1
|
Chauhan-Puri AK, Lee KH, Magoski NS. Hydrogen peroxide and phosphoinositide metabolites synergistically regulate a cation current to influence neuroendocrine cell bursting. J Physiol 2021; 599:5281-5300. [PMID: 34676545 DOI: 10.1113/jp282302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
In various neurons, including neuroendocrine cells, non-selective cation channels elicit plateau potentials and persistent firing. Reproduction in the marine snail Aplysia californica is initiated when the neuroendocrine bag cell neurons undergo an afterdischarge, that is, a prolonged period of enhanced excitability and spiking during which egg-laying hormone is released into the blood. The afterdischarge is associated with both the production of hydrogen peroxide (H2 O2 ) and activation of phospholipase C (PLC), which hydrolyses phosphatidylinositol-4,5-bisphosphate into diacylglycerol (DAG) and inositol trisphosphate (IP3 ). We previously demonstrated that H2 O2 gates a voltage-dependent cation current and evokes spiking in bag cell neurons. The present study tests if DAG and IP3 impact the H2 O2 -induced current and excitability. In whole-cell voltage-clamped cultured bag cell neurons, bath-application of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a DAG analogue, enhanced the H2 O2 -induced current, which was amplified by the inclusion of IP3 in the pipette. A similar outcome was produced by the PLC activator, N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide. In current-clamp, OAG or OAG plus IP3 , elevated the frequency of H2 O2 -induced bursting. PKC is also triggered during the afterdischarge; when PKC was stimulated with phorbol 12-myristate 13-acetate, it caused a voltage-dependent inward current with a reversal potential similar to the H2 O2 -induced current. Furthermore, PKC activation followed by H2 O2 reduced the onset latency and increased the duration of action potential firing. Finally, inhibiting nicotinamide adenine dinucleotide phosphate oxidase with 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine diminished evoked bursting in isolated bag cell neuron clusters. These results suggest that reactive oxygen species and phosphoinostide metabolites may synergize and contribute to reproductive behaviour by promoting neuroendocrine cell firing. KEY POINTS: Aplysia bag cell neurons secrete reproductive hormone during a lengthy burst of action potentials, known as the afterdischarge. During the afterdischarge, phospholipase C (PLC) hydrolyses phosphatidylinositol-4,5-bisphosphate into diacylglycerol (DAG) and inositol trisphosphate (IP3 ). Subsequent activation of protein kinase C (PKC) leads to H2 O2 production. H2 O2 evokes a voltage-dependent inward current and action potential firing. Both a DAG analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG), and IP3 enhance the H2 O2 -induced current, which is mimicked by the PLC activator, N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide. The frequency of H2 O2 -evoked afterdischarge-like bursting is augmented by OAG or OAG plus IP3 . Stimulating PKC with phorbol 12-myristate 13-acetate shortens the latency and increases the duration of H2 O2 -induced bursts. The nicotinamide adenine dinucleotide phosphate oxidase inhibitor, 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine, attenuates burst firing in bag cell neuron clusters.
