1
|
Pannuzzo G, Graziano ACE, Avola R, Drago F, Cardile V. Screening for Krabbe disease: The first 2 years' experience. Acta Neurol Scand 2019; 140:359-365. [PMID: 31350907 DOI: 10.1111/ane.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Globoid cell leukodystrophy or Krabbe disease is an autosomal recessive lysosomal storage disorder characterized by a deficiency in galactosylceramidase (GALC) which hydrolyses galactosylceramide and galactosylsphingosine (psychosine). The accumulation of psychosine results in the apoptosis of myelin-forming cells. The goals of this research were to identify the heterozygous carriers of Krabbe disease in Sicily (Italy), to prevent the birth of foetuses affected by this disease, and eventually in the presence of positive embryos to direct them towards a treatment before symptoms occur when it is too late to receive a useful therapy. METHODS Since more than 100 mutations have been reported as a cause of Krabbe disease, we started to screen relatives of the affected patients, whose mutation was known. We used a fast, sensitive and painless assay extracting genomic DNA from buccal swabs. The genotypes of single-nucleotide polymorphisms (SNPs) were analysed to identify the carriers of the selected mutations. RESULTS In the last 2 years, we conducted the analysis of almost 100 subjects and individuated 40 heterozygotes carriers of Krabbe disease. One of the women examined was pregnant. CONCLUSIONS The knowledge obtained from our investigations provided and will provide notable practical benefit to families in which the disease is manifested and to researchers who deal with this rare pathology. Finally, the results of our study will be useful to know the real incidence of Krabbe disease in a large territory where it is particularly present and to start a Krabbe's register, which at present does not exist.
Collapse
Affiliation(s)
- Giovanna Pannuzzo
- Section of Physiology Department of Biomedical and Biotechnological Sciences University of Catania Catania Italy
| | | | - Rosanna Avola
- Section of Physiology Department of Biomedical and Biotechnological Sciences University of Catania Catania Italy
| | - Filippo Drago
- Section of Pharmacology Department of Biomedical and Biotechnological Sciences University of Catania Catania Italy
| | - Venera Cardile
- Section of Physiology Department of Biomedical and Biotechnological Sciences University of Catania Catania Italy
| |
Collapse
|
2
|
Vicario N, Pasquinucci L, Spitale FM, Chiechio S, Turnaturi R, Caraci F, Tibullo D, Avola R, Gulino R, Parenti R, Parenti C. Simultaneous Activation of Mu and Delta Opioid Receptors Reduces Allodynia and Astrocytic Connexin 43 in an Animal Model of Neuropathic Pain. Mol Neurobiol 2019; 56:7338-7354. [PMID: 31030416 DOI: 10.1007/s12035-019-1607-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is a chronic condition triggered by lesions to the somatosensory nervous system in which pain stimuli occur spontaneously or as pathologically amplified responses. In this scenario, the exchange of signaling molecules throughout cell-to-cell and cell-to-extracellular environment communications plays a key role in the transition from acute to chronic pain. As such, connexin 43 (Cx43), the core glial gap junction and hemichannel-forming protein, is considered a triggering factor for disease chronicization in the central nervous system (CNS). Drugs targeting μ opioid receptors (MOR) are currently used for moderate to severe pain conditions, but their use in chronic pain is limited by the tolerability profile. δ opioid receptors (DOR) have become attractive targets for the treatment of persistent pain and have been associated with the inhibition of pain-sustaining factors. Moreover, it has been shown that simultaneous targeting of MOR and DOR leads to an improved pharmacological fingerprint. Herein, we aimed to study the effects of the benzomorphan ligand LP2, a multitarget MOR/DOR agonist, in an experimental model of neuropathic pain induced by the unilateral sciatic nerve chronic constriction injury (CCI) on male Sprague-Dawley rats. Results showed that LP2 significantly ameliorated mechanical allodynia from the early phase of treatment up to 21 days post-ligatures. We additionally showed that LP2 prevented CCI-induced Cx43 alterations and pro-apoptotic signaling in the CNS. These findings increase the knowledge of neuropathic pain development and the role of spinal astrocytic Cx43, suggesting new approaches for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Section of Medicinal Chemistry, University of Catania, 95125, Catania, Italy
| | - Federica M Spitale
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy.,Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Section of Medicinal Chemistry, University of Catania, 95125, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy.,Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, 95123, Catania, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, 95123, Catania, Italy.
