1
|
Jung S, Zimin PI, Woods CB, Kayser EB, Haddad D, Reczek CR, Nakamura K, Ramirez JM, Sedensky MM, Morgan PG. Isoflurane inhibition of endocytosis is an anesthetic mechanism of action. Curr Biol 2022; 32:3016-3032.e3. [PMID: 35688155 PMCID: PMC9329204 DOI: 10.1016/j.cub.2022.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
The mechanisms of volatile anesthetic action remain among the most perplexing mysteries of medicine. Across phylogeny, volatile anesthetics selectively inhibit mitochondrial complex I, and they also depress presynaptic excitatory signaling. To explore how these effects are linked, we studied isoflurane effects on presynaptic vesicle cycling and ATP levels in hippocampal cultured neurons from wild-type and complex I mutant (Ndufs4(KO)) mice. To bypass complex I, we measured isoflurane effects on anesthetic sensitivity in mice expressing NADH dehydrogenase (NDi1). Endocytosis in physiologic concentrations of glucose was delayed by effective behavioral concentrations of isoflurane in both wild-type (τ [unexposed] 44.8 ± 24.2 s; τ [exposed] 116.1 ± 28.1 s; p < 0.01) and Ndufs4(KO) cultures (τ [unexposed] 67.6 ± 16.0 s; τ [exposed] 128.4 ± 42.9 s; p = 0.028). Increasing glucose, to enhance glycolysis and increase ATP production, led to maintenance of both ATP levels and endocytosis (τ [unexposed] 28.0 ± 14.4; τ [exposed] 38.2 ± 5.7; reducing glucose worsened ATP levels and depressed endocytosis (τ [unexposed] 85.4 ± 69.3; τ [exposed] > 1,000; p < 0.001). The block in recycling occurred at the level of reuptake of synaptic vesicles into the presynaptic cell. Expression of NDi1 in wild-type mice caused behavioral resistance to isoflurane for tail clamp response (EC50 Ndi1(-) 1.27% ± 0.14%; Ndi1(+) 1.55% ± 0.13%) and halothane (EC50 Ndi1(-) 1.20% ± 0.11%; Ndi1(+) 1.46% ± 0.10%); expression of NDi1 in neurons improved hippocampal function, alleviated inhibition of presynaptic recycling, and increased ATP levels during isoflurane exposure. The clear alignment of cell culture data to in vivo phenotypes of both isoflurane-sensitive and -resistant mice indicates that inhibition of mitochondrial complex I is a primary mechanism of action of volatile anesthetics.
Collapse
Affiliation(s)
- Sangwook Jung
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Pavel I Zimin
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Christian B Woods
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ernst-Bernhard Kayser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Dominik Haddad
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Colleen R Reczek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Neurological Surgery, University of Washington, Seattle, WA 98105, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Postnatal Maturation of Glutamatergic Inputs onto Rat Jaw-closing and Jaw-opening Motoneurons. Neuroscience 2022; 480:42-55. [PMID: 34780923 DOI: 10.1016/j.neuroscience.2021.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Motoneurons that innervate the jaw-closing and jaw-opening muscles play a critical role in oro-facial behaviors, including mastication, suckling, and swallowing. These motoneurons can alter their physiological properties through the postnatal period during which feeding behavior shifts from suckling to mastication; however, the functional synaptic properties of developmental changes in these neurons remain unknown. Thus, we explored the postnatal changes in glutamatergic synaptic transmission onto the motoneurons that innervate the jaw-closing and jaw-opening musculatures during early postnatal development in rats. We measured miniature excitatory postsynaptic currents (mEPSCs) mediated by non-NMDA receptors (non-NMDA mEPSCs) and NMDA receptors in the masseter and digastric motoneurons. The amplitude, frequency, and rise time of non-NMDA mEPSCs remained unchanged among postnatal day (P)2-5, P9-12, and P14-17 age groups in masseter motoneurons, whereas the decay time dramatically decreased with age. The properties of the NMDA mEPSCs were more predominant at P2-5 masseter motoneurons, followed by reduction as neurons matured. The decay time of NMDA mEPSCs of masseter motoneurons also shortened remarkably across development. Furthermore, the proportion of NMDA/non-NMDA EPSCs induced in response to the electrical stimulation of the supratrigeminal region was quite high in P2-5 masseter motoneurons, and then decreased toward P14-17. In contrast to masseter motoneurons, digastric motoneurons showed unchanged properties in non-NMDA and NMDA EPSCs throughout postnatal development. Our results suggest that the developmental patterns of non-NMDA and NMDA receptor-mediated inputs vary among jaw-closing and jaw-opening motoneurons, possibly related to distinct roles of respective motoneurons in postnatal development of feeding behavior.