Collapse
Affiliation(s)
- Alamjeet K Chauhan-Puri
- Department of Biomedical and Molecular Sciences, Experimental Medicine Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Kelly H Lee
- Department of Biomedical and Molecular Sciences, Experimental Medicine Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Experimental Medicine Graduate Program, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Hydrogen Peroxide Gates a Voltage-Dependent Cation Current in Aplysia Neuroendocrine Cells. J Neurosci 2019; 39:9900-9913. [PMID: 31676600 DOI: 10.1523/jneurosci.1460-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/07/2019] [Accepted: 10/27/2019] [Indexed: 11/21/2022] Open
Abstract
Nonselective cation channels promote persistent spiking in many neurons from a diversity of animals. In the hermaphroditic marine-snail, Aplysia californica, synaptic input to the neuroendocrine bag cell neurons triggers various cation channels, causing an ∼30 min afterdischarge of action potentials and the secretion of egg-laying hormone. During the afterdischarge, protein kinase C is also activated, which in turn elevates hydrogen peroxide (H2O2), likely by stimulating nicotinamide adenine dinucleotide phosphate oxidase. The present study investigated whether H2O2 regulates cation channels to drive the afterdischarge. In single, cultured bag cell neurons, H2O2 elicited a prolonged, concentration- and voltage-dependent inward current, associated with an increase in membrane conductance and a reversal potential of ∼+30 mV. Compared with normal saline, the presence of Ca2+-free, Na+-free, or Na+/Ca2+-free extracellular saline, lowered the current amplitude and left-shifted the reversal potential, consistent with a nonselective cationic conductance. Preventing H2O2 reduction with the glutathione peroxidase inhibitor, mercaptosuccinate, enhanced the H2O2-induced current, while boosting glutathione production with its precursor, N-acetylcysteine, or adding the reducing agent, dithiothreitol, lessened the response. Moreover, the current generated by the alkylating agent, N-ethylmaleimide, occluded the effect of H2O2 The H2O2-induced current was inhibited by tetrodotoxin as well as the cation channel blockers, 9-phenanthrol and clotrimazole. In current-clamp, H2O2 stimulated burst firing, but this was attenuated or prevented altogether by the channel blockers. Finally, H2O2 evoked an afterdischarge from whole bag cell neuron clusters recorded ex vivo by sharp-electrode. H2O2 may regulate a cation channel to influence long-term changes in activity and ultimately reproduction.SIGNIFICANCE STATEMENT Hydrogen peroxide (H2O2) is often studied in a pathological context, such as ischemia or inflammation. However, H2O2 also physiologically modulates synaptic transmission and gates certain transient receptor potential channels. That stated, the effect of H2O2 on neuronal excitability remains less well defined. Here, we examine how H2O2 influences Aplysia bag cell neurons, which elicit ovulation by releasing hormones during an afterdischarge. These neuroendocrine cells are uniquely identifiable and amenable to recording as individual cultured neurons or a cluster from the nervous system. In both culture and the cluster, H2O2 evokes prolonged, afterdischarge-like bursting by gating a nonselective voltage-dependent cationic current. Thus, H2O2, which is generated in response to afterdischarge-associated second messengers, may prompt the firing necessary for hormone secretion and procreation.
Collapse
|
3
|
A Closely Associated Phospholipase C Regulates Cation Channel Function through Phosphoinositide Hydrolysis. J Neurosci 2018; 38:7622-7634. [PMID: 30037836 DOI: 10.1523/jneurosci.0586-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/28/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
In the hemaphroditic sea snail, Aplysia californica, reproduction is initiated when the bag cell neurons secrete egg-laying hormone during a protracted afterdischarge. A source of depolarization for the afterdischarge is a voltage-gated, nonselective cation channel, similar to transient receptor potential (TRP) channels. Once the afterdischarge is triggered, phospholipase C (PLC) is activated to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3). We previously reported that a DAG analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), activates a prominent, inward whole-cell cationic current that is enhanced by IP3 To examine the underlying mechanism, we investigated the effect of exogenous OAG and IP3, as well as PLC activation, on cation channel activity and voltage dependence in excised, inside-out patches from cultured bag cell neurons. OAG transiently elevated channel open probability (PO) when applied to excised patches; however, coapplication of IP3 prolonged the OAG-induced response. In patches exposed to OAG and IP3, channel voltage dependence was left-shifted; this was also observed with OAG, but not to the same extent. Introducing the PLC activator, m-3M3FBS, to patches increased channel PO, suggesting PLC may be physically linked to the channels. Accordingly, blocking PLC with U-73122 ablated the m-3M3FBS-induced elevation in PO Treatment with m-3M3FBS left-shifted cation channel voltage dependence to a greater extent than exogenous OAG and IP3 Finally, OAG and IP3 potentiated the stimulatory effect of PKC, which is also associated with the channel. Thus, the PLC-PKC signaling system is physically localized such that PIP2 breakdown products liberated during the afterdischarge modulate the cation channel and temporally influence neuronal activity.SIGNIFICANCE STATEMENT Using excised patches from Aplysia bag cell neurons, we present the first evidence of a nonselective cation channel physically associating with phospholipase C (PLC) at the single-channel level. PLC-mediated breakdown of phospholipids generates diacylglycerol and inositol trisphosphate, which activate the cation channel. This is mimicked by exogenous lipids; furthermore, these second messengers left-shift channel voltage dependence and enhance the response of the channel to protein kinase C. PLC-mediated lipid signaling controls single-channel currents to ensure depolarization is maintained for an extended period of firing, termed the afterdischarge, when the bag cell neurons secrete egg-laying hormone to trigger reproduction.
