1
|
Li Y, Hou S, Li F, Long S, Yang Y, Li Y, Zhao L, Yu Y. Preoperative recovery sleep ameliorates postoperative cognitive dysfunction aggravated by sleep fragmentation in aged mice by enhancing EEG delta-wave activity and LFP theta oscillation in hippocampal CA1. Brain Res Bull 2024; 211:110945. [PMID: 38608544 DOI: 10.1016/j.brainresbull.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Sleep fragmentation (SF) is a common sleep problem experienced during the perioperative period by older adults, and is associated with postoperative cognitive dysfunction (POCD). Increasing evidence indicates that delta-wave activity during non-rapid eye movement (NREM) sleep is involved in sleep-dependent memory consolidation and that hippocampal theta oscillations are related to spatial exploratory memory. Recovery sleep (RS), a self-regulated state of sleep homeostasis, enhances delta-wave power and memory performance in sleep-deprived older mice. However, it remains unclear whether RS therapy has a positive effect on cognitive changes following SF in older mouse models. Therefore, this study aimed to explore whether preoperative RS can alleviate cognitive deficits in aged mice with SF. A model of preoperative 24-h SF combined with exploratory laparotomy-induced POCD was established in 18-month-old mice. Aged mice were treated with preoperative 6-h RS following SF and postoperative 6-h RS following surgery, respectively. The changes in hippocampus-dependent cognitive function were investigated using behavioral tests, electroencephalography (EEG), local field potential (LFP), magnetic resonance imaging, and neuromorphology. Mice that underwent 24-h SF combined with surgery exhibited severe spatial memory impairment; impaired cognitive performance could be alleviated by preoperative RS treatment. In addition, preoperative RS increased NREM sleep; enhanced EEG delta-wave activity and LFP theta oscillation in the hippocampal CA1; and improved hippocampal perfusion, microstructural integrity, and neuronal damage. Taken together, these results provide evidence that preoperative RS may ameliorate the severity of POCD aggravated by SF by enhancing delta slow-wave activity and hippocampal theta oscillation, and by ameliorating the reduction in regional cerebral blood flow and white matter microstructure integrity in the hippocampus.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Shaowei Hou
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Feixiang Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Siwen Long
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yue Yang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
2
|
Ahmed A, Misrani A, Tabassum S, Yang L, Long C. Minocycline inhibits sleep deprivation-induced aberrant microglial activation and Keap1-Nrf2 expression in mouse hippocampus. Brain Res Bull 2021; 174:41-52. [PMID: 34087360 DOI: 10.1016/j.brainresbull.2021.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/26/2022]
Abstract
Sleep deprivation (SD) is a hallmark of modern society and associated with many neuropsychiatric disorders, including depression and anxiety. However, the cellular and molecular mechanisms underlying SD-associated depression and anxiety remain elusive. Does the neuroinflammation play a role in mediating the effects of SD? In this study, we investigated SD-induced cellular and molecular alterations in the hippocampus and asked whether treatment with an anti-inflammatory drug, minocycline, could attenuate these alterations. We found that SD animals exhibit activated microglia and decreased levels of Keap1 and Nrf2 (antioxidant and anti-inflammatory factors) in the hippocampus. In vivo local field potential recordings show decreased theta and beta oscillations, but increased high gamma oscillations, as a result of SD. Behavioral analysis revealed increased immobility time in the forced swim and tail suspension tests, and decreased sucrose intake in SD mice, all indicative of depressive-like behavior. Moreover, open field test and elevated plus maze test results indicated that SD increases anxiety-like behavior. Interestingly, treatment with the microglial modulator minocycline prevented SD-induced microglial activation, restored Keap1 and Nrf2 levels, normalized neuronal oscillations, and alleviated depressive-like and anxiety-like behavior. The present study reveals that microglial activation and Keap1-Nrf2 signaling play a crucial role in SD-induced behavioral alteration, and that minocycline treatment has a protective effect on these alterations.
Collapse
Affiliation(s)
- Adeel Ahmed
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China.
| |
Collapse
|
3
|
Tabassum S, Misrani A, Tabassum S, Ahmed A, Yang L, Long C. Disrupted prefrontal neuronal oscillations and morphology induced by sleep deprivation in young APP/PS1 transgenic AD mice. Brain Res Bull 2020; 166:12-20. [PMID: 33186630 DOI: 10.1016/j.brainresbull.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022]
Abstract
Emerging evidence suggests that sleep deprivation (SD) is a public health epidemic and increase the risk of Alzheimer's disease (AD) progression. However, the underlying mechanisms remain to be fully investigated. In this study, we investigate the impact of 72 h SD on the prefrontal cortex (PFC) of 3∼4-months-old APP/PS1 transgenic AD mice - at an age before the onset of plaque formation and memory decline. Our results reveal that SD alters delta, theta and high-gamma oscillations in the PFC, accompanied by increased levels of excitatory postsynaptic signaling (NMDAR, GluR1, and CaMKII) in AD mice. SD also caused alteration in the dendritic length and dendritic branches of PFC pyramidal neurons, accompanied by a reduction in neuroprotective agent CREB. This study suggests that failure to acquire adequate sleep could trigger an early electrophysiological, molecular, and morphological alteration in the PFC of AD mice. Therapeutic interventions that manipulate sleep by targeting these pathways may be a promising approach toward delaying the progression of this incurable disease.