| | - Carmela Parenti
- Department of Drug Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125, Catania, Italy
| |
Collapse
|
3
|
Zappalà A, Vicario N, Calabrese G, Turnaturi R, Pasquinucci L, Montenegro L, Spadaro A, Parenti R, Parenti C. Neuroprotective effects of Rosmarinus officinalis L. extract in oxygen glucose deprivation (OGD)-injured human neural-like cells. Nat Prod Res 2019; 35:669-675. [PMID: 30938188 DOI: 10.1080/14786419.2019.1587428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rosmarinus officinalis L. (RO), an aromatic plant used as food condiment and in traditional medicine, exerts numerous beneficial properties including antioxidant, analgesic and neuroprotective effects. Onset and progression of homeostatic imbalances observed in the early phases of a number of neurodegenerative diseases, have been associated with a gap junction (GJ)-dependent increased membrane permeability and alterations of connexins (Cxs), including Cx43. Here, we evaluate spray-dried RO extract (SDROE)-mediated effects on cell viability, apoptosis and Cx43-based intercellular communication using human SH-SY5Y neuron-like and human A-172 glial-like cells in an in vitro model of oxygen glucose deprivation (OGD) injury. We found that SDROE exerts a protective action in OGD-injured cells, increasing cell viability and metabolic turnover and decreasing Cx43-based cell coupling. These data suggest that SDROE-mediated Cx43 reduction may be the molecular basis for its beneficial effects to be exploited for preventive treatment against the risk of some neurodegenerative disorders.
Collapse
Affiliation(s)
- Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Giovanna Calabrese
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Catania, Italy
| | - Lucia Montenegro
- Department of Drug Sciences, Pharmaceutical Technology Section, University of Catania, Catania, Italy
| | - Angelo Spadaro
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Vicario N, Zappalà A, Calabrese G, Gulino R, Parenti C, Gulisano M, Parenti R. Connexins in the Central Nervous System: Physiological Traits and Neuroprotective Targets. Front Physiol 2017; 8:1060. [PMID: 29326598 PMCID: PMC5741605 DOI: 10.3389/fphys.2017.01060] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 01/22/2023] Open
Abstract
Cell-to-cell interaction and cell-to-extracellular environment communication are emerging as new therapeutic targets in neurodegenerative disorders. Dynamic expression of connexins leads to distinctive hemichannels and gap junctions, characterized by cell-specific conduction, exchange of stimuli or metabolites, and particular channel functions. Herein, we briefly reviewed classical physiological traits and functions of connexins, hemichannels, and gap junctions, in order to discuss the controversial role of these proteins and their mediated interactions during neuroprotection, with a particular focus on Cx43-based channels. We pointed out the contribution of connexins in neural cells populations during neurodegenerative processes to explore potential neuroprotective therapeutic applications.
