1
|
Wan X, Liu L, Wang W, Tan Q, Su X, Zhang S, Yang X, Yue Q, Gong Q. 1H-MRS reveals metabolic alterations in generalized tonic-clonic seizures before and after treatment. Acta Neurol Scand 2022; 145:200-207. [PMID: 34595746 DOI: 10.1111/ane.13534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 02/05/2023]
Abstract
AIMS To explore the possible metabolic alterations of bilateral dorsolateral prefrontal cortices (DLPFC) of generalized tonic-clonic seizures (GTCS) patients before and after antiepileptic drugs treatment as compared with healthy controls (HCs) using proton magnetic resonance spectroscopy (1H-MRS). METHODS We included 23 newly diagnosed and unmedicated GTCS patients and 23 sex- and age-matched HCs. Metabolites including N-acetyl aspartate (NAA), myo-inositol (Ins), choline (Cho), creatine (Cr), and glutamate + glutamine (Glu + Gln, Glx) concentrations were quantified by using LCModel software and then corrected for the partial volume effect of cerebrospinal fluid. RESULTS The results demonstrated that metabolite concentrations were not equal between the left and the right DLPFC. Compared with HC, NAA of the left DLPFC and Cr of the right DLPFC were significantly lower in pre-treatment patients. Self-controlled study revealed that the patients' NAA of the left DLPFC increased while their Cr of the right DLPFC decreased after treatment. Correlation analysis showed a negative correlation between the duration of medication and the pre- and post-treatment difference of Cr. CONCLUSION These findings may shed a light on the metabolic mechanism of GTCS and the neurobiochemical mechanisms of AEDs.
Collapse
Affiliation(s)
- Xinyue Wan
- Department of Radiology Huaxi MR Research Center (HMRRC) West China Hospital of Sichuan University Chengdu China
| | - Ling Liu
- Department of Neurology West China Hospital of Sichuan University Chengdu China
| | - Weina Wang
- Department of Radiology College of Medicine The First Affiliated Hospital Zhejiang University Hangzhou China
| | - Qiaoyue Tan
- Department of Radiology Huaxi MR Research Center (HMRRC) West China Hospital of Sichuan University Chengdu China
| | - Xiaorui Su
- Department of Radiology Huaxi MR Research Center (HMRRC) West China Hospital of Sichuan University Chengdu China
| | - Simin Zhang
- Department of Radiology Huaxi MR Research Center (HMRRC) West China Hospital of Sichuan University Chengdu China
| | - Xibiao Yang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
| | - Qiang Yue
- Department of Radiology West China Hospital of Sichuan University Chengdu China
| | - Qiyong Gong
- Department of Radiology Huaxi MR Research Center (HMRRC) West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province Chengdu China
| |
Collapse
|
2
|
Koene LMC, van Grondelle SE, Proietti Onori M, Wallaard I, Kooijman NHRM, van Oort A, Schreiber J, Elgersma Y. Effects of antiepileptic drugs in a new TSC/mTOR-dependent epilepsy mouse model. Ann Clin Transl Neurol 2019; 6:1273-1291. [PMID: 31353861 PMCID: PMC6649373 DOI: 10.1002/acn3.50829] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE An epilepsy mouse model for Tuberous Sclerosis Complex (TSC) was developed and validated to investigate the mechanisms underlying epileptogenesis. Furthermore, the possible antiepileptogenic properties of commonly used antiepileptic drugs (AEDs) and new compounds were assessed. METHODS Tsc1 deletion was induced in CAMK2A-expressing neurons of adult mice. The antiepileptogenic properties of commonly used AEDs and inhibitors of the mTOR pathways were assessed by EEG recordings and by molecular read outs. RESULTS Mice developed epilepsy in a narrow time window (10 ± 2 days) upon Tsc1 gene deletion. Seizure frequency but not duration increased over time. Seizures were lethal within 18 days, were unpredictable, and did not correlate to seizure onset, length or frequency, reminiscent of sudden unexpected death in epilepsy (SUDEP). Tsc1 gene deletion resulted in a strong activation of the mTORC1 pathway, and both epileptogenesis and lethality could be entirely prevented by RHEB1 gene deletion or rapamycin treatment. However, other inhibitors of the mTOR pathway such as AZD8055 and PF4708671 were ineffective. Except for ketogenic diet, none of commonly used AEDs showed an effect on mTORC1 activity. Vigabatrin and ketogenic diet treatment were able to significantly delay seizure onset. In contrast, survival was shortened by lamotrigine. INTERPRETATION This novel Tsc1 mouse model is highly suitable to assess the efficacy of antiepileptic and -epileptogenic drugs to treat mTORC1-dependent epilepsy. Additionally, it allows us to study the mechanisms underlying mTORC1-mediated epileptogenesis and SUDEP. We found that early treatment with vigabatrin was not able to prevent epilepsy, but significantly delayed seizure onset.