Collapse
|
3
|
Kajiwara R, Nakamura S, Ikeda K, Onimaru H, Yoshida A, Tsutsumi Y, Nakayama K, Mochizuki A, Dantsuji M, Nishimura A, Tachikawa S, Iijima T, Inoue T. Intrinsic properties and synaptic connectivity of Phox2b-expressing neurons in rat rostral parvocellular reticular formation. Neurosci Res 2021; 178:41-51. [PMID: 34973291 DOI: 10.1016/j.neures.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
The paired-like homeobox 2b gene (Phox2b) is critical for the development of the autonomic nervous system. We have previously demonstrated the distinct characteristics of Phox2b-expressing (Phox2b+) neurons in the reticular formation dorsal to the trigeminal motor nucleus (RdV), which are likely related to jaw movement regulation. In this study, we focused on Phox2b+ neurons in the rostral parvocellular reticular formation (rPCRt), a critical region for controlling orofacial functions, using 2-11-day-old Phox2b-EYFP rats. Most Phox2b+ rPCRt neurons were glutamatergic, but not GABAergic or glycinergic. Approximately 65 % of Phox2b+ rPCRt neurons fired at a low frequency, and approximately 24 % of Phox2b+ rPCRt neurons fired spontaneously, as opposed to Phox2b+ RdV neurons. Stimulation of the RdV evoked inward postsynaptic currents in more than 50 % of Phox2b+ rPCRt neurons, while only one Phox2b+ rPCRt neuron responded to stimulation of the nucleus of the solitary tract. Five of the 10 Phox2b+ neurons sent their axons that ramified within the trigeminal motor nucleus (MoV). Of these, the axons of the two neurons terminated within both the MoV and rPCRt. Our findings suggest that Phox2b+ rPCRt neurons have distinct electrophysiological and synaptic properties that may be involved in the motor control of feeding behavior.
Collapse
Affiliation(s)
- Risa Kajiwara
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Atsushi Yoshida
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yumi Tsutsumi
- Department of Oral Anatomy and Neurobiology, Osaka University Graduate School of Dentistry, 1-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Akiko Nishimura
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Satoshi Tachikawa
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Takehiko Iijima
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
4
|
Developmental changes in GABAergic and glycinergic synaptic transmission to rat motoneurons innervating jaw-closing and jaw-opening muscles. Brain Res 2021; 1777:147753. [PMID: 34914930 DOI: 10.1016/j.brainres.2021.147753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022]
Abstract
Trigeminal motoneurons (MNs) innervating the jaw-closing and jaw-opening muscles receive numerous inhibitory synaptic inputs from GABAergic and glycinergic neurons, which are essential for oromotor functions, such as the orofacial reflex, suckling, and mastication. The properties of the GABAergic and glycinergic inputs of these MNs undergo developmental alterations during the period in which their feeding behavior proceeds from suckling to mastication; however, the detailed characteristics of the developmental patterns of GABAergic and glycinergic transmission in these neurons remain to be elucidated. This study was conducted to investigate developmental changes in miniature inhibitory postsynaptic currents (mIPSCs) in masseter (jaw-closing) and digastric (jaw-opening) MNs using brainstem slice preparations obtained from Wistar rats on postnatal day (P)2-5, P9-12, and P14-17. The frequency and amplitude of glycinergic mIPSCs substantially increased with age in both the masseter and digastric MNs. The rise time and decay time of glycinergic mIPSCs in both MNs decreased during development. In contrast, the frequency of GABAergic components in masseter MNs was higher at P2-5 than at P14-17, whereas that in the digastric MNs remained unchanged throughout the postnatal period. The proportion of currents mediated by GABA-glycine co-transmission was higher at P2-5, and then it decreased with age in both MNs. These results suggest that characteristics related to the development of inhibitory synaptic inputs differ between jaw-closing and jaw-opening MNs and between GABAergic and glycinergic currents. These distinct developmental characteristics may contribute to the development of feeding behaviors.
Collapse
|
5
|
Ofuji T, Nakayama K, Nakamura S, Mochizuki A, Dantsuji M, Ishiguro M, Yamamoto M, Inoue T. Responses evoked by electrical stimulation of the brainstem reticular formation in the jaw-opening and hypoglossal motor nerves of an arterially perfused rat preparation. Neurosci Lett 2020; 738:135400. [PMID: 32979458 DOI: 10.1016/j.neulet.2020.135400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
The interneuronal system in the brainstem reticular formation plays an important role in elaborate muscle coordination during various orofacial motor behaviors. In this study, we examined the distribution in the brainstem reticular formation of the sites that induce monosynaptic motor activity in the mylohyoid (jaw-opening) and hypoglossal nerves using an arterially perfused rat preparation. Electrical stimulation applied to 286 and 247 of the 309 sites in the brainstem evoked neural activity in the mylohyoid and hypoglossal nerves, respectively. The mean latency of the first component in the mylohyoid nerve response was significantly shorter than that in the hypoglossal nerve response. Moreover, the latency histogram of the first component in the hypoglossal nerve responses was bimodal, which was separated by 4.0 ms. The sites that induced short-latency (<4.0 ms) motor activity in the mylohyoid nerve and the hypoglossal nerve were frequently distributed in the rostral portion and the caudal portion of the brainstem reticular formation, respectively. Such difference in distributions of short-latency sites for mylohyoid and hypoglossal nerve responses likely corresponds to the distribution of excitatory premotor neurons targeting mylohyoid and hypoglossal motoneurons.
