1
|
Tsybko AS, Kondaurova EM, Zalivina EA, Blaginya VO, Naumenko VS. Effects of Chronic Combined Treatment with Ketanserin and Fluoxetine in B6.CBA-D13Mit76C Recombinant Mice with Abnormal 5-HT 1A Receptor Functional Activity. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:758-769. [PMID: 37748872 DOI: 10.1134/s0006297923060044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 09/27/2023]
Abstract
The recombinant B6.CBA-D13Mit76C mouse strain is characterized by an altered sensitivity of 5-HT1A receptors and upregulated 5-HT1A gene transcription. Recently, we found that in B6.CBA-D13Mit76C mice, chronic fluoxetine treatment produced the pro-depressive effect in a forced swim test. Since 5-HT2A receptor blockade may be beneficial in treatment-resistant depression, we investigated the influence of chronic treatment (14 days, intraperitoneally) with selective 5-HT2A antagonist ketanserin (0.5 mg/kg), fluoxetine (20 mg/kg), or fluoxetine + ketanserin on the behavior, functional activity of 5-HT1A and 5-HT2A receptors, serotonin turnover, and transcription of principal genes of the serotonin system in the brain of B6.CBA-D13Mit76C mice. Ketanserin did not reverse the pro-depressive effect of fluoxetine, while fluoxetine, ketanserin, and fluoxetine + ketanserin decreased the functional activity of 5-HT1A receptors and Htr1a gene transcription in the midbrain and hippocampus. All tested drug regimens decreased the mRNA levels of Slc6a4 and Maoa in the midbrain. These changes were not accompanied by a significant shift in the levels of serotonin and its metabolite 5-HIAA. Notably, ketanserin upregulated enzymatic activity of tryptophan hydroxylase 2 (TPH2). Thus, despite some benefits (reduced Htr1a, Slc6a4, and Maoa transcription and increased TPH2 activity), prolonged blockade of 5-HT2A receptors failed to ameliorate the adverse effect of fluoxetine in the case of abnormal functioning of 5-HT1A receptors.
Collapse
Affiliation(s)
- Anton S Tsybko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena A Zalivina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Varvara O Blaginya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Rodnyy AY, Kondaurova EM, Bazovkina DV, Kulikova EA, Ilchibaeva TV, Kovetskaya AI, Baraboshkina IA, Bazhenova EY, Popova NK, Naumenko VS. Serotonin 5-HT 7 receptor overexpression in the raphe nuclei area produces antidepressive effect and affects brain serotonin system in male mice. J Neurosci Res 2022; 100:1506-1523. [PMID: 35443076 DOI: 10.1002/jnr.25055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/15/2022]
Abstract
Heterodimerization between 5-HT7 and 5-HT1A receptors seems to play an important role in the mechanism of depression and antidepressant drug action. It was suggested that the shift of the ratio between 5-HT1A /5-HT7 hetero- and 5-HT1A /5-HT1A homodimers in presynaptic neurons toward 5-HT1A /5-HT1A homodimers is one of the reasons of depression. Consequently, the artificial elevation of 5-HT7 receptor number in presynaptic terminals might restore physiological homo-/heterodimer ratio resulting in antidepressive effect. Here we showed that adeno-associated virus (AAV)-based 5-HT7 receptor overexpression in the midbrain raphe nuclei area produced antidepressive effect in male mice of both C57Bl/6J and genetically predisposed to depressive-like behavior ASC (antidepressant sensitive cataleptics) strains. These changes were accompanied by the elevation of 5-HT7 receptor mRNA level in the frontal cortex of C57Bl/6J and its reduction in the hippocampus of ASC mice. The presence of engineered 5-HT7 receptor in the midbrain of both mouse strains was further demonstrated. Importantly that 5-HT7 receptor overexpression resulted in the reduction of 5-HT1A receptor level in the membrane protein fraction from the midbrain samples of C57Bl/6J, but not ASC, mice. 5-HT7 receptor overexpression caused an increase of 5-HIAA/5-HT ratio in the midbrain and the frontal cortex of C57Bl/6J and in all investigated brain structures of ASC mice. Thus, 5-HT7 receptor overexpression in the raphe nuclei area affects brain 5-HT system and causes antidepressive effect both in C57Bl/6J and in "depressive" ASC male mice. Obtained results indicate the involvement of 5-HT7 receptor in the mechanisms underlying depressive behavior.
