilitates seizure generation during SE and may be important for the neurobiological changes associated with the development of chronic epilepsy, especially in the early stages of epileptogenesis. As such, it might represent a novel target for disease modification in epilepsy.
Collapse
Affiliation(s)
- Edward Beamer
- Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, 4th floor Room 4.306, UCD Duncan Building, Daulby Street, Liverpool L69 3GA, UK
| | | | | | | |
Collapse
|
31
|
Matos G, Scorza FA, Cavalheiro EA, Tufik S, Andersen ML. PDEI‐5 for Erectile Dysfunction: A Potential Role in Seizure Susceptibility. J Sex Med 2012; 9:2111-21. [DOI: 10.1111/j.1743-6109.2012.02780.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Prieto-Martín AI, Llorens S, Pardal-Fernández JM, Muñoz LJ, López DE, Escribano J, Nava E, de Cabo C. Opposite caudal versus rostral brain nitric oxide synthase response to generalized seizures in a novel rodent model of reflex epilepsy. Life Sci 2012; 90:531-7. [DOI: 10.1016/j.lfs.2012.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 01/09/2023]
|
33
|
Marangoz AH, Yildirim M, Ayyildiz M, Marangoz C. The Interactions of Nitric Oxide and Acetylcholine on Penicillin-Induced Epilepsy in Rats. Neurochem Res 2012; 37:1465-74. [DOI: 10.1007/s11064-012-0737-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/06/2012] [Accepted: 02/20/2012] [Indexed: 11/28/2022]
|
34
|
Han YX, Lin YT, Xu JJ, Cao LL, Liu XW, Jiang H, Chi ZF. Status epilepticus stimulates peroxisome proliferator-activated receptor γ coactivator 1-α/mitochondrial antioxidant system pathway by a nitric oxide-dependent mechanism. Neuroscience 2011; 186:128-34. [PMID: 21536107 DOI: 10.1016/j.neuroscience.2011.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/07/2011] [Accepted: 04/08/2011] [Indexed: 12/26/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ coactivator 1-α (PGC-1α) is a transcriptional coactivator identified as an upstream regulator of lipid catabolism, mitochondrial number and function. PGC-1α protects neurons against oxidative damage by inducing several members of the mitochondrial antioxidant system such as superoxide dismutase 2 (SOD2) and uncoupling protein 2 (UCP2). Its role in seizure-induced oxidative stress has not been studied. Here we showed that pilocarpine-induced status epilepticus (SE) stimulates the PGC-1α/mitochondrial antioxidant system signaling pathway in the rat hippocampus. Because nitric oxide (NO) is the key factor of mitochondrial biogenesis through the transcriptional induction of PGC-1α, we investigated whether NO is involved in activation of the PGC-1α/mitochondrial antioxidant system after SE. Treatment with the NO synthase (NOS) inhibitor N(G)-nitro-l-argininemethyl ester (l-NAME) attenuated the increased expression of the PGC-1α/mitochondrial antioxidant system after SE and enhanced oxidative stress. These results suggest that SE can induce the PGC-1α/mitochondrial antioxidant system signaling pathway, which may represent a protective mechanism against SE-induced oxidative stress. Furthermore, NO may positively regulate the mitochondrial antioxidant system by inducing PGC-1α in pilocarpine-induced SE.
