1
|
Merkulyeva N, Lyakhovetskii V, Mikhalkin А. Anisotropy of the Orientation Selectivity in the Visual Cortex Area 18 of Cats Reared Under Normal and Altered Visual Experience. Eur J Neurosci 2025; 61:e70004. [PMID: 39866043 DOI: 10.1111/ejn.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 12/07/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025]
Abstract
The "oblique effect" refers to the reduced visual performance for stimuli presented at oblique orientations compared to those at cardinal orientations. In the cortex, neurons that respond to specific orientations are organized into orientation columns. This raises the question: Are the orientation signals in the iso-orientation columns associated with cardinal orientations the same as those in the iso-orientation columns associated with oblique orientations, and is this signal influenced by experience? To explore this, iso-orientation columns in visual area 18 were examined using optical imaging techniques. Kittens were raised under either standard or modified conditions, including total darkness or rhythmic light stimulation through one or both eyes, which could potentially disrupt the orientation tuning of visual neurons. A signal profile around the pinwheel center was calculated to assess the distribution of the orientation signal within the hypercolumn. This profile exhibits a sinusoidal pattern with identifiable minima and maxima. To emphasize that these amplitude variations are localized within a specific circle rather than throughout the entire optical map, we used the terms "local minima" and "local maxima." The number of local maxima in areas corresponding to oblique orientations was similar to those in regions associated with vertical orientations. The highest number of local maxima was found in horizontal iso-orientation columns, indicating a "horizontal bias." This finding may be related to the postnatal development of sensory-sensory and sensory-motor integrations involving the visual system. We propose that the data presented should be incorporated into mathematical models of visual cortex activity, as well as vision itself.
Collapse
Affiliation(s)
- N Merkulyeva
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| | - V Lyakhovetskii
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| | - А Mikhalkin
- Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Feuerriegel D. Adaptation in the visual system: Networked fatigue or suppressed prediction error signalling? Cortex 2024; 177:302-320. [PMID: 38905873 DOI: 10.1016/j.cortex.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Our brains are constantly adapting to changes in our visual environments. Neural adaptation exerts a persistent influence on the activity of sensory neurons and our perceptual experience, however there is a lack of consensus regarding how adaptation is implemented in the visual system. One account describes fatigue-based mechanisms embedded within local networks of stimulus-selective neurons (networked fatigue models). Another depicts adaptation as a product of stimulus expectations (predictive coding models). In this review, I evaluate neuroimaging and psychophysical evidence that poses fundamental problems for predictive coding models of neural adaptation. Specifically, I discuss observations of distinct repetition and expectation effects, as well as incorrect predictions of repulsive adaptation aftereffects made by predictive coding accounts. Based on this evidence, I argue that networked fatigue models provide a more parsimonious account of adaptation effects in the visual system. Although stimulus expectations can be formed based on recent stimulation history, any consequences of these expectations are likely to co-occur (or interact) with effects of fatigue-based adaptation. I conclude by proposing novel, testable hypotheses relating to interactions between fatigue-based adaptation and other predictive processes, focusing on stimulus feature extrapolation phenomena.
Collapse
Affiliation(s)
- Daniel Feuerriegel
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia.
| |
Collapse
|
3
|
Ouelhazi A, Bharmauria V, Molotchnikoff S. Adaptation-induced sharpening of orientation tuning curves in the mouse visual cortex. Neuroreport 2024; 35:291-298. [PMID: 38407865 DOI: 10.1097/wnr.0000000000002012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
OBJECTIVE Orientation selectivity is an emergent property of visual neurons across species with columnar and noncolumnar organization of the visual cortex. The emergence of orientation selectivity is more established in columnar cortical areas than in noncolumnar ones. Thus, how does orientation selectivity emerge in noncolumnar cortical areas after an adaptation protocol? Adaptation refers to the constant presentation of a nonoptimal stimulus (adapter) to a neuron under observation for a specific time. Previously, it had been shown that adaptation has varying effects on the tuning properties of neurons, such as orientation, spatial frequency, motion and so on. BASIC METHODS We recorded the mouse primary visual neurons (V1) at different orientations in the control (preadaptation) condition. This was followed by adapting neurons uninterruptedly for 12 min and then recording the same neurons postadaptation. An orientation selectivity index (OSI) for neurons was computed to compare them pre- and post-adaptation. MAIN RESULTS We show that 12-min adaptation increases the OSI of visual neurons ( n = 113), that is, sharpens their tuning. Moreover, the OSI postadaptation increases linearly as a function of the OSI preadaptation. CONCLUSION The increased OSI postadaptation may result from a specific dendritic neural mechanism, potentially facilitating the rapid learning of novel features.
Collapse
Affiliation(s)
- Afef Ouelhazi
- Département de Sciences Biologiques, Neurophysiology of the Visual system, Université de Montréal, Montréal, Québec
| | - Vishal Bharmauria
- Department of Psychology, Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario, Canada
| | - Stéphane Molotchnikoff
- Département de Sciences Biologiques, Neurophysiology of the Visual system, Université de Montréal, Montréal, Québec
| |
Collapse
|
4
|
Tring E, Dipoppa M, Ringach DL. A power law describes the magnitude of adaptation in neural populations of primary visual cortex. Nat Commun 2023; 14:8366. [PMID: 38102113 PMCID: PMC10724159 DOI: 10.1038/s41467-023-43572-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
How do neural populations adapt to the time-varying statistics of sensory input? We used two-photon imaging to measure the activity of neurons in mouse primary visual cortex adapted to different sensory environments, each defined by a distinct probability distribution over a stimulus set. We find that two properties of adaptation capture how the population response to a given stimulus, viewed as a vector, changes across environments. First, the ratio between the response magnitudes is a power law of the ratio between the stimulus probabilities. Second, the response direction to a stimulus is largely invariant. These rules could be used to predict how cortical populations adapt to novel, sensory environments. Finally, we show how the power law enables the cortex to preferentially signal unexpected stimuli and to adjust the metabolic cost of its sensory representation to the entropy of the environment.
Collapse
Affiliation(s)
- Elaine Tring
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mario Dipoppa
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Dario L Ringach
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Tring E, Dipoppa M, Ringach DL. A power law of cortical adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541834. [PMID: 37292876 PMCID: PMC10245856 DOI: 10.1101/2023.05.22.541834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
How do neural populations adapt to the time-varying statistics of sensory input? To investigate, we measured the activity of neurons in primary visual cortex adapted to different environments, each associated with a distinct probability distribution over a stimulus set. Within each environment, a stimulus sequence was generated by independently sampling form its distribution. We find that two properties of adaptation capture how the population responses to a given stimulus, viewed as vectors, are linked across environments. First, the ratio between the response magnitudes is a power law of the ratio between the stimulus probabilities. Second, the response directions are largely invariant. These rules can be used to predict how cortical populations adapt to novel, sensory environments. Finally, we show how the power law enables the cortex to preferentially signal unexpected stimuli and to adjust the metabolic cost of its sensory representation to the entropy of the environment.
Collapse
Affiliation(s)
- Elaine Tring
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Mario Dipoppa
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles
| | - Dario L Ringach
- Department of Psychology, David Geffen School of Medicine, University of California, Los Angeles
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
6
|
Zhu RJB, Wei XX. Unsupervised approach to decomposing neural tuning variability. Nat Commun 2023; 14:2298. [PMID: 37085524 PMCID: PMC10121715 DOI: 10.1038/s41467-023-37982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Neural representation is often described by the tuning curves of individual neurons with respect to certain stimulus variables. Despite this tradition, it has become increasingly clear that neural tuning can vary substantially in accordance with a collection of internal and external factors. A challenge we are facing is the lack of appropriate methods to accurately capture the moment-to-moment tuning variability directly from the noisy neural responses. Here we introduce an unsupervised statistical approach, Poisson functional principal component analysis (Pf-PCA), which identifies different sources of systematic tuning fluctuations, moreover encompassing several current models (e.g.,multiplicative gain models) as special cases. Applying this method to neural data recorded from macaque primary visual cortex- a paradigmatic case for which the tuning curve approach has been scientifically essential- we discovered a simple relationship governing the variability of orientation tuning, which unifies different types of gain changes proposed previously. By decomposing the neural tuning variability into interpretable components, our method enables discovery of unexpected structure of the neural code, capturing the influence of the external stimulus drive and internal states simultaneously.