Collapse
Affiliation(s)
- Alexander Ya Rodnyy
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Elena M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Darya V Bazovkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Elisabeth A Kulikova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Tatiana V Ilchibaeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Alexandra I Kovetskaya
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Irina A Baraboshkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Ekaterina Yu Bazhenova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
3
|
Effect of Central Administration of Brain-Derived Neurotrophic Factor (BDNF) on Behavior and Brain Monoamine Metabolism in New Recombinant Mouse Lines Differing by 5-HT 1A Receptor Functionality. Int J Mol Sci 2021; 22:ijms222111987. [PMID: 34769417 PMCID: PMC8584822 DOI: 10.3390/ijms222111987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Experiments were carried out on recombinant B6.CBA-D13Mit76C (B6-M76C) and B6.CBA-D13Mit76B (B6-M76B) mouse lines created by transferring a 102.73–118.83 Mbp fragment of chromosome 13, containing the 5-HT1A receptor gene, from CBA or C57BL/6 strains to a C57BL/6 genetic background, correspondingly. We have recently shown different levels of 5-HT1A receptor functionality in these mouse lines. The administration of BDNF (300 ng/mouse, i.c.v.) increased the levels of exploratory activity and intermale aggression only in B6-M76B mice, without affecting depressive-like behavior in both lines. In B6-M76B mice the behavioral alterations were accompanied by a decrease in the 5-HT2A receptor functional activity and the augmentation of levels of serotonin and its main metabolite, 5-HIAA (5-hydroxyindoleacetic acid), in the midbrain. Moreover, the levels of dopamine and its main metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid), were also elevated in the striatum of B6-M76B mice after BDNF treatment. In B6-M76C mice, central BDNF administration led only to a reduction in the functional activity of the 5-HT1A receptor and a rise in DOPAC levels in the midbrain. The obtained data suggest the importance of the 102.73–118.83 Mbp fragment of mouse chromosome 13, which contains the 5-HT1A receptor gene, for BDNF-induced alterations in behavior and the brain monoamine system.
Collapse
|
4
|
Tsybko AS, Ilchibaeva TV, Filimonova EA, Eremin DV, Popova NK, Naumenko VS. The Chronic Treatment With 5-HT 2A Receptor Agonists Affects the Behavior and the BDNF System in Mice. Neurochem Res 2020; 45:3059-3075. [PMID: 33095437 DOI: 10.1007/s11064-020-03153-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/13/2020] [Accepted: 10/15/2020] [Indexed: 01/09/2023]
Abstract
Serotonin 5-HT2A receptors and the brain-derived neurotrophic factor (BDNF) are involved in the pathophysiology and treatment of many psychiatric diseases. However, the interaction between 5-HT2A and BDNF is still poorly understood. In the present paper, the effects of chronic treatment with mixed 5-HT2A/2C receptor agonist DOI, highly selective 5-HT2A agonists TCB-2 and 25CN-NBOH on behavior and the BDNF system have been investigated. Chronic treatment of males of C57Bl/6 mice with DOI, TCB-2 and 25CN-NBOH (1 mg/kg, i.p., 14 days) resulted in desensitization of 5-HT2A receptors. Treatment with 25CN-NBOH significantly increased startle amplitude. At the same time all used drugs failed to affect anxiety, exploratory and stereotyped behavior as well as spatial memory and learning. TCB-2 and 25CN-NBOH increased the BDNF mRNA level. All 5-HT2A agonists increased the proBDNF level but failed to alter the mature BDNF protein level. TrkB and p75NTR mRNA levels were affected by all utilized agonists. All drugs decreased the total level as well as membrane TrkB protein one indicating downregulation of TrkB receptors. All agonists decreased the membrane p75NTR protein level. Thus, we have shown for the first time that the chronic activation of the 5-HT2A receptor with agonists has affected the BDNF system almost on all levels-transcription, proBDNF production, TrkB and p75NTR receptors' level. The obtained data suggested possible suppression in BDNF-TrkB signaling under chronic treatment with 5-HT2A agonists.