Collapse
Affiliation(s)
- Y X Han
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Arhan E, Serdaroglu A, Ozturk B, Ozturk HS, Ozcelik A, Kurt N, Kutsal E, Sevinc N. Effects of epilepsy and antiepileptic drugs on nitric oxide, lipid peroxidation and xanthine oxidase system in children with idiopathic epilepsy. Seizure 2011; 20:138-42. [DOI: 10.1016/j.seizure.2010.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/01/2010] [Indexed: 11/29/2022] Open
|
36
|
Jacobson GM, Voss LJ, Melin SM, Mason JP, Cursons RT, Steyn-Ross DA, Steyn-Ross ML, Sleigh JW. Connexin36 knockout mice display increased sensitivity to pentylenetetrazol-induced seizure-like behaviors. Brain Res 2010; 1360:198-204. [PMID: 20833151 DOI: 10.1016/j.brainres.2010.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Large-scale synchronous firing of neurons during seizures is modulated by electrotonic coupling between neurons via gap junctions. To explore roles for connexin36 (Cx36) gap junctions in seizures, we examined the seizure threshold of connexin36 knockout (Cx36KO) mice using a pentylenetetrazol (PTZ) model. METHODS Mice (2-3months old) with Cx36 wildtype (WT) or Cx36KO genotype were treated with vehicle or 10-40mg/kg of the convulsant PTZ by intraperitoneal injection. Seizure and seizure-like behaviors were scored by examination of video collected for 20min. Quantitative real-time PCR (QPCR) was performed to measure potential compensatory neuronal connexin (Cx30.2, Cx37, Cx43 and Cx45), pannexin (PANX1 and PANX2) and gamma-aminobutyric acid type A (GABA(A)) receptor α1 subunit gene expression. RESULTS Cx36KO animals exhibited considerably more severe seizures; 40mg/kg of PTZ caused severe generalized (≥grade III) seizures in 78% of KO, but just 5% of WT mice. A lower dose of PTZ (20mg/kg) induced grade II seizure-like behaviors in 40% KO vs. 0% of WT animals. There was no significant difference in either connexin, pannexin or GABA(A) α1 gene expression between WT and KO animals. CONCLUSION Increased sensitivity of Cx36KO animals to PTZ-induced seizure suggests that Cx36 gap junctional communication functions as a physiological anti-convulsant mechanism, and identifies the Cx36 gap junction as a potential therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Gregory M Jacobson
- Department of Engineering, University of Waikato, Hamilton, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Swamy M, Yusof WRW, Sirajudeen KNS, Mustapha Z, Govindasamy C. Decreased glutamine synthetase, increased citrulline–nitric oxide cycle activities, and oxidative stress in different regions of brain in epilepsy rat model. J Physiol Biochem 2010; 67:105-13. [DOI: 10.1007/s13105-010-0054-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/04/2010] [Indexed: 11/30/2022]
|
38
|
Pereno G, Beltramino C. Understanding the pathophysiology of epilepsy in an animal model: Pentylenetetrazole induces activation but not death of neurons of the medial extended amygdala. NEUROLOGÍA (ENGLISH EDITION) 2010. [DOI: 10.1016/s2173-5808(10)70030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Pereno G, Beltramino C. Descifrando la fisiopatología de la epilepsia en un modelo animal: el pentilentetrazol induce la activación pero no la muerte de las neuronas de la amígdala extendida medial. Neurologia 2010. [DOI: 10.1016/s0213-4853(10)70002-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
40
|
Hrncić D, Rasić-Marković A, Krstić D, Macut D, Djuric D, Stanojlović O. The role of nitric oxide in homocysteine thiolactone-induced seizures in adult rats. Cell Mol Neurobiol 2010; 30:219-31. [PMID: 19714460 DOI: 10.1007/s10571-009-9444-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 08/11/2009] [Indexed: 12/24/2022]
Abstract