Collapse
|
4
|
Liu X, Song S, Wang Q, Yuan T, He J. A mutation in β-amyloid precursor protein renders SH‑SY5Y cells vulnerable to isoflurane toxicity: The role of inositol 1,4,5‑trisphosphate receptors. Mol Med Rep 2016; 14:5435-5442. [PMID: 27841000 PMCID: PMC5355684 DOI: 10.3892/mmr.2016.5930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/01/2016] [Indexed: 11/24/2022] Open
Abstract
Isoflurane is a commonly used inhaled anesthetic, which induces apoptosis of SH-SY5Y cells in a dose- and time-dependent manner; however, the underlying mechanisms remain unknown. The authors of the present study hypothesized that a mutation in β-amyloid precursor protein (APP), which is a gene associated with familial Alzheimer's disease, may render cells vulnerable to isoflurane-induced cytotoxicity via activation of inositol 1,4,5-trisphosphate receptors (IP3R). In the present study, SH-SY5Y cells were transfected with a vector or with mutated APP, and were treated with the equivalent of 1 minimum alveolar concentration (MAC) isoflurane for 8 h. Cell apoptosis rate, alterations to cytosolic calcium concentrations ([Ca2+]c), and protein levels of IP3R were determined following exposure of cells to isoflurane. In addition, the effects of the IP3R antagonist xestospongin C were determined on isoflurane-induced cytotoxicity and calcium release from the endoplasmic reticulum (ER) of mutated APP- and vector-transfected SH-SY5Y cells. Treatment with isoflurane (1 MAC) for 8 h induced a higher degree of cytotoxicity, and a marked increase in [Ca2+]c and IP3R protein levels in mutated APP-transfected SH-SY5Y cells compared with vector-transfected SH-SY5Y cells. Xestospongin C significantly attenuated isoflurane-mediated cytotoxicity and inhibited calcium release from the ER of SH-SY5Y cells. These results indicated that the APP mutation may render SH-SY5Y cells vulnerable to isoflurane neurotoxicity, and the underlying mechanism may be associated with Ca2+ dysregulation via overactivation of IP3R.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Anesthesiology, Children's Hospital of Hebei Province, Shijiazhuang, Hebei 050031, P.R. China
| | - Shan Song
- Department of Anesthesiology, Yantai Yu Huang Ding Hospital, Yantai, Shandong 264000, P.R. China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Tianbao Yuan
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jihua He
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
5
|
Sturgeon RM, Magoski NS. Diacylglycerol-mediated regulation of Aplysia bag cell neuron excitability requires protein kinase C. J Physiol 2016; 594:5573-92. [PMID: 27198498 DOI: 10.1113/jp272152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023] Open
Abstract
KEY POINTS In Aplysia, reproduction is initiated by the bag cell neurons and a prolonged period of enhanced excitability known as the afterdischarge. Phosphoinositide turnover is upregulated during the afterdischarge resulting in the hydrolysis of phosphatidylinositol-4,5-bisphosphate by phospholipase C (PLC) and the release of diacylglycerol (DAG) and inositol trisphosphate (IP3 ). In whole-cell voltage-clamped cultured bag cell neurons, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a synthetic DAG analogue, activates a dose-dependent, transient, inward current (IOAG ) that is enhanced by IP3 , mimicked by PLC activation and dependent on basal protein kinase C (PKC) activity. OAG depolarizes bag cell neurons and triggers action potential firing in culture, and prolongs electrically stimulated afterdischarges in intact bag cell neuron clusters ex vivo. Although PKC alone cannot activate the current, it is required for IOAG ; this is the first description of required obligate PKC activity working in concert with PLC, DAG and IP3 to maintain the depolarization required for prolonged excitability in Aplysia reproduction. ABSTRACT Following synaptic input, the bag cell neurons of Aplysia undergo a long-term afterdischarge of action potentials to secrete egg-laying hormone and initiate reproduction. Early in the afterdischarge, phospholipase C (PLC) hydrolyses