Collapse
Affiliation(s)
- Rong J B Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Shanghai, China.
| | - Xue-Xin Wei
- Department of Neuroscience, The University of Texas at Austin, Austin, USA.
- Department of Psychology, The University of Texas at Austin, Austin, USA.
- Center for Perceptual Systems, The University of Texas at Austin, Austin, USA.
- Center for Theoretical and Computational Neuroscience, The University of Texas at Austin, Austin, USA.
| |
Collapse
|
7
|
Afef O, Rudy L, Stéphane M. Ketamine promotes adaption-induced orientation plasticity and vigorous network changes. Brain Res 2022; 1797:148111. [PMID: 36183793 DOI: 10.1016/j.brainres.2022.148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Adult primary visual cortex features well demonstrated orientation selectivities. However, the imposition of a non-preferred stimulus for many minutes (adaptation) or the application of an antidepressant drug, such as ketamine, shifts the peak of the tuning curve, assigning a novel selectivity to a neuron. The effect of ketamine on V1 neural circuitry is not yet ascertained. The present investigation explores (in control, post-adaptation, and following local ketamine application) the modification of orientation selectivities and its outcome on functional relationships between neurons in mouse and cat. Two main results are revealed. Electrophysiological neuronal responses of monocular stimulation show that in cells exhibiting large orientation shifts after adaptation, ketamine facilitates the cell's recovery. Whereas in units displaying small shifts following adaptation, the drug increases the magnitude of orientation shifts. In addition, pair-wise cross correlogram analyses show modifications of functional relationships between neurons revealing updated micro-circuits as a consequence of ketamine application. We report in cat but not in mouse, that ketamine significantly increases the connectivity rate, their strengths, and an enhancement of neuronal synchrony.
Collapse
Affiliation(s)
- Ouelhazi Afef
- Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada
| | - Lussiez Rudy
- Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada
| | - Molotchnikoff Stéphane
- Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Quebec H2V 0B3, Canada.
| |
Collapse
|
8
|
Gao S, Liu X. Explaining Orientation Adaptation in V1 by Updating the State of a Spatial Model. Front Comput Neurosci 2022; 15:759254. [PMID: 35250523 PMCID: PMC8895385 DOI: 10.3389/fncom.2021.759254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, we extend an influential statistical model based on the spatial classical receptive field (CRF) and non-classical receptive field (nCRF) interactions (Coen-Cagli et al., 2012) to explain the typical orientation adaptation effects observed in V1. If we assume that the temporal adaptation modifies the “state” of the model, the spatial statistical model can explain all of the orientation adaptation effects in the context of neuronal output using small and large grating observed in neurophysiological experiments in V1. The “state” of the model represents the internal parameters such as the prior and the covariance trained on a mixed dataset that totally determine the response of the model. These two parameters, respectively, reflect the probability of the orientation component and the connectivity among neurons between CRF and nCRF. Specifically, we have two key findings: First, neural adapted results using a small grating that just covers the CRF can be predicted by the change of the prior of our model. Second, the change of the prior can also predict most of the observed results using a large grating that covers both CRF and nCRF of a neuron. However, the prediction of the novel attractive adaptation using large grating covering both CRF and nCRF also necessitates the involvement of a connectivity change of the center-surround RFs. In addition, our paper contributes a new prior-based winner-take-all (WTA) working mechanism derived from the statistical-based model to explain why and how all of these orientation adaptation effects can be predicted by relying on this spatial model without modifying its structure, a novel application of the spatial model. The research results show that adaptation may link time and space by changing the “state” of the neural system according to a specific adaptor. Furthermore, different forms of stimulus used for adaptation can cause various adaptation effects, such as an a priori shift or a connectivity change, depending on the specific stimulus size.
Collapse
Affiliation(s)
- Shaobing Gao
- College of Computer Science, Sichuan University, Chengdu, China
- *Correspondence: Shaobing Gao
| | - Xiao Liu
- Tomorrow Advancing Life Education Group (TAL), Beijing, China
| |
Collapse
|
9
|
Vinken K, Boix X, Kreiman G. Incorporating intrinsic suppression in deep neural networks captures dynamics of adaptation in neurophysiology and perception. SCIENCE ADVANCES 2020; 6:eabd4205. [PMID: 33055170 PMCID: PMC7556832 DOI: 10.1126/sciadv.abd4205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Adaptation is a fundamental property of sensory systems that can change subjective experiences in the context of recent information. Adaptation has been postulated to arise from recurrent circuit mechanisms or as a consequence of neuronally intrinsic suppression. However, it is unclear whether intrinsic suppression by itself can account for effects beyond reduced responses. Here, we test the hypothesis that complex adaptation phenomena can emerge from intrinsic suppression cascading through a feedforward model of visual processing. A deep convolutional neural network with intrinsic suppression captured neural signatures of adaptation including novelty detection, enhancement, and tuning curve shifts, while producing aftereffects consistent with human perception. When adaptation was trained in a task where repeated input affects recognition performance, an intrinsic mechanism generalized better than a recurrent neural network. Our results demonstrate that feedforward propagation of intrinsic suppression changes the functional state of the network, reproducing key neurophysiological and perceptual properties of adaptation.
Collapse
Affiliation(s)
- K Vinken
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Center for Brains, Minds and Machines, Cambridge, MA 02139, USA
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, 3000, Leuven, Belgium
| | - X Boix
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Brains, Minds and Machines, Cambridge, MA 02139, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - G Kreiman
- Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Brains, Minds and Machines, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Lussiez R, Chanauria N, Ouelhazi A, Molotchnikoff S. Effects of visual adaptation on orientation selectivity in cat secondary visual cortex. Eur J Neurosci 2020; 53:588-600. [PMID: 32916020 DOI: 10.1111/ejn.14967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 11/28/2022]
Abstract
Neuron orientation selectivity, otherwise known as the ability to respond optimally to a preferred orientation, has been extensively described in both primary and secondary visual cortices. This orientation selectivity, conserved through all cortical layers of a given column, is the primary basis for cortical organization and functional network emergence. While this selectivity is programmed and acquired since critical period, it has always been believed that in a mature brain, neurons' inherent functional features could not be changed. However, a plurality of studies has investigated the mature brain plasticity in V1, by changing the cells' orientation selectivity with visual adaptation. Using electrophysiological data in both V1 and V2 areas, this study aims to investigate the effects of adaptation on simultaneously recorded cells in both areas. Visual adaptation had an enhanced effect on V2 units, as they exhibited greater tuning curve shifts and a more pronounced decrease of their OSI. Not only did adaptation have a different effect on V2 neurons, it also elicited a different response depending on the neuron's cortical depth. Indeed, in V2, cells in layers II-III were more affected by visual adaptation, while infragranular layer V units exhibited little to no effect at all.