The role of NO in epileptogenesis has been studied in different experimental models, and the reported results have been highly contradictory. The current study aimed to determine the role of NO in mechanisms of D: ,L: -homocysteine-thiolactone (H) induced seizures by testing the action of L: -arginine (NO precursor) and L: -NAME (NOS inhibitor) on behavioral and electroencephalographic (EEG) manifestations of H-induced seizures. The same holds true with the brain Na(+)/K(+)- and Mg(2+)-ATPase activity in adult male Wistar rats. We showed that the pretreatment with L: -arginine (300, 600 and 800 mg/kg, i.p.) in a dose-dependent manner significantly decreased lethality, seizure incidence and a number of seizure episodes and prolonged latency time to the first seizure elicited by a convulsive dose of H (8 mmol/kg, i.p.). L: -Arginine (800 mg/kg) completely reversed the inhibitory effect of H on the Na(+)/K(+)-ATPase activity in the hippocampus, the cortex and the brain stem and decreased the H-induced spike-and- wave discharges (SWD) formation in EEG. On the other hand, pretreatment with L: -NAME (200, 500 and 700 mg/kg, i.p.) potentiated a subconvulsive dose of H (5.5 mmol/kg, i.p) by increasing incidence and severity determined by a descriptive-rating scale (0-4) and shortening the latency time to the first seizure. The L: -NAME reversed H-induced alterations in the Na(+)/K(+)-ATPase activity in the cortex and the brain stem but not in the hippocampus. At last, the potentiated SWD appearance in EEG and an increased number of lethal outcomes occurred. In the present work, the modulation of NO levels, with the NO precursor and NOS inhibitor, was shed more light on its mechanism of action and answered the question whether NO could be included in the list of anticonvulsant agents in the D: ,L: -homocysteine thiolactone experimental model of seizures in adult rats.
Collapse
Affiliation(s)
- Dragan Hrncić
- Laboratory of Neurophysiology, Institute of Medical Physiology Richard Burian, School of Medicine, University of Belgrade, Visegradska 26/II, 11000, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
41
|
Yildirim M, Ayyildiz M, Agar E. Endothelial nitric oxide synthase activity involves in the protective effect of ascorbic acid against penicillin-induced epileptiform activity. Seizure 2010; 19:102-8. [PMID: 20089420 DOI: 10.1016/j.seizure.2009.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/18/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022] Open
Abstract
Ascorbic acid and nitric oxide are known to play important roles in epilepsy. The aim of present study was to identify the involvement of nitric oxide (NO) in the anticonvulsant effects of ascorbic acid on penicillin-induced epileptiform activity in rats. Intracortical injection of penicillin (500, International Units (IU)) into the left sensorimotor cortex induced epileptiform activity within 2-5 min. Thirty minutes after penicillin injection, nitric oxide synthase (NOS) inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME, 100mg/kg), neuronal nitric oxide synthase (nNOS) inhibitor 7-nitroindazole (7-NI, 40 mg/kg), NO substrate, l-arginine (500 mg/kg) were administered with the most effective dose of ascorbic acid (100 mg/kg) intraperitoneally (i.p.). The administration of l-arginine significantly decreased the frequency of epileptiform activity while administration of l-NAME did not influence the mean frequency of epileptiform activity. Injection of 7-NI decreased the mean frequency of epileptiform activity but did not influence amplitude. Ascorbic acid decreased both the mean frequency and amplitude of penicillin-induced epileptiform activity in rats. The application of l-NAME partially and temporarily reversed the anticonvulsant effects of ascorbic acid. The results support the hypothesis of neuro-protective role for NO and ascorbic acid. The protective effect of ascorbic acid against epileptiform activity was partially and temporarily reversed by nonspecific nitric oxide synthase inhibitor l-NAME, but not selective neuronal nitric oxide synthase inhibitor 7-NI, indicating that ascorbic acid needs endothelial-NOS/NO route to decrease penicillin-induced epileptiform activity.
Collapse
Affiliation(s)
- Mehmet Yildirim
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, 55139 Samsun, Turkey
| | | | | |
Collapse
|
42
|
Peker E, Oktar S, Arı M, Kozan R, Doğan M, Çağan E, Söğüt S. Nitric oxide, lipid peroxidation, and antioxidant enzyme levels in epileptic children using valproic acid. Brain Res 2009; 1297:194-7. [DOI: 10.1016/j.brainres.2009.08.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/08/2009] [Accepted: 08/17/2009] [Indexed: 11/08/2022]
|