Collapse
Affiliation(s)
- Nunzio Vicario
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Agata Zappalà
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanna Calabrese
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Gulino
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Massimo Gulisano
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Department of Drug Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Ströh S, Sonntag S, Janssen-Bienhold U, Schultz K, Cimiotti K, Weiler R, Willecke K, Dedek K. Cell-specific cre recombinase expression allows selective ablation of glutamate receptors from mouse horizontal cells. PLoS One 2013; 8:e83076. [PMID: 24349437 PMCID: PMC3861464 DOI: 10.1371/journal.pone.0083076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/06/2013] [Indexed: 01/26/2023] Open
Abstract
In the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism. To facilitate studying horizontal cell function, we developed a knockin mouse line which allows ablating genes exclusively in horizontal cells. This knockin line expresses a Cre recombinase under the promoter of connexin57 (Cx57), a gap junction protein only expressed in horizontal cells. Consistently, in Cx57+/Cre mice, Cre recombinase is expressed in almost all horizontal cells (>99%) and no other retinal neurons. To test Cre activity, we crossbred Cx57+/Cre mice with a mouse line in which exon 11 of the coding sequence for the ionotropic glutamate receptor subunit GluA4 was flanked by two loxP sites (GluA4fl/fl). In GluA4fl/fl:Cx57+/Cre mice, GluA4 immunoreactivity was significantly reduced (∼50%) in the outer retina where horizontal cells receive photoreceptor inputs, confirming the functionality of the Cre/loxP system. Whole-cell patch-clamp recordings from isolated horizontal cell somata showed a reduction of glutamate-induced inward currents by ∼75%, suggesting that the GluA4 subunit plays a major role in mediating photoreceptor inputs. The persistent current in GluA4-deficient cells is mostly driven by AMPA and to a very small extent by kainate receptors as revealed by application of the AMPA receptor antagonist GYKI52466 and concanavalin A, a potentiator of kainate receptor-mediated currents. In summary, the Cx57+/Cre mouse line provides a versatile tool for studying horizontal cell function. GluA4fl/fl:Cx57+/Cre mice, in which horizontal cells receive less excitatory input, can thus be used to analyze the contribution of horizontal cells to retinal processing.
Collapse
Affiliation(s)
- Sebastian Ströh
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Stephan Sonntag
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Ulrike Janssen-Bienhold
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Konrad Schultz
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Kerstin Cimiotti
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Reto Weiler
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Klaus Willecke
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Karin Dedek
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
- * E-mail:
| |
Collapse
|
6
|
Reeber SL, White JJ, George-Jones NA, Sillitoe RV. Architecture and development of olivocerebellar circuit topography. Front Neural Circuits 2013; 6:115. [PMID: 23293588 PMCID: PMC3534185 DOI: 10.3389/fncir.2012.00115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/12/2012] [Indexed: 11/21/2022] Open
Abstract
The cerebellum has a simple tri-laminar structure that is comprised of relatively few cell types. Yet, its internal micro-circuitry is anatomically, biochemically, and functionally complex. The most striking feature of cerebellar circuit complexity is its compartmentalized topography. Each cell type within the cerebellar cortex is organized into an exquisite map; molecular expression patterns, dendrite projections, and axon terminal fields divide the medial-lateral axis of the cerebellum into topographic sagittal zones. Here, we discuss the mechanisms that establish zones and highlight how gene expression and neural activity contribute to cerebellar pattern formation. We focus on the olivocerebellar system because its developmental mechanisms are becoming clear, its topographic termination patterns are very precise, and its contribution to zonal function is debated. This review deconstructs the architecture and development of the olivocerebellar pathway to provide an update on how brain circuit maps form and function.
Collapse
Affiliation(s)
- Stacey L Reeber
- Department of Pathology and Immunology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA ; Department of Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital Houston, TX, USA
| | | | | | | |
Collapse
|
7
|
Handforth A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23440018 PMCID: PMC3572699 DOI: 10.7916/d8td9w2p] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/24/2012] [Indexed: 01/18/2023]
Abstract
BACKGROUND Harmaline and harmine are tremorigenic β-carbolines that, on administration to experimental animals, induce an acute postural and kinetic tremor of axial and truncal musculature. This drug-induced action tremor has been proposed as a model of essential tremor. Here we review what is known about harmaline tremor. METHODS Using the terms harmaline and harmine on PubMed, we searched for papers describing the effects of these β-carbolines on mammalian tissue, animals, or humans. RESULTS Investigations over four decades have shown that harmaline induces rhythmic burst-firing activity in the medial and dorsal accessory inferior olivary nuclei that is transmitted via climbing fibers to Purkinje cells and to the deep cerebellar nuclei, then to brainstem and spinal cord motoneurons. The critical structures required for tremor expression are the inferior olive, climbing fibers, and the deep cerebellar nuclei; Purkinje cells are not required. Enhanced synaptic norepinephrine or blockade of ionic glutamate receptors suppresses tremor, whereas enhanced synaptic serotonin exacerbates tremor. Benzodiazepines and muscimol suppress tremor. Alcohol suppresses harmaline tremor but exacerbates harmaline-associated neural damage. Recent investigations on the mechanism of harmaline tremor have focused on the T-type calcium channel. DISCUSSION Like essential tremor, harmaline tremor involves the cerebellum, and classic medications for essential tremor have been found to suppress harmaline tremor, leading to utilization of the harmaline model for preclinical testing of antitremor drugs. Limitations are that the model is acute, unlike essential tremor, and only approximately half of the drugs reported to suppress harmaline tremor are subsequently found to suppress tremor in clinical trials.