Collapse
|
11
|
Vaitkevičius H, Švegžda A, Stanikūnas R, Bliumas R, Šoliūnas A, Kulikowski JJ. Neural Model of Coding Stimulus Orientation and Adaptation. Neural Comput 2020; 32:711-740. [DOI: 10.1162/neco_a_01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The coding of line orientation in the visual system has been investigated extensively. During the prolonged viewing of a stimulus, the perceived orientation continuously changes (normalization effect). Also, the orientation of the adapting stimulus and the background stimuli influence the perceived orientation of the subsequently displayed stimulus: tilt after-effect (TAE) or tilt illusion (TI). The neural mechanisms of these effects are not fully understood. The proposed model includes many local analyzers, each consisting of two sets of neurons. The first set has two independent cardinal detectors (CDs), whose responses depend on stimulus orientation. The second set has many orientation detectors (OD) tuned to different orientations of the stimulus. The ODs sum up the responses of the two CDs with respective weightings and output a preferred orientation depending on the ratio of CD responses. It is suggested that during prolonged viewing, the responses of the CDs decrease: the greater the excitation of the detector, the more rapid the decrease in its response. Thereby, the ratio of CD responses changes during the adaptation, causing the normalization effect and the TAE. The CDs of the different local analyzers laterally inhibit each other and cause the TI. We show that the properties of this model are consistent with both psychophysical and neurophysiological findings related to the properties of orientation perception, and we investigate how these mechanisms can affect the orientation's sensitivity.
Collapse
Affiliation(s)
| | - Algimantas Švegžda
- Institute of Psychology, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Rytis Stanikūnas
- Institute of Psychology, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Remigijus Bliumas
- Institute of Psychology, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Alvydas Šoliūnas
- Institute of Bioscience, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Janus J. Kulikowski
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
12
|
Gutierrez GJ, Denève S. Population adaptation in efficient balanced networks. eLife 2019; 8:46926. [PMID: 31550233 PMCID: PMC6759354 DOI: 10.7554/elife.46926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/27/2019] [Indexed: 01/27/2023] Open
Abstract
Adaptation is a key component of efficient coding in sensory neurons. However, it remains unclear how neurons can provide a stable representation of external stimuli given their history-dependent responses. Here we show that a stable representation is maintained if efficiency is optimized by a population of neurons rather than by neurons individually. We show that spike-frequency adaptation and E/I balanced recurrent connectivity emerge as solutions to a global cost-accuracy tradeoff. The network will redistribute sensory responses from highly excitable neurons to less excitable neurons as the cost of neural activity increases. This does not change the representation at the population level despite causing dynamic changes in individual neurons. By applying this framework to an orientation coding network, we reconcile neural and behavioral findings. Our approach underscores the common mechanisms behind the diversity of neural adaptation and its role in producing a reliable representation of the stimulus while minimizing metabolic cost. Humans see, hear, feel, taste and smell the world as spiking electrical signals in the brain encoded by sensory neurons. Sensory neurons learn from experience to adjust their activity when exposed repeatedly to the same stimuli. A loud noise or that strange taste in your mouth might be alarming at first but soon sensory neurons dial down their response as the sensations become familiar, saving energy. This neural adaptation has been observed experimentally in individual cells, but it raises questions about how the brain deciphers signals from sensory neurons. How do downstream neurons learn whether the reduced activity from sensory neurons is a result of getting used to a feeling, or a signal encoding a weaker stimulus? The energy saved through neural adaptation cannot come at the expense of sensing the world less accurately. Neural networks in our brain have evidently evolved to code information in a way that is both efficient and accurate, and computational neuroscientists want to know how. There has been great interest in reproducing neural networks for machine learning, but computer models have not yet captured the mechanisms of neural coding with the same eloquence as the brain. Gutierrez and Denève used computational models to test how networks of sensory neurons encode a sensible signal whilst adapting to new or repeated stimuli. The experiments showed that optimal neural networks are highly cooperative and share the load when encoding information. Individual neurons are more sensitive to certain stimuli but the information is encoded across the network so that if one neuron becomes fatigued, others receptive to the same stimuli can respond. In this way, the network is both responsive and reliable, producing a steady output which can be readily interpreted by downstream neurons. Exploring how stimuli are encoded in the brain, Gutierrez and Denève have shown that the activity of one neuron does not represent the whole picture of neural adaptation. The brain has evolved to adapt to continuous stimuli for efficiency at both the level of individual neurons and across balanced networks of interconnected neurons. It takes many neurons to accurately represent the world, but only as a network can the brain sustain a steady picture.
Collapse
Affiliation(s)
- Gabrielle J Gutierrez
- Department of Applied Mathematics, University of Washington, Seattle, United States.,Group for Neural Theory, École Normale Supérieure, Paris, France
| | - Sophie Denève
- Group for Neural Theory, École Normale Supérieure, Paris, France
| |
Collapse
|
13
|
Chanauria N, Bharmauria V, Bachatene L, Cattan S, Rouat J, Molotchnikoff S. Sound Induces Change in Orientation Preference of V1 Neurons: Audio-Visual Cross-Influence. Neuroscience 2019; 404:48-61. [PMID: 30703505 DOI: 10.1016/j.neuroscience.2019.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
In the cortex, demarcated unimodal sensory regions often respond to unforeseen sensory stimuli and exhibit plasticity. The goal of the current investigation was to test evoked responses of primary visual cortex (V1) neurons when an adapting auditory stimulus is applied in isolation. Using extracellular recordings in anesthetized cats, we demonstrate that, unlike the prevailing observation of only slight modulations in the firing rates of the neurons, sound imposition in isolation entirely shifted the peaks of orientation tuning curves of neurons in both supra- and infragranular layers of V1. Our results suggest that neurons specific to either layer dynamically integrate features of sound and modify the organization of the orientation map of V1. Intriguingly, these experiments present novel findings that the mere presentation of a prolonged auditory stimulus may drastically recalibrate the tuning properties of the visual neurons and highlight the phenomenal neuroplasticity of V1 neurons.
Collapse
Affiliation(s)
- Nayan Chanauria
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Vishal Bharmauria
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Lyes Bachatene
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Sarah Cattan
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Jean Rouat
- Departement de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stéphane Molotchnikoff
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
14
|
Bharmauria V, Bachatene L, Molotchnikoff S. The speed of neuronal adaptation: A perspective through the visual cortex. Eur J Neurosci 2019; 49:1215-1219. [PMID: 30803085 DOI: 10.1111/ejn.14393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Vishal Bharmauria
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, Montréal, Quebec
| | - Lyes Bachatene
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, Montréal, Quebec
| | - Stéphane Molotchnikoff
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, Montréal, Quebec.,Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, Quebec
| |
Collapse
|
15
|
Milleret C, Bui Quoc E. Beyond Rehabilitation of Acuity, Ocular Alignment, and Binocularity in Infantile Strabismus. Front Syst Neurosci 2018; 12:29. [PMID: 30072876 PMCID: PMC6058758 DOI: 10.3389/fnsys.2018.00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/15/2018] [Indexed: 11/13/2022] Open
Abstract
Infantile strabismus impairs the perception of all attributes of the visual scene. High spatial frequency components are no longer visible, leading to amblyopia. Binocularity is altered, leading to the loss of stereopsis. Spatial perception is impaired as well as detection of vertical orientation, the fastest movements, directions of movement, the highest contrasts and colors. Infantile strabismus also affects other vision-dependent processes such as control of postural stability. But presently, rehabilitative therapies for infantile strabismus by ophthalmologists, orthoptists and optometrists are restricted to preventing or curing amblyopia of the deviated eye, aligning the eyes and, whenever possible, preserving or restoring binocular vision during the critical period of development, i.e., before ~10 years of age. All the other impairments are thus ignored; whether they may recover after strabismus treatment even remains unknown. We argue here that medical and paramedical professionals may extend their present treatments of the perceptual losses associated with infantile strabismus. This hypothesis is based on findings from fundamental research on visual system organization of higher mammals in particular at the cortical level. In strabismic subjects (as in normal-seeing ones), information about all of the visual attributes converge, interact and are thus inter-dependent at multiple levels of encoding ranging from the single neuron to neuronal assemblies in visual cortex. Thus if the perception of one attribute is restored this may help to rehabilitate the perception of other attributes. Concomitantly, vision-dependent processes may also improve. This could occur spontaneously, but still should be assessed and validated. If not, medical and paramedical staff, in collaboration with neuroscientists, will have to break new ground in the field of therapies to help reorganize brain circuitry and promote more comprehensive functional recovery. Findings from fundamental research studies in both young and adult patients already support our hypothesis and are reviewed here. For example, presenting different contrasts to each eye of a strabismic patient during training sessions facilitates recovery of acuity in the amblyopic eye as well as of 3D perception. Recent data also demonstrate that visual recoveries in strabismic subjects improve postural stability. These findings form the basis for a roadmap for future research and clinical development to extend presently applied rehabilitative therapies for infantile strabismus.