phosphatidylinositol-4,5-bisphosphate into inositol trisphosphate (IP3 ) and diacylglycerol (DAG). In Aplysia, little is known about the action of DAG, or any interaction with IP3 ; thus, we examined the effects of a synthetic DAG analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG), on whole-cell voltage-clamped cultured bag cell neurons. OAG induced a large, prolonged, Ca(2+) -permeable, concentration-dependent inward current (IOAG ) that reversed at ∼-20 mV and was enhanced by intracellular IP3 . A similar current was evoked by either another DAG analogue, 1,2-dioctanoyl-sn-glycerol (DOG), or activating PLC with N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide (m-3M3FBS). IOAG was reduced by the general cation channel blockers Gd(3+) or flufenamic acid. Work in other systems indicated that OAG activates channels independently of protein kinase C (PKC); however, we found pretreating bag cell neurons with any of the PKC inhibitors bisindolylmaleimide, sphinganine, or H7, attenuated IOAG . However, stimulating PKC with phorbol 12-myristate 13-acetate (PMA) did not evoke current or enhance IOAG ; moreover, unlike PMA, OAG failed to trigger PKC, as confirmed by an independent bioassay. Finally, OAG or m-3M3FBS depolarized cultured neurons, and while OAG did not provoke afterdischarges from bag cell neurons in the nervous system, it did double the duration of synaptically elicited afterdischarges. To our knowledge, this is the first report of obligate PKC activity for IOAG gating. An interaction between phosphoinositol metabolites and PKC could control the cation channel to influence afterdischarge duration.
Collapse
Affiliation(s)
- Raymond M Sturgeon
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, ON, Canada, K7L 3N6
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, ON, Canada, K7L 3N6.
| |
Collapse
|
6
|
Groten CJ, Rebane JT, Hodgson HM, Chauhan AK, Blohm G, Magoski NS. Ca2+ removal by the plasma membrane Ca2+-ATPase influences the contribution of mitochondria to activity-dependent Ca2+ dynamics in Aplysia neuroendocrine cells. J Neurophysiol 2016; 115:2615-34. [PMID: 26864756 DOI: 10.1152/jn.00494.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 02/04/2016] [Indexed: 01/05/2023] Open
Abstract
After Ca(2+) influx, mitochondria can sequester Ca(2+) and subsequently release it back into the cytosol. This form of Ca(2+)-induced Ca(2+) release (CICR) prolongs Ca(2+) signaling and can potentially mediate activity-dependent plasticity. As Ca(2+) is required for its subsequent release, Ca(2+) removal systems, like the plasma membrane Ca(2+)-ATPase (PMCA), could impact CICR. Here we examine such a role for the PMCA in the bag cell neurons of Aplysia californica CICR is triggered in these neurons during an afterdischarge and is implicated in sustaining membrane excitability and peptide secretion. Somatic Ca(2+) was measured from fura-PE3-loaded cultured bag cell neurons recorded under whole cell voltage clamp. Voltage-gated Ca(2+) influx was elicited with a 5-Hz, 1-min train, which mimics the fast phase of the afterdischarge. PMCA inhibition with carboxyeosin or extracellular alkalization augmented the effectiveness of Ca(2+) influx in eliciting mitochondrial CICR. A Ca(2+) compartment model recapitulated these findings and indicated that disrupting PMCA-dependent Ca(2+) removal increases CICR by enhancing mitochondrial Ca(2+) loading. Indeed, carboxyeosin augmented train-evoked mitochondrial Ca(2+) uptake. Consistent with their role on Ca(2+) dynamics, cell labeling revealed that the PMCA and mitochondria overlap with Ca(2+) entry sites. Finally, PMCA-dependent Ca(2+) extrusion did not impact endoplasmic reticulum-dependent Ca(2+) removal or release, despite the organelle residing near Ca(2+) entry sites. Our results demonstrate that Ca(2+) removal by the PMCA influences the propensity for stimulus-evoked CICR by adjusting the amount of Ca(2+) available for mitochondrial Ca(2+) uptake. This study highlights a mechanism by which the PMCA could impact activity-dependent plasticity in the bag cell neurons.