Collapse
Affiliation(s)
- Linda M. C. Koene
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdam3015 CNThe Netherlands
| | - Saskia E. van Grondelle
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdam3015 CNThe Netherlands
| | - Martina Proietti Onori
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdam3015 CNThe Netherlands
| | - Ilse Wallaard
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdam3015 CNThe Netherlands
| | - Nathalie H. R. M. Kooijman
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdam3015 CNThe Netherlands
| | - Annabel van Oort
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdam3015 CNThe Netherlands
| | - Jadwiga Schreiber
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdam3015 CNThe Netherlands
| | - Ype Elgersma
- Department of Neuroscience and ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdam3015 CNThe Netherlands
| |
Collapse
|
3
|
Premoli I, Costantini A, Rivolta D, Biondi A, Richardson MP. The Effect of Lamotrigine and Levetiracetam on TMS-Evoked EEG Responses Depends on Stimulation Intensity. Front Neurosci 2017; 11:585. [PMID: 29104528 PMCID: PMC5655014 DOI: 10.3389/fnins.2017.00585] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022] Open
Abstract
The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) has uncovered underlying mechanisms of two anti-epileptic medications: levetiracetam and lamotrigine. Despite their different mechanism of action, both drugs modulated TMS-evoked EEG potentials (TEPs) in a similar way. Since both medications increase resting motor threshold (RMT), the current aim was to examine the similarities and differences in post-drug TEPs, depending on whether stimulation intensity was adjusted to take account of post-drug RMT increase. The experiment followed a placebo controlled, double blind, crossover design, involving a single dose of either lamotrigine or levetiracetam. When a drug-induced increase of RMT occurred, post-drug measurements involved two blocks of stimulations, using unadjusted and adjusted stimulation intensity. A cluster based permutation analysis of differences in TEP amplitude between adjusted and unadjusted stimulation intensity showed that lamotrigine induced a stronger modulation of the N45 TEP component compared to levetiracetam. Results highlight the impact of adjusting stimulation intensity.
Collapse
Affiliation(s)
- Isabella Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alyssa Costantini
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Davide Rivolta
- School of Psychology, University of East London, London, United Kingdom.,Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Premoli I, Biondi A, Carlesso S, Rivolta D, Richardson MP. Lamotrigine and levetiracetam exert a similar modulation of TMS-evoked EEG potentials. Epilepsia 2016; 58:42-50. [PMID: 27808418 PMCID: PMC5244669 DOI: 10.1111/epi.13599] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2016] [Indexed: 12/23/2022]
Abstract
Objective Antiepileptic drug (AED) treatment failures may occur because there is insufficient drug in the brain or because of a lack of relevant therapeutic response. Until now it has not been possible to measure these factors. It has been recently shown that the combination of transcranial magnetic stimulation and electroencephalography (TMS‐EEG) can measure the effects of drugs in healthy volunteers. TMS‐evoked EEG potentials (TEPs) comprise a series of positive and negative deflections that can be specifically modulated by drugs with a well‐known mode of action targeting inhibitory neurotransmission. Therefore, we hypothesized that TMS‐EEG can detect effects of two widely used AEDs, lamotrigine and levetiracetam, in healthy volunteers. Methods Fifteen healthy subjects participated in a pseudo‐randomized, placebo‐controlled, double‐blind, crossover design, using a single oral dose of lamotrigine (300 mg) and levetiracetam (3,000 mg). TEPs were recorded before and 120 min after drug intake, and the effects of drugs on the amplitudes of TEP components were statistically evaluated. Results A nonparametric cluster‐based permutation analysis of TEP amplitudes showed that AEDs both increased the amplitude of the negative potential at 45 msec after stimulation (N45) and suppressed the positive peak at 180 msec (P180). This is the first demonstration of AED‐induced modulation of TMS‐EEG measures. Significance Despite the different mechanism of action that lamotrigine and levetiracetam exert at the molecular level, both AEDs impact the TMS‐EEG response in a similar way. These TMS‐EEG fingerprints observed in healthy subjects are candidate predictive markers of treatment response in patients on monotherapy with lamotrigine and levetiracetam.