Collapse
Affiliation(s)
- Chantal Milleret
- Center for Interdisciplinary Research in Biology, Centre National de la Recherche Scientifique, College de France, INSERM, PSL Research University, Paris, France
| | - Emmanuel Bui Quoc
- Department of Ophthalmology, Robert Debré University Hospital, Assistance Publique - Hôpitaux de Paris Paris, France
| |
Collapse
|
16
|
Meng J, Li Z, Li H, Zhu J, Yu H. The Common and Distinct Orientation Adaptation Effect at Pinwheel Centers in Areas 21a and 17 of Cats. Neuroscience 2018; 379:77-92. [DOI: 10.1016/j.neuroscience.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 11/16/2022]
|
17
|
King JL, Crowder NA. Adaptation to stimulus orientation in mouse primary visual cortex. Eur J Neurosci 2018; 47:346-357. [PMID: 29357122 DOI: 10.1111/ejn.13830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/15/2017] [Accepted: 01/08/2018] [Indexed: 02/02/2023]
Abstract
Information processing in the visual system is shaped by recent stimulus history, such that prolonged viewing of an adapting stimulus can alter the perception of subsequently presented test stimuli. In the tilt-after-effect, the perceived orientation of a grating is often repelled away from the orientation of a previously viewed adapting grating. A possible neural correlate for the tilt-after-effect has been described in cat and macaque primary visual cortex (V1), where adaptation produces repulsive shifts in the orientation tuning curves of V1 neurons. We investigated adaptation to stimulus orientation in mouse V1 to determine whether known species differences in orientation processing, notably V1 functional architecture and proportion of tightly tuned cells, are important for these repulsive shifts. Unlike the consistent repulsion reported in other species, we found that repulsion was only about twice as common as attraction in our mouse data. Furthermore, adapted responses were attenuated across all orientations. A simple model that captured key physiological findings reported in cats and mice indicated that the greater proportion of broadly tuned neurons in mice may explain the observed species differences in adaptation.
Collapse
Affiliation(s)
- Jillian L King
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| | - Nathan A Crowder
- Department of Psychology and Neuroscience, Dalhousie University, 1355 Oxford Street, PO Box 15000, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
18
|
Shumikhina SI, Bondar IV, Svinov MM. Dynamics of Stability of Orientation Maps Recorded with Optical Imaging. Neuroscience 2018; 374:49-60. [PMID: 29391133 DOI: 10.1016/j.neuroscience.2018.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Orientation selectivity is an important feature of visual cortical neurons. Optical imaging of the visual cortex allows for the generation of maps of orientation selectivity that reflect the activity of large populations of neurons. To estimate the statistical significance of effects of experimental manipulations, evaluation of the stability of cortical maps over time is required. Here, we performed optical imaging recordings of the visual cortex of anesthetized adult cats. Monocular stimulation with moving clockwise square-wave gratings that continuously changed orientation and direction was used as the mapping stimulus. Recordings were repeated at various time intervals, from 15 min to 16 h. Quantification of map stability was performed on a pixel-by-pixel basis using several techniques. Map reproducibility showed clear dynamics over time. The highest degree of stability was seen in maps recorded 15-45 min apart. Averaging across all time intervals and all stimulus orientations revealed a mean shift of 2.2 ± 0.1°. There was a significant tendency for larger shifts to occur at longer time intervals. Shifts between 2.8° (mean ± 2SD) and 5° were observed more frequently at oblique orientations, while shifts greater than 5° appeared more frequently at cardinal orientations. Shifts greater than 5° occurred rarely overall (5.4% of cases) and never exceeded 11°. Shifts of 10-10.6° (0.7%) were seen occasionally at time intervals of more than 4 h. Our findings should be considered when evaluating the potential effect of experimental manipulations on orientation selectivity mapping studies.
Collapse
Affiliation(s)
- S I Shumikhina
- Functional Neurocytology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 5a Butlerova Street, 117485, Russia.
| | - I V Bondar
- Sensory Physiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 5a Butlerova Street, 117485, Russia.
| | - M M Svinov
- Functional Neurocytology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 5a Butlerova Street, 117485, Russia.
| |
Collapse
|
19
|
Pattern Adaptation and Normalization Reweighting. J Neurosci 2017; 36:9805-16. [PMID: 27656020 DOI: 10.1523/jneurosci.1067-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Adaptation to an oriented stimulus changes both the gain and preferred orientation of neural responses in V1. Neurons tuned near the adapted orientation are suppressed, and their preferred orientations shift away from the adapter. We propose a model in which weights of divisive normalization are dynamically adjusted to homeostatically maintain response products between pairs of neurons. We demonstrate that this adjustment can be performed by a very simple learning rule. Simulations of this model closely match existing data from visual adaptation experiments. We consider several alternative models, including variants based on homeostatic maintenance of response correlations or covariance, as well as feedforward gain-control models with multiple layers, and we demonstrate that homeostatic maintenance of response products provides the best account of the physiological data. SIGNIFICANCE STATEMENT Adaptation is a phenomenon throughout the nervous system in which neural tuning properties change in response to changes in environmental statistics. We developed a model of adaptation that combines normalization (in which a neuron's gain is reduced by the summed responses of its neighbors) and Hebbian learning (in which synaptic strength, in this case divisive normalization, is increased by correlated firing). The model is shown to account for several properties of adaptation in primary visual cortex in response to changes in the statistics of contour orientation.
Collapse
|
20
|
Chanauria N, Bharmauria V, Bachatene L, Cattan S, Rouat J, Molotchnikoff S. Comparative effects of adaptation on layers II-III and V-VI neurons in cat V1. Eur J Neurosci 2016; 44:3094-3104. [PMID: 27740707 DOI: 10.1111/ejn.13439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/23/2022]
Abstract
V1 is fundamentally grouped into columns that descend from layers II-III to V-VI. Neurons inherent to visual cortex are capable of adapting to changes in the incoming stimuli that drive the cortical plasticity. A principle feature called orientation selectivity can be altered by the presentation of non-optimal stimulus called 'adapter'. When triggered, LGN cells impinge upon layer IV and further relay the information to deeper layers via layers II-III. Using different adaptation protocols, neuronal plasticity can be investigated. Superficial neurons in area V1 are well acknowledged to exhibit attraction and repulsion by shifting their tuning peaks when challenged by a non-optimal stimulus called 'adapter'. Layers V-VI neurons in spite of partnering layers II-III neurons in cortical computation have not been explored simultaneously toward adaptation. We believe that adaptation not only affects cells specific to a layer but modifies the entire column. In this study, through simultaneous multiunit recordings in anesthetized cats using a multichannel depth electrode, we show for the first time how layers V-VI neurons (1000-1200 μm) along with layers II-III neurons (300-500 μm) exhibit plasticity in response to adaptation. Our results demonstrate that superficial and deeper layer neurons react synonymously toward adapter by exhibiting similar behavioral properties. The neurons displayed similar amplitude of shift and maintained equivalent sharpness of Gaussian tuning peaks before and the following adaptation. It appears that a similar mechanism, belonging to all layers, is responsible for the analog outcome of the neurons' experience with adapter.