Collapse
Affiliation(s)
- Christopher J Groten
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Jonathan T Rebane
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Heather M Hodgson
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Alamjeet K Chauhan
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Gunnar Blohm
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
PKC enhances the capacity for secretion by rapidly recruiting covert voltage-gated Ca2+ channels to the membrane. J Neurosci 2015; 35:2747-65. [PMID: 25673863 DOI: 10.1523/jneurosci.3581-14.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is unknown whether neurons can dynamically control the capacity for secretion by promptly changing the number of plasma membrane voltage-gated Ca(2+) channels. To address this, we studied peptide release from the bag cell neurons of Aplysia californica, which initiate reproduction by secreting hormone during an afterdischarge. This burst engages protein kinase C (PKC) to trigger the insertion of a covert Ca(2+) channel, Apl Cav2, alongside a basal channel, Apl Cav1. The significance of Apl Cav2 recruitment to secretion remains undetermined; therefore, we used capacitance tracking to assay secretion, along with Ca(2+) imaging and Ca(2+) current measurements, from cultured bag cell neurons under whole-cell voltage-clamp. Activating PKC with the phorbol ester, PMA, enhanced Ca(2+) entry, and potentiated stimulus-evoked secretion. This relied on channel insertion, as it was occluded by preventing Apl Cav2 engagement with prior whole-cell dialysis or the cytoskeletal toxin, latrunculin B. Channel insertion reduced the stimulus duration and/or frequency required to initiate secretion and strengthened excitation-secretion coupling, indicating that Apl Cav2 accesses peptide release more readily than Apl Cav1. The coupling of Apl Cav2 to secretion also changed with behavioral state, as Apl Cav2 failed to evoke secretion in silent neurons from reproductively inactive animals. Finally, PKC also acted secondarily to enhance prolonged exocytosis triggered by mitochondrial Ca(2+) release. Collectively, our results suggest that bag cell neurons dynamically elevate Ca(2+) channel abundance in the membrane to ensure adequate secretion during the afterdischarge.
Collapse
|
8
|
White SH, Carter CJ, Magoski NS. A potentially novel nicotinic receptor in Aplysia neuroendocrine cells. J Neurophysiol 2014; 112:446-62. [DOI: 10.1152/jn.00796.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca2+ permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction.
Collapse
Affiliation(s)
- Sean H. White
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Christopher J. Carter
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Neil S. Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
9
|
Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica. Proc Natl Acad Sci U S A 2014; 111:8667-72. [PMID: 24872449 DOI: 10.1073/pnas.1403739111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work, we show the feasibility of performing functional MRI studies with single-cell resolution. At ultrahigh magnetic field, manganese-enhanced magnetic resonance microscopy allows the identification of most motor neurons in the buccal network of Aplysia at low, nontoxic Mn(2+) concentrations. We establish that Mn(2+) accumulates intracellularly on injection into the living Aplysia and that its concentration increases when the animals are presented with a sensory stimulus. We also show that we can distinguish between neuronal activities elicited by different types of stimuli. This method opens up a new avenue into probing the functional organization and plasticity of neuronal networks involved in goal-directed behaviors with single-cell resolution.
Collapse
|
10
|
Voltage-gated Ca2+ influx and mitochondrial Ca2+ initiate secretion from Aplysia neuroendocrine cells. Neuroscience 2013; 250:755-72. [PMID: 23876326 DOI: 10.1016/j.neuroscience.2013.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 01/14/2023]
Abstract
Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. The response was similar for step durations of ≥ 50 ms, but fell off sharply with shorter stimuli. The capacitance change was attenuated by replacing external Ca(2+) with Ba(2+), blocking Ca(2+) channels, buffering intracellular Ca(2+) with EGTA, disrupting synaptic protein recycling, or genetic knock-down of ELH. Regarding intracellular stores, liberating mitochondrial Ca(2+) with the protonophore, carbonyl cyanide-p-trifluoromethoxyphenyl-hydrazone (FCCP), brought about an EGTA-sensitive elevation of capacitance. Conversely, no change was observed to Ca(2+) released from the endoplasmic reticulum or acidic stores. Prior exposure to FCCP lessened the train-induced capacitance increase, suggesting overlap in the pool of releasable vesicles. Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.