Collapse
Affiliation(s)
- Isabella Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Andrea Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Sara Carlesso
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Davide Rivolta
- School of Psychology, University of East London (UEL), London, United Kingdom
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| |
Collapse
|
5
|
Revisiting the Lamotrigine-Mediated Effect on Hippocampal GABAergic Transmission. Int J Mol Sci 2016; 17:ijms17071191. [PMID: 27455251 PMCID: PMC4964560 DOI: 10.3390/ijms17071191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023] Open
Abstract
Lamotrigine (LTG) is generally considered as a voltage-gated sodium (Nav) channel blocker. However, recent studies suggest that LTG can also serve as a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel enhancer and can increase the excitability of GABAergic interneurons (INs). Perisomatic inhibitory INs, predominantly fast-spiking basket cells (BCs), powerfully inhibit granule cells (GCs) in the hippocampal dentate gyrus. Notably, BCs express abundant Nav channels and HCN channels, both of which are able to support sustained action potential generation. Using whole-cell recording in rat hippocampal slices, we investigated the net LTG effect on BC output. We showed that bath application of LTG significantly decreased the amplitude of evoked compound inhibitory postsynaptic currents (IPSCs) in GCs. In contrast, simultaneous paired recordings from BCs to GCs showed that LTG had no effect on both the amplitude and the paired-pulse ratio of the unitary IPSCs, suggesting that LTG did not affect GABA release, though it suppressed cell excitability. In line with this, LTG decreased spontaneous IPSC (sIPSC) frequency, but not miniature IPSC frequency. When re-examining the LTG effect on GABAergic transmission in the cornus ammonis region 1 (CA1) area, we found that LTG markedly inhibits both the excitability of dendrite-targeting INs in the stratum oriens and the concurrent sIPSCs recorded on their targeting pyramidal cells (PCs) without significant hyperpolarization-activated current (Ih) enhancement. In summary, LTG has no effect on augmenting Ih in GABAergic INs and does not promote GABAergic inhibitory output. The antiepileptic effect of LTG is likely through Nav channel inhibition and the suppression of global neuronal network activity.
Collapse
|
6
|
Differential Effects of D-Cycloserine and ACBC at NMDA Receptors in the Rat Entorhinal Cortex Are Related to Efficacy at the Co-Agonist Binding Site. PLoS One 2015; 10:e0133548. [PMID: 26193112 PMCID: PMC4507855 DOI: 10.1371/journal.pone.0133548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022] Open
Abstract
Partial agonists at the NMDA receptor co-agonist binding site may have potential therapeutic efficacy in a number of cognitive and neurological conditions. The entorhinal cortex is a key brain area in spatial memory and cognitive processing. At synapses in the entorhinal cortex, NMDA receptors not only mediate postsynaptic excitation but are expressed in presynaptic terminals where they tonically facilitate glutamate release. In a previous study we showed that the co-agonist binding site of the presynaptic NMDA receptor is endogenously and tonically activated by D-serine released from astrocytes. In this study we determined the effects of two co-agonist site partial agonists on both presynaptic and postsynaptic NMDA receptors in layer II of the entorhinal cortex. The high efficacy partial agonist, D-cycloserine, decreased the decay time of postsynaptic NMDA receptor mediated currents evoked by electrical stimulation, but had no effect on amplitude or other kinetic parameters. In contrast, a lower efficacy partial agonist, 1-aminocyclobutane-1-carboxylic acid, decreased decay time to a greater extent than D-cycloserine, and also reduced the peak amplitude of the evoked NMDA receptor mediated postsynaptic responses. Presynaptic NMDA receptors, (monitored indirectly by effects on the frequency of AMPA receptor mediated spontaneous excitatory currents) were unaffected by D-cycloserine, but were reduced in effectiveness by 1-aminocyclobutane-1-carboxylic acid. We discuss these results in the context of the effect of endogenous regulation of the NMDA receptor co-agonist site on receptor gating and the potential therapeutic implications for cognitive disorders.