Collapse
Affiliation(s)
- Takuo Ofuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Periodontology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Mitsunori Ishiguro
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Oral Rehabilitation, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
6
|
Supratrigeminal Bilaterally Projecting Neurons Maintain Basal Tone and Enable Bilateral Phasic Activation of Jaw-Closing Muscles. J Neurosci 2017; 36:7663-75. [PMID: 27445144 DOI: 10.1523/jneurosci.0839-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Anatomical studies have identified brainstem neurons that project bilaterally to left and right oromotor pools, which could potentially mediate bilateral muscle coordination. We use retrograde lentiviruses combined with a split-intein-mediated split-Cre-recombinase system in mice to isolate, characterize, and manipulate a population of neurons projecting to both the left and right jaw-closing trigeminal motoneurons. We find that these bilaterally projecting premotor neurons (BPNs) reside primarily in the supratrigeminal nucleus (SupV) and the parvicellular and intermediate reticular regions dorsal to the facial motor nucleus. These BPNs also project to multiple midbrain and brainstem targets implicated in orofacial sensorimotor control, and consist of a mix of glutamatergic, GABAergic, and glycinergic neurons, which can drive both excitatory and inhibitory inputs to trigeminal motoneurons when optogenetically activated in slice. Silencing BPNs with tetanus toxin light chain (TeNT) increases bilateral masseter activation during chewing, an effect driven by the expression of TeNT in SupV BPNs. Acute unilateral optogenetic inhibition of SupV BPNs identifies a group of tonically active neurons that function to lower masseter muscle tone, whereas unilateral optogenetic activation of SupV BPNs is sufficient to induce bilateral masseter activation both during resting state and during chewing. These results provide evidence for SupV BPNs in tonically modulating jaw-closing muscle tone and in mediating bilateral jaw closing. SIGNIFICANCE STATEMENT We developed a method that combines retrograde lentiviruses with the split-intein-split-Cre system in mice to isolate, characterize, and manipulate neurons that project to both left and right jaw-closing motoneurons. We show that these bilaterally projecting premotor neurons (BPNs) reside primarily in the supratrigeminal nucleus and the rostral parvicellular and intermediate reticular nuclei. BPNs consist of both excitatory and inhibitory populations, and also project to multiple brainstem nuclei implicated in orofacial sensorimotor control. Manipulation of the supratrigeminal BPNs during natural jaw-closing behavior reveals a dual role for these neurons in eliciting phasic muscle activation and in maintaining basal muscle tone. The retrograde lentivirus carrying the split-intein-split-Cre system can be applied to study any neurons with bifurcating axons innervating two brain regions.
Collapse
|
7
|
Matsuda K, Nakamura S, Nonaka M, Mochizuki A, Nakayama K, Iijima T, Yokoyama A, Funahashi M, Inoue T. Premotoneuronal inputs to early developing trigeminal motoneurons. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Uchino K, Higashiyama K, Kato T, Haque T, Sato F, Tomita A, Tsutsumi K, Moritani M, Yamamura K, Yoshida A. Jaw movement-related primary somatosensory cortical area in the rat. Neuroscience 2015; 284:55-64. [DOI: 10.1016/j.neuroscience.2014.09.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
|
9
|
Nonaka M, Nishimura A, Nakamura S, Nakayama K, Mochizuki A, Iijima T, Inoue T. Convergent Pre-motoneuronal Inputs to Single Trigeminal Motoneurons. J Dent Res 2012; 91:888-93. [DOI: 10.1177/0022034512453724] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Because pre-motor neurons targeting trigeminal motoneurons are located in various regions, including the supratrigeminal (SupV) and intertrigeminal (IntV) regions, the principal sensory trigeminal nucleus (PrV), and the region dorsal to the PrV (dRt), a single trigeminal motoneuron may receive differential convergent inputs from these regions. We thus examined the properties of synaptic inputs from these regions to masseter motoneurons (MMNs) and digastric motoneurons (DMNs) in brainstem slice preparations obtained from P1-5 neonatal rats, using whole-cell recordings and laser photolysis of caged glutamate. Photostimulation of multiple regions within the SupV, IntV, PrV, and dRt induced post-synaptic currents (PSCs) in 14 of 19 MMNs and 18 of 26 DMNs. Furthermore, the stimulation of the lateral SupV significantly induced burst PSCs in MMNs more often than low-frequency PSCs in MMNs or burst PSCs in DMNs. Similar results were obtained in the presence of the GABAA receptor antagonist SR95531 and the glycine receptor antagonist strychnine. These results suggest that both neonatal MMNs and DMNs receive convergent glutamatergic inputs from the SupV, IntV, PrV, and dRt, and that the lateral SupV sends burst inputs predominantly to the MMNs. Such convergent pre-motoneuronal inputs to trigeminal motoneurons may contribute to the proper execution of neonatal oro-motor functions.
Collapse
Affiliation(s)
- M. Nonaka
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - A. Nishimura
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - S. Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - K. Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - A. Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Iijima
- Department of Oral Anesthesia, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - T. Inoue
- Department of Oral Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|