Collapse
|
11
|
White SH, Magoski NS. Acetylcholine-evoked afterdischarge in Aplysia bag cell neurons. J Neurophysiol 2012; 107:2672-85. [DOI: 10.1152/jn.00745.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A brief synaptic input to the bag cell neurons of Aplysia evokes a lengthy afterdischarge and the secretion of peptide hormones that trigger ovulation. The input transmitter is unknown, although prior work has shown that afterdischarges are prevented by strychnine. Because molluscan excitatory cholinergic synapses are blocked by strychnine, we tested the hypothesis that acetylcholine acts on an ionotropic receptor to initiate the afterdischarge. In cultured bag cell neurons, acetylcholine induced a short burst of action potentials followed by either return to near baseline or, like a true afterdischarge, transition to continuous firing. The current underlying the acetylcholine-induced depolarization was dose dependent, associated with increased membrane conductance, and sensitive to the nicotinic antagonists hexamethonium, mecamylamine, and α-conotoxin ImI. Whereas nicotine, choline, carbachol, and glycine did not mimic acetylcholine, tetramethylammonium did produce a similar current. Consistent with an ionotropic receptor, the response was not altered by intracellular dialysis with the G protein blocker guanosine 5′-(β-thio)diphosphate. Recording from the intact bag cell neuron cluster showed acetylcholine to evoke prominent depolarization, which often led to extended bursting, but only in the presence of the acetylcholinesterase inhibitor neostigmine. Extracellular recording confirmed that exogenous acetylcholine caused genuine afterdischarges, which, as per those generated synaptically, rendered the cluster refractory to further stimulation. Finally, treatment with a combination of mecamylamine and α-conotoxin ImI blocked synaptically induced afterdischarges in the intact bag cell neuron cluster. Acetylcholine appears to elicit the afterdischarge through an ionotropic receptor. This represents an expedient means for transient stimulation to elicit prolonged firing in the absence of ongoing synaptic input.
Collapse
Affiliation(s)
- Sean H. White
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Neil S. Magoski
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
12
|
Tam AKH, Gardam KE, Lamb S, Kachoei BA, Magoski NS. Role for protein kinase C in controlling Aplysia bag cell neuron excitability. Neuroscience 2011; 179:41-55. [PMID: 21277944 DOI: 10.1016/j.neuroscience.2011.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/04/2011] [Accepted: 01/20/2011] [Indexed: 11/30/2022]
Abstract
Targeting signalling molecules to ion channels can expedite regulation and assure the proper transition of changes to excitability. In the bag cell neurons of Aplysia, single-channel studies of excised patches have revealed that protein kinase C (PKC) gates a non-selective cation channel through a close, physical association. This channel drives a prolonged afterdischarge and concomitant neuropeptide secretion to provoke reproductive behaviour. However, it is not clear if PKC alters cation channel function and/or the membrane potential at the whole-cell level. Afterdischarge-like depolarizations can be evoked in cultured bag cell neurons by bath-application of Conus textile venom (CtVm), which triggers the cation channel through an apparent intracellular pathway. The present study shows that the CtVm-induced depolarization was reduced by nearly 50% compared to control following dialysis with the G-protein blocker, guanosine-5'-O-2-thiodiphosphate (GDP-β-S), or treatment with either the phospholipase C inhibitor, 1-[6-[[(17β)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122), or the PKC inhibitor, sphinganine. Neurons exposed to the PKC activator, phorbol 12-myristate 13-acetate (PMA), displayed depolarization with accompanying spiking, and were found to be far more responsive to depolarizing current injection versus control. Immunocytochemical staining for the two typical Aplysia PKC isoforms, Apl I and Apl II, revealed that both kinases were present in unstimulated cultured bag cell neurons. However, in CtVm-treated neurons, the staining intensity for PKC Apl I increased, peaking at 10 min post-application. Conversely, the intensity of PKC Apl II staining decreased over the duration of CtVm exposure. Our results suggest that the CtVm-induced depolarization involves PKC activation, and is consistent with prior work showing PKC closely-associating with the cation channel to produce the depolarization necessary for the afterdischarge and species propagation.