Collapse
|
7
|
Greenhill SD, Chamberlain SEL, Lench A, Massey PV, Yuill KH, Woodhall GL, Jones RSG. Background synaptic activity in rat entorhinal cortex shows a progressively greater dominance of inhibition over excitation from deep to superficial layers. PLoS One 2014; 9:e85125. [PMID: 24454801 PMCID: PMC3893176 DOI: 10.1371/journal.pone.0085125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 11/22/2013] [Indexed: 11/21/2022] Open
Abstract
The entorhinal cortex (EC) controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2) and V (L5). Here, we add comparative studies in layer III (L3). Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest) of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles.
Collapse
Affiliation(s)
- Stuart David Greenhill
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, United Kingdom
| | | | - Alex Lench
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, United Kingdom
| | - Peter Vernon Massey
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, United Kingdom
| | - Kathryn Heather Yuill
- School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| | - Gavin Lawrence Woodhall
- Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | | |
Collapse
|
8
|
Brown ES, Lu H, Denniston D, Uh J, Thomas BP, Carmody TJ, Auchus RJ, Diaz-Arrastia R, Tamminga C. A randomized, placebo-controlled proof-of-concept, crossover trial of phenytoin for hydrocortisone-induced declarative memory changes. J Affect Disord 2013; 150:551-8. [PMID: 23453674 PMCID: PMC3689865 DOI: 10.1016/j.jad.2013.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/29/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Corticosteroid excess is associated with declarative memory impairment and hippocampal atrophy. These findings are clinically important because approximately 1% of the population receives prescription corticosteroids at any time, and major depressive disorder is associated with elevated cortisol levels and hippocampal atrophy. In animals, hippocampal changes with corticosteroids are blocked by phenytoin. The objective of the current study was to extend these preclinical findings to humans. We examined whether phenytoin attenuated the effects of hydrocortisone on declarative memory. Functional magnetic resonance imaging (fMRI) assessed task-related hippocampal activation. METHODS A randomized, double-blind, placebo-controlled, within-subject crossover study was conducted in 17 healthy adult volunteers. Participants received hydrocortisone (2.5 days), phenytoin (3.5 days), both medications together, or placebo, with 21-day washouts between conditions. Differences between treatments were estimated using a mixed-effects repeated measures analysis. RESULTS Fifteen participants had data from at least two treatment conditions and were used in the analysis. Basal cortisol levels negatively correlated with fMRI BOLD activation in the para-hippocampus with a similar trend observed in the hippocampus. Decrease in declarative memory with hydrocortisone was blocked with concomitant phenytoin administration. Relative to the placebo condition, a significant decrease in hippocampal BOLD activation was observed with hydrocortisone and phenytoin alone, and the two medications in combination. Declarative memory did not show significant correlations with hippocampal activation. LIMITATIONS The modest sample size, which limited our statistical power, was a limitation. CONCLUSIONS Findings from this pilot study suggest phenytoin attenuated effects of corticosteroids memory in humans, but potentiated the reduction in hippocampal activation.
Collapse
Affiliation(s)
- E. Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX,Corresponding Author: E. Sherwood Brown, M.D., Ph.D., Department of Psychiatry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., MC 8849, Dallas, Texas 75390-8849 214-645-6950 (voice), 214-645-6951 (fax),
| | - Hanzhang Lu
- The Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Daren Denniston
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Jinsoo Uh
- The Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Binu P. Thomas
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas J. Carmody
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Richard J. Auchus
- Internal Medicine (Division of Endocrinology), The University of Texas Southwestern Medical Center, Dallas, TX
| | - Ramon Diaz-Arrastia
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Carol Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
9
|
Howlett IC, Tanouye MA. Seizure-sensitivity in Drosophila is ameliorated by dorsal vessel injection of the antiepileptic drug valproate. J Neurogenet 2013; 27:143-50. [PMID: 23941042 DOI: 10.3109/01677063.2013.817574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Drosophila is a powerful model organism that can be used for the development of new drugs directed against human disease. A limitation is the ability to deliver drugs for testing. We report on a novel delivery system for treating Drosophila neurological mutants, direct injection into the circulatory system. Using this method, we show that injection of the antiepileptic drug valproate can ameliorate seizure-sensitive phenotypes in several mutant genotypes in the bang-sensitive (BS) paralytic mutant class, sda, eas, and para(bss1). This drug-injection method is superior to drug-feeding methods that we have employed previously, presumably because it bypasses potent detoxification systems present in the fly. In addition, we find that utilizing blood-brain barrier mutations in the background may further improve the injection results under certain circumstances. We propose that this method of drug delivery is especially effective when using Drosophila to model human pathologies, especially neurological syndromes.