Collapse
Affiliation(s)
- Nayan Chanauria
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Vishal Bharmauria
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada.,The Visuomotor Neuroscience Lab, Centre for Vision Research, Faculty of Health, York University, Toronto, ON, Canada
| | - Lyes Bachatene
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada.,Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences (CHUS), SNAIL
- Sherbrooke Neuro Analysis and Imaging Lab, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Sarah Cattan
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Jean Rouat
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada.,Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stéphane Molotchnikoff
- Neurophysiology of Visual System, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
21
|
Bachatene L, Bharmauria V, Cattan S, Chanauria N, Etindele-Sosso FA, Molotchnikoff S. Functional synchrony and stimulus selectivity of visual cortical units: Comparison between cats and mice. Neuroscience 2016; 337:331-338. [PMID: 27670902 DOI: 10.1016/j.neuroscience.2016.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
Abstract
In spite of the fact that the functional organization of primary visual cortices (V1) differs across species, the dynamic of orientation selectivity is highly structured within neuronal populations. In fact, neurons functionally connect each other in an organized Hebbian process, wherein their wiring and firing are intimately related. Moreover, neuronal ensembles have been suggested to be strongly implicated in sensory processing. Within these ensembles, neurons may be sharply or broadly tuned in relation to the stimulus. Therefore, it is important to determine the relationship between the response selectivity of neurons and their functional connectivity pattern across species. In the present investigation, we sought to compare the stimulus-evoked functional connectivity between the broadly tuned and the sharply tuned neurons in two species exhibiting different cortical organization for orientation selectivity: cats (columnar-organized) and mice (salt-and-pepper organization). In addition, we examined the distribution of connectivity weights within cell-assemblies in the visual cortex during visual adaptation. First, we report that the sharply tuned neurons exhibited higher synchrony index than the broadly tuned cells in the cat visual cortex. On the contrary, in mice, the broadly tuned cells displayed higher connectivity index. Second, a significant correlation was found between the connectivity strength and the difference of preferred orientations of neurons for both species. Finally, we observed a systematic adjustment of the connectivity weights within neuronal ensembles in mouse primary visual cortex similarly to the cat V1.
Collapse
Affiliation(s)
- Lyes Bachatene
- Neurophysiology of Visual System, Université de Montréal, Département de Sciences Biologiques, Montréal, QC H3C3J7, Canada
| | - Vishal Bharmauria
- Neurophysiology of Visual System, Université de Montréal, Département de Sciences Biologiques, Montréal, QC H3C3J7, Canada
| | - Sarah Cattan
- Neurophysiology of Visual System, Université de Montréal, Département de Sciences Biologiques, Montréal, QC H3C3J7, Canada
| | - Nayan Chanauria
- Neurophysiology of Visual System, Université de Montréal, Département de Sciences Biologiques, Montréal, QC H3C3J7, Canada
| | - Faustin Armel Etindele-Sosso
- Neurophysiology of Visual System, Université de Montréal, Département de Sciences Biologiques, Montréal, QC H3C3J7, Canada
| | - Stéphane Molotchnikoff
- Neurophysiology of Visual System, Université de Montréal, Département de Sciences Biologiques, Montréal, QC H3C3J7, Canada.
| |
Collapse
|
22
|
Takaura K, Fujii N. Facilitative effect of repetitive presentation of one stimulus on cortical responses to other stimuli in macaque monkeys--a possible neural mechanism for mismatch negativity. Eur J Neurosci 2016; 43:516-28. [PMID: 26613160 PMCID: PMC5064748 DOI: 10.1111/ejn.13136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/14/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022]
Abstract
The event-related potential 'mismatch negativity' (MMN) is an indicator of a perceiver's ability to detect deviations in sensory signal streams. MMN and its homologue in animals, mismatch activity (MMA), are differential neural responses to a repeatedly presented stimulus and a subsequent deviant stimulus (oddball). Because neural mechanisms underlying MMN and MMA remain unclear, there is a controversy as to whether MMN and MMA arise solely from stimulus-specific adaptation (SSA), in which the response to a stimulus cumulatively attenuates with its repetitive presentation. To address this issue, we used electrocorticography and the auditory roving-oddball paradigm in two awake macaque monkeys. We examined the effect of stimulus repetition number on MMA and on responses to repeated stimuli and oddballs across the cerebral cortex in the time-frequency domain. As the repetition number increased, MMA spread across the temporal, frontal and parietal cortices, and each electrode yielded a larger MMA. Surprisingly, this increment in MMA largely depended on response augmentation to the oddball rather than on SSA to the repeated stimulus. Following sufficient repetition, the oddball evoked a spectral power increment in some electrodes on the frontal cortex that had shown no power increase to the stimuli with less or no preceding repetition. We thereby revealed that repetitive presentation of one stimulus not only leads to SSA but also facilitates the cortical response to oddballs involving a wide range of cortical regions. This facilitative effect might underlie the generation of MMN-like scalp potentials in macaques that potentially shares similar neural mechanisms with MMN in humans.
Collapse
Affiliation(s)
- Kana Takaura
- Laboratory for Adaptive IntelligenceRIKEN Brain Science Institute2‐1 HirosawaWako‐shiSiatama 351‐0198Japan
| | - Naotaka Fujii
- Laboratory for Adaptive IntelligenceRIKEN Brain Science Institute2‐1 HirosawaWako‐shiSiatama 351‐0198Japan
| |
Collapse
|
23
|
Bachatene L, Bharmauria V, Cattan S, Chanauria N, Rouat J, Molotchnikoff S. Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity. BMC Neurosci 2015; 16:64. [PMID: 26453336 PMCID: PMC4600218 DOI: 10.1186/s12868-015-0203-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. RESULTS Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a "homeodynamic" manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. CONCLUSIONS Our results support the "homeostatic plasticity concept" giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons.
Collapse
Affiliation(s)
- Lyes Bachatene
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Vishal Bharmauria
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Sarah Cattan
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Nayan Chanauria
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Jean Rouat
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Stéphane Molotchnikoff
- Laboratoire de Neurosciences de la vision, Département de Sciences Biologiques, Université de Montréal, CP 6128 Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada. .,Neurosciences Computationnelles et Traitement Intelligent des Signaux (NECOTIS), Département de Génie Électrique et Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
24
|
Hollmann V, Lucks V, Kurtz R, Engelmann J. Adaptation-induced modification of motion selectivity tuning in visual tectal neurons of adult zebrafish. J Neurophysiol 2015; 114:2893-902. [PMID: 26378206 DOI: 10.1152/jn.00568.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022] Open
Abstract
In the developing brain, training-induced emergence of direction selectivity and plasticity of orientation tuning appear to be widespread phenomena. These are found in the visual pathway across different classes of vertebrates. Moreover, short-term plasticity of orientation tuning in the adult brain has been demonstrated in several species of mammals. However, it is unclear whether neuronal orientation and direction selectivity in nonmammalian species remains modifiable through short-term plasticity in the fully developed brain. To address this question, we analyzed motion tuning of neurons in the optic tectum of adult zebrafish by calcium imaging. In total, orientation and direction selectivity was enhanced by adaptation, responses of previously orientation-selective neurons were sharpened, and even adaptation-induced emergence of selectivity in previously nonselective neurons was observed in some cases. The different observed effects are mainly based on the relative distance between the previously preferred and the adaptation direction. In those neurons in which a shift of the preferred orientation or direction was induced by adaptation, repulsive shifts (i.e., away from the adapter) were more prevalent than attractive shifts. A further novel finding for visually induced adaptation that emerged from our study was that repulsive and attractive shifts can occur within one brain area, even with uniform stimuli. The type of shift being induced also depends on the difference between the adapting and the initially preferred stimulus direction. Our data indicate that, even within the fully developed optic tectum, short-term plasticity might have an important role in adjusting neuronal tuning functions to current stimulus conditions.