Collapse
Affiliation(s)
- Anton S Tsybko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva, 10, 630090, Novosibirsk, Russia.
| | - Tatiana V Ilchibaeva
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva, 10, 630090, Novosibirsk, Russia
| | - Elena A Filimonova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva, 10, 630090, Novosibirsk, Russia
| | - Dmitry V Eremin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva, 10, 630090, Novosibirsk, Russia
| | - Nina K Popova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva, 10, 630090, Novosibirsk, Russia
| | - Vladimir S Naumenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva, 10, 630090, Novosibirsk, Russia
| |
Collapse
|
5
|
Bubak AN, Watt MJ, Yaeger JDW, Renner KJ, Swallow JG. The stalk-eyed fly as a model for aggression - is there a conserved role for 5-HT between vertebrates and invertebrates? ACTA ACUST UNITED AC 2020; 223:223/1/jeb132159. [PMID: 31896721 DOI: 10.1242/jeb.132159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Serotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa. We discuss recent findings using insect models, with an emphasis on the stalk-eyed fly, to demonstrate how particular 5-HT receptor subtypes mediate the intensity of aggression with respect to discrete stages of the interaction (initiation, escalation and termination), which mirrors the complex behavioral regulation currently recognized in vertebrates. Further similarities emerge when considering the contribution of neuropeptides, which interact with 5-HT to ultimately determine contest progression and outcome. Relative to knowledge in vertebrates, much less is known about the function of 5-HT receptors and neuropeptides in invertebrate aggression, particularly with respect to sex, species and context, prompting the need for further studies. Our Commentary highlights the need to consider multiple factors when determining potential taxonomic differences, and raises the possibility of more similarities than differences between vertebrates and invertebrates with regard to the modulatory effect of 5-HT on aggression.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - John G Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80217, USA
| |
Collapse
|
6
|
Tsybko AS, Ilchibaeva TV, Bazovkina DV, Naumenko VS. Functional Responses to the Chronic Activation of 5-HT1A Receptors in Mice with Genetic Predisposition to Catalepsy. Mol Biol 2018. [DOI: 10.1134/s002689331705020x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Comparing the Expression of Genes Related to Serotonin (5-HT) in C57BL/6J Mice and Humans Based on Data Available at the Allen Mouse Brain Atlas and Allen Human Brain Atlas. Neurol Res Int 2017. [PMID: 28630769 PMCID: PMC5463198 DOI: 10.1155/2017/7138926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Brain atlases are tools based on comprehensive studies used to locate biological characteristics (structures, connections, proteins, and gene expression) in different regions of the brain. These atlases have been disseminated to the point where tools have been created to store, manage, and share the information they contain. This study used the data published by the Allen Mouse Brain Atlas (2004) for mice (C57BL/6J) and Allen Human Brain Atlas (2010) for humans (6 donors) to compare the expression of serotonin-related genes. Genes of interest were searched for manually in each case (in situ hybridization for mice and microarrays for humans), normalized expression data (z-scores) were extracted, and the results were graphed. Despite the differences in methodology, quantification, and subjects used in the process, a high degree of similarity was found between expression data. Here we compare expression in a way that allows the use of translational research methods to infer and validate knowledge. This type of study allows part of the relationship between structures and functions to be identified, by examining expression patterns and comparing levels of expression in different states, anatomical correlations, and phenotypes between different species. The study concludes by discussing the importance of knowing, managing, and disseminating comprehensive, open-access studies in neuroscience.