Collapse
Affiliation(s)
- Iris C Howlett
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California , Berkeley, Berkeley, California , USA
| | | |
Collapse
|
10
|
Ebrahimi HA, Ebrahimi F. The effect of lamotrigine on epilepsy. IRANIAN JOURNAL OF NEUROLOGY 2012; 11:162-3. [PMID: 24250888 PMCID: PMC3829260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hossein Ali Ebrahimi
- Professor, Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Faridadin Ebrahimi
- Resident of Surgery, Neurology Research center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Greenhill SD, Morgan NH, Massey PV, Woodhall GL, Jones RSG. Ethosuximide modifies network excitability in the rat entorhinal cortex via an increase in GABA release. Neuropharmacology 2011; 62:807-14. [PMID: 21945797 DOI: 10.1016/j.neuropharm.2011.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Ethosuximide is the drug of choice for treating generalized absence seizures, but its mechanism of action is still a matter of debate. It has long been thought to act by disrupting a thalamic focus via blockade of T-type channels and, thus, generation of spike-wave activity in thalamocortical pathways. However, there is now good evidence that generalized absence seizures may be initiated at a cortical focus and that ethosuximide may target this focus. In the present study we have looked at the effect ethosuximide on glutamate and GABA release at synapses in the rat entorhinal cortex in vitro, using two experimental approaches. Whole-cell patch-clamp studies revealed an increase in spontaneous GABA release by ethosuximide concurrent with no change in glutamate release. This was reflected in studies that estimated global background inhibition and excitation from intracellularly recorded membrane potential fluctuations, where there was a substantial rise in the ratio of network inhibition to excitation, and a concurrent decrease in excitability of neurones embedded in this network. These studies suggest that, in addition to well-characterised effects on ion channels, ethosuximide may directly elevate synaptic inhibition in the cortex and that this could contribute to its anti-absence effects. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Stuart D Greenhill
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | |
Collapse
|
12
|
Parker L, Howlett IC, Rusan ZM, Tanouye MA. Seizure and epilepsy: studies of seizure disorders in Drosophila. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 99:1-21. [PMID: 21906534 DOI: 10.1016/b978-0-12-387003-2.00001-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Despite the frequency of seizure disorders in the human population, the genetic and physiological basis for these defects has been difficult to resolve. Although many genetic contributions to seizure susceptibility have been identified, these involve disparate biological processes, many of which are not neural specific. The large number and heterogeneous nature of the genes involved makes it difficult to understand the complex factors underlying the etiology of seizure disorders. Examining the effect known genetic mutations have on seizure susceptibility is one approach that may prove fruitful. This approach may be helpful in both understanding how different physiological processes affect seizure susceptibility and identifying novel therapeutic treatments. We review here factors contributing to seizure susceptibility in Drosophila, a genetically tractable system that provides a model for human seizure disorders. Seizure-like neuronal activities and behaviors in the fruit fly are described, as well as a set of mutations that exhibit features resembling some human epilepsies and render the fly sensitive to seizures. Especially interesting are descriptions of a novel class of mutations that are second-site mutations that act as seizure suppressors. These mutations revert epilepsy phenotypes back to the wild-type range of seizure susceptibility. The genes responsible for seizure suppression are cloned with the goal of identifying targets for lead compounds that may be developed into new antiepileptic drugs.
Collapse
Affiliation(s)
- Louise Parker
- Department of Environmental Science, Policy and Management, Helen Wills Neuroscience Institute, 131 Life Sciences Addition, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
13
|
Pinotsis DA, Friston KJ. Neural fields, spectral responses and lateral connections. Neuroimage 2010; 55:39-48. [PMID: 21138771 PMCID: PMC3049874 DOI: 10.1016/j.neuroimage.2010.11.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/11/2010] [Accepted: 11/26/2010] [Indexed: 12/01/2022] Open
Abstract
This paper describes a neural field model for local (mesoscopic) dynamics on the cortical surface. Our focus is on sparse intrinsic connections that are characteristic of real cortical microcircuits. This sparsity is modelled with radial connectivity functions or kernels with non-central peaks. The ensuing analysis allows one to generate or predict spectral responses to known exogenous input or random fluctuations. Here, we characterise the effect of different connectivity architectures (the range, dispersion and propagation speed of intrinsic or lateral connections) and synaptic gains on spatiotemporal dynamics. Specifically, we look at spectral responses to random fluctuations and examine the ability of synaptic gain and connectivity parameters to induce Turing instabilities. We find that although the spatial deployment and speed of lateral connections can have a profound affect on the behaviour of spatial modes over different scales, only synaptic gain is capable of producing phase-transitions. We discuss the implications of these findings for the use of neural fields as generative models in dynamic causal modeling (DCM).