Collapse
Affiliation(s)
- Vanessa Hollmann
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| | - Valerie Lucks
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| | - Rafael Kurtz
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | - Jacob Engelmann
- Active Sensing and Center of Excellence Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany; and
| |
Collapse
|
25
|
Reprogramming of orientation columns in visual cortex: a domino effect. Sci Rep 2015; 5:9436. [PMID: 25801392 PMCID: PMC4371149 DOI: 10.1038/srep09436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/02/2015] [Indexed: 02/06/2023] Open
Abstract
Cortical organization rests upon the fundamental principle that neurons sharing similar properties are co-located. In the visual cortex, neurons are organized into orientation columns. In a column, most neurons respond optimally to the same axis of an oriented edge, that is, the preferred orientation. This orientation selectivity is believed to be absolute in adulthood. However, in a fully mature brain, it has been established that neurons change their selectivity following sensory experience or visual adaptation. Here, we show that after applying an adapter away from the tested cells, neurons whose receptive fields were located remotely from the adapted site also exhibit a novel selectivity in spite of the fact that they were not adapted. These results indicate a robust reconfiguration and remapping of the orientation domains with respect to each other thus removing the possibility of an orientation hole in the new hypercolumn. These data suggest that orientation columns transcend anatomy, and are almost strictly functionally dynamic.
Collapse
|
26
|
Kim T, Allen EA, Pasley BN, Freeman RD. Transcranial Magnetic Stimulation Changes Response Selectivity of Neurons in the Visual Cortex. Brain Stimul 2015; 8:613-23. [PMID: 25862599 DOI: 10.1016/j.brs.2015.01.407] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is used to selectively alter neuronal activity of specific regions in the cerebral cortex. TMS is reported to induce either transient disruption or enhancement of different neural functions. However, its effects on tuning properties of sensory neurons have not been studied quantitatively. OBJECTIVE/HYPOTHESIS Here, we use specific TMS application parameters to determine how they may alter tuning characteristics (orientation, spatial frequency, and contrast sensitivity) of single neurons in the cat's visual cortex. METHODS Single unit spikes were recorded with tungsten microelectrodes from the visual cortex of anesthetized and paralyzed cats (12 males). Repetitive TMS (4 Hz, 4 s) was delivered with a 70 mm figure-8 coil. We quantified basic tuning parameters of individual neurons for each pre- and post-TMS condition. The statistical significance of changes for each tuning parameter between the two conditions was evaluated with a Wilcoxon signed-rank test. RESULTS We generally find long-lasting suppression which persists well beyond the stimulation period. Pre- and post-TMS orientation tuning curves show constant peak values. However, strong suppression at non-preferred orientations tends to narrow the widths of tuning curves. Spatial frequency tuning exhibits an asymmetric change in overall shape, which results in an emphasis on higher frequencies. Contrast tuning curves show nonlinear changes consistent with a gain control mechanism. CONCLUSIONS These findings suggest that TMS causes extended interruption of the balance between sub-cortical and intra-cortical inputs.
Collapse
Affiliation(s)
- Taekjun Kim
- Vision Science Graduate Group, School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Elena A Allen
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Brian N Pasley
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Ralph D Freeman
- Vision Science Graduate Group, School of Optometry, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
27
|
Bachatene L, Bharmauria V, Cattan S, Rouat J, Molotchnikoff S. Modulation of functional connectivity following visual adaptation: homeostasis in V1. Brain Res 2015; 1594:136-53. [PMID: 25451112 DOI: 10.1016/j.brainres.2014.10.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 11/28/2022]
Abstract
Sensory neurons exhibit remarkable adaptability in acquiring new optimal selectivity to unfamiliar features when a new stimulus becomes prevalent in the environment. In conventionally prepared adult anesthetized cats, we used visual adaptation to change the preferred orientation selectivity in V1 neurons. Cortical circuits are dominated by complex and intricate connections between neurons. Cross-correlation of cellular spike-trains discloses the putative functional connection between two neurons. We sought to investigate changes in these links following a 12 min uninterrupted application of a specific, usually non-preferred, orientation. We report that visual adaptation, mimicking training, modulates the magnitude of crosscorrelograms suggesting that the strength of inter-neuronal relationships is modified. While individual cell-pairs exhibit changes in their response correlation strength, the average correlation of the recorded cell cluster remains unchanged. Hence, visual adaptation induces plastic changes that impact the connectivity between neurons.
Collapse
Affiliation(s)
- L Bachatene
- Laboratoire de Neurosciences de la Vision, Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7; Neurosciences Computationnelles et Traitement Intelligent des Signaux-NECOTIS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - V Bharmauria
- Laboratoire de Neurosciences de la Vision, Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7; Neurosciences Computationnelles et Traitement Intelligent des Signaux-NECOTIS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - S Cattan
- Laboratoire de Neurosciences de la Vision, Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7; Neurosciences Computationnelles et Traitement Intelligent des Signaux-NECOTIS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J Rouat
- Laboratoire de Neurosciences de la Vision, Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7; Neurosciences Computationnelles et Traitement Intelligent des Signaux-NECOTIS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - S Molotchnikoff
- Laboratoire de Neurosciences de la Vision, Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7; Neurosciences Computationnelles et Traitement Intelligent des Signaux-NECOTIS, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
28
|
McGovern DP, Roach NW, Webb BS. Characterizing the effects of multidirectional motion adaptation. J Vis 2014; 14:2. [PMID: 25368339 PMCID: PMC4217536 DOI: 10.1167/14.13.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/07/2014] [Indexed: 11/24/2022] Open
Abstract
Recent sensory experience can alter our perception and change the response characteristics of sensory neurons. These effects of sensory adaptation are a ubiquitous property of perceptual systems and are believed to be of fundamental importance to sensory coding. Yet we know little about how adaptation to stimulus ensembles affects our perception of the environment as most psychophysical experiments employ adaptation protocols that focus on prolonged exposure to a single visual attribute. Here, we investigate how concurrent adaptation to multiple directions of motion affects perception of subsequently presented motion using the direction aftereffect. In different conditions, observers adapted to a stimulus ensemble comprised of dot directions sampled from different distributions or to bidirectional motion. Increasing the variance of normally distributed directions reduced the magnitude of the peak direction aftereffect and broadened its tuning profile. Sampling of asymmetric Gaussian and uniform distributions resulted in shifts of direction aftereffect tuning profiles consistent with changes in the perceived global direction of the adapting stimulus. Adding dots in a direction opposite or orthogonal to a unidirectional adapting stimulus led to a pronounced reduction in the direction aftereffect. A simple population-coding model, in which adaptation selectively alters the responsivity of direction-selective neurons, can accommodate the effects of multidirectional adaptation on the perceived direction of motion.
Collapse
Affiliation(s)
- David P. McGovern
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Neil W. Roach
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, UK
| | - Ben S. Webb
- Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Abstract
How an object is perceived depends on the temporal context in which it is encountered. Sensory signals in the brain also depend on temporal context, a phenomenon often referred to as adaptation. Traditional descriptions of adaptation effects emphasize various forms of response fatigue in single neurons, which grow in strength with exposure to a stimulus. Recent work on vision, and other sensory modalities, has shown that this description has substantial shortcomings. Here we review our emerging understanding of how adaptation alters the balance between excitatory and suppressive signals, how effects depend on adaptation duration, and how adaptation influences representations that are distributed within and across multiple brain structures. This work points to a sophisticated set of mechanisms for adjusting to recent sensory experience, and suggests new avenues for understanding their function.