Collapse
|
8
|
Qin X, Ma X, Tu D, Luo Z, Huang J, Mo C. The effect of 8-OH-DPAT and dapoxetine on gene expression in the brain of male rats during ejaculation. Acta Pharm Sin B 2017; 7:381-389. [PMID: 28540176 PMCID: PMC5430880 DOI: 10.1016/j.apsb.2016.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The 5-HT1A receptor agonist 8-hydroxy-2-[di-n-propylamino] tetralin (8-OH-DPAT) promotes ejaculation of male rats, whereas dapoxetine delays this process. However, the gene expression profile of the brain at ejaculation following administrationof these two compounds has not been fully elucidated. In the present study, a transcriptomic BodyMap was generated by conducting mRNA-Seq on brain samples of male Sprague–Dawley rats. The study included four groups: pre-copulatory control (CK) group, ejaculation (EJ) group, 0.5 mg/kg 8-OH-DPAT-ejaculation group (DPAT), and 60 mg/kg dapoxetine-ejaculation (DAP) group. The resulting analysis generated an average of approximately 47 million sequence reads. Significant differences in the gene expression profiles of the aforementioned groups were observed in the EJ (257 genes), DPAT (349 genes) and the DAP (207 genes) compared with the control rats. The results indicate that the expression of Drd1 and Slc6a3 was significantly different after treatment with 8-OH-DPAT, whereas the expression of Drd4 was significantly different after treatment with dapoxetine. Other genes, such as Wnt9b, Cdkn1a and Fosb, exhibited significant differences in expression after the two treatments and are related to bladder cancer, renal cell carcinoma and sexual addiction. The present study reveals the basic pattern of gene expression that was activated at ejaculation in the presence of 8-OH-DPAT or dapoxetine, providing preliminary gene expression information during rat ejaculation.
Collapse
Affiliation(s)
- Xijun Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Corresponding author. Tel.: +86 13501187416; fax: +86 21 57643271.
| | - Dongping Tu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jie Huang
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Changming Mo
- Guangxi Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Nanning 530023, China
| |
Collapse
|
9
|
Kondaurova EM, Bazovkina DV, Naumenko VS. 5-HT1A/5-HT7 receptor interplay: Chronic activation of 5-HT7 receptors decreases the functional activity of 5-HT1A receptor and its сontent in the mouse brain. Mol Biol 2017. [DOI: 10.1134/s0026893316060108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Kulikova EA, Bazovkina DV, Akulov AE, Tsybko AS, Fursenko DV, Kulikov AV, Naumenko VS, Ponimaskin E, Kondaurova EM. Alterations in pharmacological and behavioural responses in recombinant mouse line with an increased predisposition to catalepsy: role of the 5-HT1A receptor. Br J Pharmacol 2016; 173:2147-61. [PMID: 27004983 DOI: 10.1111/bph.13484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE One important syndrome of psychiatric disorders in humans is catalepsy. Here, we created mice with different predispositions to catalepsy and analysed their pharmacological and behavioural properties. EXPERIMENTAL APPROACH Two mouse lines, B6-M76C and B6-M76B, were created by transfer of the main locus of catalepsy containing the 5-HT1A receptor gene to the C57BL/6 genetic background. Behaviour, brain morphology, expression of key components of the serotoninergic system, and pharmacological responses to acute and chronic stimulation of the 5-HT1A receptor were compared. KEY RESULTS B6-M76B mice were not cataleptic, whereas 14% of B6-M76C mice demonstrated catalepsy and decreased depressive-like behaviour. Acute administration of the 5-HT1A receptor agonist 8-OH-DPAT resulted in dose-dependent hypothermia and in decreased locomotion in both lines. Chronic 8-OH-DPAT administration abolished the 5-HT1A receptor-mediated hypothermic response in B6-M76C mice and increased locomotor activity in B6-M76B mice. In addition, 5-HT metabolism was significantly reduced in the hippocampus of B6-M76C mice, and this effect was accompanied by an increased expression of the 5-HT1A receptor. CONCLUSIONS AND IMPLICATIONS Our findings indicate that transfer of the main locus of hereditary catalepsy containing the 5-HT1A receptor from CBA mice to the C57BL/6 genetic background led to increased postsynaptic and decreased presynaptic functional responses of the 5-HT1A receptor. This characteristic establishes the B6-M76C line as an attractive model for the pharmacological screening of 5-HT1A receptor-related drugs specifically acting on either pre- or postsynaptic receptors. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- E A Kulikova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - D V Bazovkina