Collapse
Affiliation(s)
- Adrian Handforth
- Neurology Service, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Pan F, Keung J, Kim IB, Snuggs MB, Mills SL, O'Brien J, Massey SC. Connexin 57 is expressed by the axon terminal network of B-type horizontal cells in the rabbit retina. J Comp Neurol 2012; 520:2256-74. [PMID: 22495514 DOI: 10.1002/cne.23060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the rabbit retina there are two types of horizontal cell (HC). A-type HCs (AHC) are axonless and extensively coupled via connexin (Cx)50 gap junctions. The B-type HC (BHC) is axon-bearing; the somatic dendrites form a second network coupled by gap junctions while the axon terminals (ATs) form a third independent network in the outer plexiform layer (OPL). The mouse retina has only one type of HC, which is morphologically similar to the B-type HC of the rabbit. Previous work suggested that mouse HCs express Cx57 (Hombach et al. [2004] Eur J Neurosci 19:2633-2640). Therefore, we cloned rabbit Cx57 and raised an antibody to determine the distribution of Cx57 gap junctions among rabbit HCs. Dye injection methods were used to obtain detailed fills for all three HC networks for analysis by confocal microscopy. We found that Cx57 was associated with the B-type AT plexus. Cx57 plaques were anticorrelated with the B-type somatic dendrites and the A-type HC network. Furthermore, there was no colocalization between Cx50 and Cx57. We conclude that in the rabbit retina, Cx57 is only found on BHC-AT processes. Thus, in species where there are two types of HC, different connexins are expressed. The absence of Cx57 labeling in the somatic dendrites of B-type HCs suggests the possibility of an additional unidentified HC connexin in the rabbit.
Collapse
Affiliation(s)
- Feng Pan
- Department of Ophthalmology and Visual Science, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhang C. Expression of connexin 57 in the olfactory epithelium and olfactory bulb. Neurosci Res 2011; 71:226-34. [PMID: 21840349 DOI: 10.1016/j.neures.2011.07.1832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 07/16/2011] [Accepted: 07/26/2011] [Indexed: 01/20/2023]
Abstract
In the visual system, deletion of connexin 57 (Cx57) reduces gap junction coupling among horizontal cells and results in smaller receptive fields. To explore potential functions of Cx57 in olfaction, in situ hybridization and immunohistochemistry methods were used to investigate expression of Cx57 in the olfactory epithelium and olfactory bulb. Hybridization signal was stronger in the olfactory epithelial layer compared to the connective tissue underneath. Within the sensory epithelial layer, hybridization signal was visible in sublayers containing cell bodies of basal cells and olfactory neurons but not evident at the apical sublayer comprising cell bodies of sustentacular cells. These Cx57 positive cells were clustered into small groups to form different patterns in the olfactory epithelium. However, individual patterns did not associate with specific regions of olfactory turbinates or specific olfactory receptor zones. Patched distribution of hybridization positive cells was also observed in the olfactory bulb and accessory olfactory bulb in layers where granule cells, mitral cells, and juxtaglomerular cells reside. Immunostaining was observed in the cell types described above but the intensity was weaker than that in the retina. This study has provided anatomical basis for future studies on the function of Cx57 in the olfactory system.
Collapse
Affiliation(s)
- Chunbo Zhang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|