Collapse
Affiliation(s)
- Samuel G Solomon
- Institute for Behavioural Neuroscience, University College London, London, UK; Department of Experimental Psychology, University College London, London, UK.
| | - Adam Kohn
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
30
|
Bell J, Sampasivam S, McGovern DP, Meso AI, Kingdom FAA. Contour inflections are adaptable features. J Vis 2014; 14:14.7.2. [PMID: 24893785 DOI: 10.1167/14.7.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An object's shape is a strong cue for visual recognition. Most models of shape coding emphasize the role of oriented lines and curves for coding an object's shape. Yet inflection points, which occur at the junction of two oppositely signed curves, are ubiquitous features in natural scenes and carry important information about the shape of an object. Using a visual aftereffect in which the perceived shape of a contour is changed following prolonged viewing of a slightly different-shaped contour, we demonstrate a specific aftereffect for a contour inflection. Control conditions show that this aftereffect cannot be explained by adaptation to either the component curves or to the local orientation at the point of inflection. Further, we show that the aftereffect transfers weakly to a compound curve without an inflection, ruling out a general compound curvature detector as an explanation of our findings. We assume however that there are adaptable mechanisms for coding other specific forms of compound curves. Taken together, our findings provide evidence that the human visual system contains specific mechanisms for coding contour inflections, further highlighting their role in shape and object coding.
Collapse
Affiliation(s)
- Jason Bell
- School of Psychology, University of Western Australia, Crawley, AustraliaMcGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| | | | - David P McGovern
- Multisensory Cognition Group, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Andrew Isaac Meso
- Institut de Neuroscience de la Timone, UMR 7289 CNRS & Aix-Marseille Université, Marseille, France
| | - Frederick A A Kingdom
- McGill Vision Research, Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Cattan S, Bachatene L, Bharmauria V, Jeyabalaratnam J, Milleret C, Molotchnikoff S. Comparative analysis of orientation maps in areas 17 and 18 of the cat primary visual cortex following adaptation. Eur J Neurosci 2014; 40:2554-63. [DOI: 10.1111/ejn.12616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah Cattan
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| | - Lyes Bachatene
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| | - Vishal Bharmauria
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| | - Jeyadarshan Jeyabalaratnam
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| | - Chantal Milleret
- Neural Bases of Spatial Memory and Navigation; CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL); Paris France
| | - Stéphane Molotchnikoff
- Département de sciences biologiques; Université de Montréal; Pavillon Marie-Victorin, C.P. 6128, succ. Centre-ville Montréal QC H3C 3J7 Canada
| |
Collapse
|
32
|
Patterson CA, Duijnhouwer J, Wissig SC, Krekelberg B, Kohn A. Similar adaptation effects in primary visual cortex and area MT of the macaque monkey under matched stimulus conditions. J Neurophysiol 2013; 111:1203-13. [PMID: 24371295 DOI: 10.1152/jn.00030.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent stimulus history, or adaptation, can alter neuronal response properties. Adaptation effects have been characterized in a number of visually responsive structures, from the retina to higher visual cortex. However, it remains unclear whether adaptation effects across stages of the visual system take a similar form in response to a particular sensory event. This is because studies typically probe a single structure or cortical area, using a stimulus ensemble chosen to provide potent drive to the cells of interest. Here we adopt an alternative approach and compare adaptation effects in primary visual cortex (V1) and area MT using identical stimulus ensembles. Previous work has suggested these areas adjust to recent stimulus drive in distinct ways. We show that this is not the case: adaptation effects in V1 and MT can involve weak or strong loss of responsivity and shifts in neuronal preference toward or away from the adapter, depending on stimulus size and adaptation duration. For a particular stimulus size and adaptation duration, however, effects are similar in nature and magnitude in V1 and MT. We also show that adaptation effects in MT of awake animals depend strongly on stimulus size. Our results suggest that the strategies for adjusting to recent stimulus history depend more strongly on adaptation duration and stimulus size than on the cortical area. Moreover, they indicate that different levels of the visual system adapt similarly to recent sensory experience.
Collapse
Affiliation(s)
- Carlyn A Patterson
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | | | | | | | | |
Collapse
|
33
|
Adaptation shifts preferred orientation of tuning curve in the mouse visual cortex. PLoS One 2013; 8:e64294. [PMID: 23717586 PMCID: PMC3662720 DOI: 10.1371/journal.pone.0064294] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
In frontalized mammals it has been demonstrated that adaptation produces shift of the peak of the orientation tuning curve of neuron following frequent or lengthier presentation of a non-preferred stimulus. Depending on the duration of adaptation the shift is attractive (toward the adapter) or repulsive (away from the adapter). Mouse exhibits a salt-and-pepper cortical organization of orientation maps, hence this species may respond differently to adaptation. To examine this question, we determined the effect of twelve minutes of adaptation to one particular orientation on neuronal orientation tuning curves in V1 of anesthetized mice. Multi-unit activity of neurons in V1 was recorded in a conventional fashion. Cells were stimulated with sine-wave drifting gratings whose orientation tilted in steps. Results revealed that similarly to cats and monkeys, majority of cells shifted their optimal orientation in the direction of the adapter while a small proportion exhibited a repulsive shift. Moreover, initially untuned cells showing poor tuning curves reacted to adaptation by displaying sharp orientation selectivity. It seems that modification of the cellular property following adaptation is a general phenomenon observed in all mammals in spite of the different organization pattern of the visual cortex. This study is of pertinence to comprehend the mechanistic pathways of brain plasticity.
Collapse
|
34
|
Bachatene L, Bharmauria V, Cattan S, Molotchnikoff S. Fluoxetine and serotonin facilitate attractive-adaptation-induced orientation plasticity in adult cat visual cortex. Eur J Neurosci 2013; 38:2065-77. [DOI: 10.1111/ejn.12206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Lyes Bachatene
- Department of Biological Sciences; University of Montreal; Montreal; QC; Canada
| | - Vishal Bharmauria
- Department of Biological Sciences; University of Montreal; Montreal; QC; Canada
| | - Sarah Cattan
- Department of Biological Sciences; University of Montreal; Montreal; QC; Canada
| | | |
Collapse
|
35
|
Distinct effects of brief and prolonged adaptation on orientation tuning in primary visual cortex. J Neurosci 2013; 33:532-43. [PMID: 23303933 DOI: 10.1523/jneurosci.3345-12.2013] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent stimulus history-adaptation-alters neuronal responses and perception. Previous electrophysiological and perceptual studies suggest that prolonged adaptation strengthens and makes more persistent the effects seen after briefer exposures. However, no systematic comparison has been made between the effects of adaptation lasting hundreds of milliseconds, which might arise during a single fixation, and the more prolonged adaptation typically used in imaging and perceptual studies. Here we determine how 0.4, 4, and 40 s of adaptation alters orientation tuning in primary visual cortex of anesthetized macaque monkeys, and how quickly responses recover after adapter offset. We measured responses to small (1.3°) and large (7.4°) gratings because previous work has shown that adaptation effects can depend on stimulus size. Adaptation with small gratings reduced responsivity and caused tuning to shift away from the adapter. These effects strengthened with more prolonged adaptation. For responses to large gratings, brief and prolonged adaptation produced indistinguishable effects on responsivity but caused opposite shifts in tuning preference. Recovery from adaptation was notably slower after prolonged adaptation, even when this did not induce stronger effects. We show that our results can be explained by an adaptation-induced weakening of surround suppression, the dynamics of this suppression, and differential effects of brief and prolonged adaptation across response epochs. Our findings show that effects do not simply scale with adaptation duration and suggest that distinct strategies exist for adjusting to moment-to-moment fluctuations in input and to more persistent visual stimuli.