Collapse
Affiliation(s)
- A K H Tam
- Department of Physiology, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
13
|
Hickey CM, Geiger JE, Groten CJ, Magoski NS. Mitochondrial Ca2+ Activates a Cation Current in Aplysia Bag Cell Neurons. J Neurophysiol 2010; 103:1543-56. [DOI: 10.1152/jn.01121.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ion channels may be gated by Ca2+ entering from the extracellular space or released from intracellular stores—typically the endoplasmic reticulum. The present study examines how Ca2+ impacts ion channels in the bag cell neurons of Aplysia californica. These neuroendocrine cells trigger ovulation through an afterdischarge involving Ca2+ influx from Ca2+ channels and Ca2+ release from both the mitochondria and endoplasmic reticulum. Liberating mitochondrial Ca2+ with the protonophore, carbonyl cyanide-4-trifluoromethoxyphenyl-hydrazone (FCCP), depolarized bag cell neurons, whereas depleting endoplasmic reticulum Ca2+ with the Ca2+-ATPase inhibitor, cyclopiazonic acid, did not. In a concentration-dependent manner, FCCP elicited an inward current associated with an increase in conductance and a linear current/voltage relationship that reversed near −40 mV. The reversal potential was unaffected by changing intracellular Cl−, but left-shifted when extracellular Ca2+ was removed and right-shifted when intracellular K+ was decreased. Strong buffering of intracellular Ca2+ decreased the current, although the response was not altered by blocking Ca2+-dependent proteases. Furthermore, fura imaging demonstrated that FCCP elevated intracellular Ca2+ with a time course similar to the current itself. Inhibiting either the V-type H+-ATPase or the ATP synthetase failed to produce a current, ruling out acidic Ca2+ stores or disruption of ATP production as mechanisms for the FCCP response. Similarly, any involvement of reactive oxygen species potentially produced by mitochondrial depolarization was mitigated by the fact that dialysis with xanthine/xanthine oxidase did not evoke an inward current. However, both the FCCP-induced current and Ca2+ elevation were diminished by disabling the mitochondrial permeability transition pore with the alkylating agent, N-ethylmaleimide. The data suggest that mitochondrial Ca2+ gates a voltage-independent, nonselective cation current with the potential to drive the afterdischarge and contribute to reproduction. Employing Ca2+ from mitochondria, rather than the more common endoplasmic reticulum, represents a diversification of the mechanisms that influence neuronal activity.
Collapse
Affiliation(s)
| | - Julia E. Geiger
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Chris J. Groten
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Neil S. Magoski
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Tam AKH, Geiger JE, Hung AY, Groten CJ, Magoski NS. Persistent Ca2+ Current Contributes to a Prolonged Depolarization in Aplysia Bag Cell Neurons. J Neurophysiol 2009; 102:3753-65. [DOI: 10.1152/jn.00669.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurons may initiate behavior or store information by translating prior activity into a lengthy change in excitability. For example, brief input to the bag cell neurons of Aplysia results in an approximate 30-min afterdischarge that induces reproduction. Similarly, momentary stimulation of cultured bag cells neurons evokes a prolonged depolarization lasting many minutes. Contributing to this is a voltage-independent cation current activated by Ca2+ entering during the stimulus. However, the cation current is relatively short-lived, and we hypothesized that a second, voltage-dependent persistent current sustains the prolonged depolarization. In bag cell neurons, the inward voltage-dependent current is carried by Ca2+; thus we tested for persistent Ca2+ current in primary culture under voltage clamp. The observed current activated between −40 and −50 mV exhibited a very slow decay, presented a similar magnitude regardless of stimulus duration (10–60 s), and, like the rapid Ca2+ current, was enhanced when Ba2+ was the permeant ion. The rapid and persistent Ca2+ current, but not the cation current, were Ni2+ sensitive. Consistent with the persistent current contributing to the response, Ni2+ reduced the amplitude of a prolonged depolarization evoked under current clamp. Finally, protein kinase C activation enhanced the rapid and persistent Ca2+ current as well as increased the prolonged depolarization when elicited by an action potential-independent stimulus. Thus the prolonged depolarization arises from Ca2+ influx triggering a cation current, followed by voltage-dependent activation of a persistent Ca2+ current and is subject to modulation. Such synergy between currents may represent a common means of achieving activity-dependent changes to excitability.
Collapse
Affiliation(s)
- Alan K. H. Tam
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Julia E. Geiger
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Anne Y. Hung
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Chris J. Groten
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Neil S. Magoski
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|