Collapse
Affiliation(s)
- D A Pinotsis
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
14
|
The Use of Antiepileptic Drugs (AEDs) for the Treatment of Pediatric Aggression and Mood Disorders. Pharmaceuticals (Basel) 2010; 3:2986-3004. [PMID: 27713387 PMCID: PMC4034108 DOI: 10.3390/ph3092986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/31/2010] [Accepted: 09/03/2010] [Indexed: 01/26/2023] Open
Abstract
Aggressive symptomatology presents across multiple psychiatric, developmental, neurological and behavioral disorders, complicating the diagnosis and treatment of the underlying pathology. Anti-Epileptic Drugs (AEDs) have become an appealing alternative in the treatment of aggression, mood lability and impulsivity in adult and pediatric populations, although few controlled trials have explored their efficacy in treating pediatric populations. This review of the literature synthesizes the available data on ten AEDs - valproate, carbamazepine, oxcarbazepine, phenytoin, lamotrigine, topiramate, levetiracetam, zonisamide, gabapentin and tiagabine - in an attempt to assess evidence for the efficacy of AEDs in the treatment of aggression in pediatric populations. Our review revealed modest evidence that some of the AEDs produced improvement in pediatric aggression, but controlled trials in pediatric bipolar disorder have not been promising. Valproate is the best supported AED for aggression and should be considered as a first line of treatment. When monotherapy is insufficient, combining an AED with either lithium or an atypical anti-psychotic can result in better efficacy. Additionally, our review indicates that medications with predominately GABA-ergic mechanisms of action are not effective in treating aggression, and medications which decrease glutaminergic transmission tended to have more cognitive adverse effects. Agents with multiple mechanisms of action may be more effective.
Collapse
|
15
|
Diverse antiepileptic drugs increase the ratio of background synaptic inhibition to excitation and decrease neuronal excitability in neurones of the rat entorhinal cortex in vitro. Neuroscience 2010; 167:456-74. [PMID: 20167261 PMCID: PMC2877872 DOI: 10.1016/j.neuroscience.2010.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/26/2010] [Accepted: 02/10/2010] [Indexed: 12/22/2022]
Abstract
Although most anti-epileptic drugs are considered to have a primary molecular target, it is clear that their actions are unlikely to be limited to effects on a single aspect of inhibitory synaptic transmission, excitatory transmission or voltage-gated ion channels. Systemically administered drugs can obviously simultaneously access all possible targets, so we have attempted to determine the overall effect of diverse agents on the balance between GABAergic inhibition, glutamatergic excitation and cellular excitability in neurones of the rat entorhinal cortex in vitro. We used an approach developed for estimating global background synaptic excitation and inhibition from fluctuations in membrane potential obtained by intracellular recordings. We have previously validated this approach in entorhinal cortical neurones [Greenhill and Jones (2007a) Neuroscience 147:884–892]. Using this approach, we found that, despite their differing pharmacology, the drugs tested (phenytoin, lamotrigine, valproate, gabapentin, felbamate, tiagabine) were unified in their ability to increase the ratio of background GABAergic inhibition to glutamatergic excitation. This could occur as a result of decreased excitation concurrent with increased inhibition (phenytoin, lamotrigine, valproate), a decrease in excitation alone (gabapentin, felbamate), or even with a differential increase in both (tiagabine). Additionally, we found that the effects on global synaptic conductances agreed well with whole cell patch recordings of spontaneous glutamate and GABA release (our previous studies and further data presented here). The consistency with which the synaptic inhibition:excitation ratio was increased by the antiepileptic drugs tested was matched by an ability of all drugs to concurrently reduce intrinsic neuronal excitability. Thus, it seems possible that specific molecular targets among antiepileptic drugs are less important than the ability to increase the inhibition:excitation ratio and reduce overall neuronal and network excitability.
Collapse
|