Collapse
|
36
|
de Jong MC, Kourtzi Z, van Ee R. Perceptual experience modulates cortical circuits involved in visual awareness. Eur J Neurosci 2012; 36:3718-31. [PMID: 23031201 PMCID: PMC7611163 DOI: 10.1111/ejn.12005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/30/2012] [Indexed: 11/27/2022]
Abstract
Successful interactions with the environment entail interpreting ambiguous sensory information. To address this challenge it has been suggested that the brain optimizes performance through experience. Here we used functional magnetic resonance imaging (fMRI) to investigate whether perceptual experience modulates the cortical circuits involved in visual awareness. Using ambiguous visual stimuli (binocular rivalry or ambiguous structure-from-motion) we were able to disentangle the co-occurring influences of stimulus repetition and perceptual repetition. For both types of ambiguous stimuli we observed that the mere repetition of the stimulus evoked an entirely different pattern of activity modulations than the repetition of a particular perceptual interpretation of the stimulus. Regarding stimulus repetition, decreased fMRI responses were evident during binocular rivalry but weaker during 3-D motion rivalry. Perceptual repetition, on the other hand, entailed increased activity in stimulus-specific visual brain regions - for binocular rivalry in the early visual regions and for ambiguous structure-from-motion in both early as well as higher visual regions. This indicates that the repeated activation of a visual network mediating a particular percept facilitated its later reactivation. Perceptual repetition was also associated with a response change in the parietal cortex that was similar for the two types of ambiguous stimuli, possibly relating to the temporal integration of perceptual information. We suggest that perceptual repetition is associated with a facilitation of neural activity within and between percept-specific visual networks and parietal networks involved in the temporal integration of perceptual information, thereby enhancing the stability of previously experienced percepts.
Collapse
Affiliation(s)
- Maartje C de Jong
- Helmholtz Institute, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands.
| | | | | |
Collapse
|
37
|
Wissig SC, Kohn A. The influence of surround suppression on adaptation effects in primary visual cortex. J Neurophysiol 2012; 107:3370-84. [PMID: 22423001 DOI: 10.1152/jn.00739.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adaptation, the prolonged presentation of stimuli, has been used to probe mechanisms of visual processing in physiological, imaging, and perceptual studies. Previous neurophysiological studies have measured adaptation effects by using stimuli tailored to evoke robust responses in individual neurons. This approach provides an incomplete view of how an adapter alters the representation of sensory stimuli by a population of neurons with diverse functional properties. We implanted microelectrode arrays in primary visual cortex (V1) of macaque monkeys and measured orientation tuning and contrast sensitivity in populations of neurons before and after prolonged adaptation. Whereas previous studies in V1 have reported that adaptation causes stimulus-specific suppression of responsivity and repulsive shifts in tuning preference, we have found that adaptation can also lead to response facilitation and shifts in tuning toward the adapter. To explain this range of effects, we have proposed and tested a simple model that employs stimulus-specific suppression in both the receptive field and the spatial surround. The predicted effects on tuning depend on the relative drive provided by the adapter to these two receptive field components. Our data reveal that adaptation can have a much richer repertoire of effects on neuronal responsivity and tuning than previously considered and suggest an intimate mechanistic relationship between spatial and temporal contextual effects.
Collapse
Affiliation(s)
- Stephanie C Wissig
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
38
|
|
39
|
Abstract
Research describing the cellular coding of faces in non-human primates often provides the underlying physiological framework for our understanding of face processing in humans. Models of face perception, explanations of perceptual after-effects from viewing particular types of faces, and interpretation of human neuroimaging data rely on monkey neurophysiological data and the assumption that neurophysiological responses of humans are comparable to those recorded in the non-human primate. Here, we review studies that describe cells that preferentially respond to faces, and assess the link between the physiological characteristics of single cells and social perception. Principally, we describe cells recorded from the non-human primate, although a limited number of cells have been recorded in humans, and are included in order to appraise the validity of non-human physiological data for our understanding of human face and social perception.
Collapse
Affiliation(s)
- Nick E Barraclough
- Department of Psychology, University of Hull, Hull, East Yorkshire, HU6 7RX, UK.
| | | |
Collapse
|
40
|
Marshansky S, Shumikhina S, Molotchnikoff S. Repetitive adaptation induces plasticity of spatial frequency tuning in cat primary visual cortex. Neuroscience 2011; 172:355-65. [PMID: 20969932 DOI: 10.1016/j.neuroscience.2010.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022]
Abstract
Sensory neurons display transient changes in their response properties following prolonged exposure to an appropriate stimulus (adaptation). In adult cat primary visual cortex, spatial frequency-selective neurons shift their preferred spatial frequency (SF) after being adapted to a non-preferred SF. In anesthetized cats prepared for electrophysiological recordings in the visual cortex, we applied a non-preferred spatial frequency for two successive periods of adaptation (a recovery and interval of ∼90 min separated both phases of adaptation) in order to determine if a first adaptation retained an influence on a second adaptation. The first application of a non-preferred SF shifted the tuning curve of the cell mainly in the direction of the imposed SF. The results showed that attractive shifts occurred more frequently (68%) than repulsive (12%) changes in cortical cells. The increase of responsivity was band-limited and occurred around the imposed SF, while flanked responses remained unmodified in all conditions. After a recovery period allowing neurons to restore their original SF tuning curves, we carried out a second adaptation which produced four major results: (1) a higher proportion of repulsive shifts (31%) compared to attractive shifts (49%), (2) an increase of the magnitude of the attractive shifts, (3) an additional enhancement of the evoked firing rate for the newly acquired SF, and (4) for the acquired SF the variability coefficient decreased following the second adaptation. The supplementary response changes suggest that neurons in area 17 keep a "memory" trace of the previous stimulus properties. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the spatial frequency tuning selectivity and the response strength to the preferred spatial frequency. These enhanced neuronal responses suggest that the range of adaptation-induced plasticity available to the visual system is broader than anticipated.
Collapse
Affiliation(s)
- S Marshansky
- Department of Biological Sciences, University of Montreal, Montréal, PQ, H3C 3J7, Canada
| | | | | |
Collapse
|
41
|
Nemri A, Ghisovan N, Shumikhina S, Molotchnikoff S. Adaptive behavior of neighboring neurons during adaptation-induced plasticity of orientation tuning in VI. BMC Neurosci 2009; 10:147. [PMID: 20003453 PMCID: PMC2801505 DOI: 10.1186/1471-2202-10-147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 12/14/2009] [Indexed: 11/27/2022] Open
Abstract
Background Sensory neurons display transient changes of their response properties following prolonged exposure to an appropriate stimulus (adaptation). In adult cat primary visual cortex, orientation-selective neurons shift their preferred orientation after being adapted to a non-preferred orientation. The direction of those shifts, towards (attractive) or away (repulsive) from the adapter depends mostly on adaptation duration. How the adaptive behavior of a neuron is related to that of its neighbors remains unclear. Results Here we show that in most cases (75%), cells shift their preferred orientation in the same direction as their neighbors. We also found that cells shifting preferred orientation differently from their neighbors (25%) display three interesting properties: (i) larger variance of absolute shift amplitude, (ii) wider tuning bandwidth and (iii) larger range of preferred orientations among the cluster of cells. Several response properties of V1 neurons depend on their location within the cortical orientation map. Our results suggest that recording sites with both attractive and repulsive shifts following adaptation may be located in close proximity to iso-orientation domain boundaries or pinwheel centers. Indeed, those regions have a more diverse orientation distribution of local inputs that could account for the three properties above. On the other hand, sites with all cells shifting their preferred orientation in the same direction could be located within iso-orientation domains. Conclusions Our results suggest that the direction and amplitude of orientation preference shifts in V1 depend on location within the orientation map. This anisotropy of adaptation-induced plasticity, comparable to that of the visual cortex itself, could have important implications for our understanding of visual adaptation at the psychophysical level.
Collapse
Affiliation(s)
- Abdellatif Nemri
- Department of Biological Sciences, University of Montreal, QC, Canada
| | | | | | | |
Collapse
|