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - A E Akulov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - A S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - D V Fursenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - A V Kulikov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - V S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | - E Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - E M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
11
|
Guo H, Ren Y, Zhao N, Wang Y, Li S, Cui H, Zhang S, Zhang J. Synergistic effect of 5-HT2A receptor gene and MAOA gene on the negative emotion of patients with depression. Clin Physiol Funct Imaging 2013; 34:277-81. [PMID: 24314147 DOI: 10.1111/cpf.12094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/25/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To analyse the synergistic effect of polymorphism of the tandem repeat sequence u-VNTR of 5-hydroxytryptamine 2A (5-HT2A) receptor gene and monoamine oxidase A (MAOA) gene on the negative emotion in frontal lobe of patients with depression through functional magnetic resonance imaging (fMRI) technique. METHODS Functional magnetic resonance imaging scanning was performed for 72 patients with depression and 70 gender, age-matched healthy people with physical examination under negative emotion recognition task. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was adopted to analyse genotype. The superior, middle and inferior gyrus of bilateral frontal lobe was regarded as the brain region of interest, and then the difference of activation intensity in frontal lobe subregion between control groups and patient groups with different genotypes, and the interaction between the two kinds of polymorphism were compared. RESULTS The activation intensity in right frontal middle gyrus of patients with CC genotype increased obviously compared with TT and TC genotype patient groups and TT genotype control group (P<0·01); the activation intensity in right frontal inferior gyrus of patients with CC genotype increased obviously compared with TT and TC genotype patient groups and control groups (P<0·01); the activation intensity in right frontal middle gyrus and left frontal inferior gyrus of patients with MAOA high-activity genotype increased obviously compared with patient and control groups with MAOA low-activity genotype (P<0·01). In sum, there existed synergistic effect of the two genotypes on the activation abnormality of negative emotion recognition in right frontal middle gyrus (F = 6·18, P = 0·029). The negative activation in right frontal middle gyrus of patients with CC+H genotypes increased most obviously (P<0·05). CONCLUSION The frontal abnormality of patients with depression had certain 5-HT genetic basis, and 5-HT2A receptor CC allele and MAOA-H genotype had synergistic effect on the activity abnormality when recognizing negative emotion in right frontal middle gyrus of patients with depression.
Collapse
Affiliation(s)
- Huirong Guo
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Effect of chronic activation of 5-HT3 receptors on 5-HT3, 5-HT1A and 5-HT2A receptors functional activity and expression of key genes of the brain serotonin system. Neurosci Lett 2012; 522:52-6. [DOI: 10.1016/j.neulet.2012.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 05/11/2012] [Accepted: 06/05/2012] [Indexed: 11/22/2022]
|
13
|
Naumenko VS, Tsybko AS, Bazovkina DV, Popova NK. Involvement of 5-HT2A receptors in genetic mechanisms of autoregulation of brain 5-HT system. Mol Biol 2012. [DOI: 10.1134/s0026893312020100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Idova GV, Alperina EL, Cheido MA. Contribution of brain dopamine, serotonin and opioid receptors in the mechanisms of neuroimmunomodulation: Evidence from pharmacological analysis. Int Immunopharmacol 2012; 12:618-25. [DOI: 10.1016/j.intimp.2012.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 01/11/2023]
|
15
|
Popova NK, Kulikov AV. Targeting tryptophan hydroxylase 2 in affective disorder. Expert Opin Ther Targets 2010; 14:1259-71. [DOI: 10.1517/14728222.2010.524208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|