Collapse
Affiliation(s)
- Sidra Tabassum
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Afzal Misrani
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Sumaiya Tabassum
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Adeel Ahmed
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, PR China.
| |
Collapse
|
4
|
Kane J, Cavanagh JF, Dillon DG. Reduced Theta Power During Memory Retrieval in Depressed Adults. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:636-643. [PMID: 31072759 DOI: 10.1016/j.bpsc.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with poor recollection, but the neural mechanisms responsible for this deficit are unclear. Recollection is supported by interactions between the hippocampus and cortex that appear to be mediated by oscillatory activity in the theta band (4-7 Hz) and that are elicited during source memory retrieval. Therefore, we tested the hypothesis that evoked theta power during source memory retrieval would be reduced in MDD, as this would provide a physiological basis for deficient recollection in adults with depression. METHODS Morlet wavelets were applied to event-related potentials collected from 24 unmedicated adults with MDD and 24 healthy control adults during the retrieval of source and semantic memories. Whole-scalp analyses focused on group differences in evoked theta power. RESULTS There were no group differences in behavior. Nevertheless, from 400 to 799 ms, theta power was broadly reduced in adults with depression versus healthy adults. This reduction was observed during source and semantic retrieval. Parietal midline electrodes showed significantly reduced theta power during source-but not semantic-retrieval in adults with depression versus healthy adults in this interval. Furthermore, theta power over parietal midline sites from 400 to 799 ms was more strongly related to source memory accuracy in healthy adults versus adults with depression. CONCLUSIONS Relative to healthy control adults, adults with depression showed reduced theta power during memory retrieval and a weaker relationship between parietal midline theta power and source memory accuracy. These findings indicate that abnormal theta signals may contribute to memory deficits in adults with MDD.
Collapse
Affiliation(s)
- Jonathan Kane
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Daniel G Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Na JR, Oh DR, Han S, Kim YJ, Choi E, Bae D, Oh DH, Lee YH, Kim S, Jun W. Antistress Effects of Rosa rugosa Thunb. on Total Sleep Deprivation-Induced Anxiety-Like Behavior and Cognitive Dysfunction in Rat: Possible Mechanism of Action of 5-HT6 Receptor Antagonist. J Med Food 2016; 19:870-81. [PMID: 27331439 DOI: 10.1089/jmf.2016.3660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Our previous results suggest that the Rosa rugosa Thunb. (family Rosaceae) alleviates endurance exercise-induced stress by decreasing oxidative stress levels. This study aimed to screen and identify the physiological antistress effects of an extract of R. rugosa (RO) on sleep deprivation-induced anxiety-like behavior and cognitive tests (in vivo) and tested for hippocampal CORT and monoamine levels (ex vivo), corticosterone (CORT)-induced injury, N-methyl-d-aspartate (NMDA) receptor, and serotonin 6 (5-hydroxytryptamine 6, 5-HT6) receptor activities (in vitro) in search of active principles and underlying mechanisms of action. We confirmed the antistress effects of RO in a sleep-deprived stress model in rat and explored the underlying mechanisms of its action. In conclusion, an R. rugosa extract showed efficacy and potential for use as an antistress therapy to treat sleep deprivation through its antagonism of the 5-HT6 receptor and resulting inhibition of cAMP activity.
Collapse
Affiliation(s)
- Ju-Ryun Na
- 1 Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR) , Jeollanamdo, Korea.,2 Division of Food and Nutrition, Chonnam National University , Gwangju, Korea
| | - Dool-Ri Oh
- 1 Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR) , Jeollanamdo, Korea
| | - SeulHee Han
- 1 Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR) , Jeollanamdo, Korea
| | - Yu-Jin Kim
- 1 Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR) , Jeollanamdo, Korea
| | - EunJin Choi
- 1 Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR) , Jeollanamdo, Korea
| | - Donghyuck Bae
- 1 Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR) , Jeollanamdo, Korea
| | | | - Yoo-Hyun Lee
- 4 Department of Food Science and Nutrition, The University of Suwon , Kyunggi-do, Korea
| | - Sunoh Kim
- 1 Jeonnam Bioindustry Foundation, Jeonnam Institute of Natural Resources Research (JINR) , Jeollanamdo, Korea.,2 Division of Food and Nutrition, Chonnam National University , Gwangju, Korea.,5 B&Tech Co., Ltd., R&D Center , Gwangju, Korea
| | - Woojin Jun
- 2 Division of Food and Nutrition, Chonnam National University , Gwangju, Korea
| |
Collapse
|
6
|
Xie F, Li X, Bao M, Shi R, Yue Y, Guan Y, Wang Y. Anesthetic propofol normalized the increased release of glutamate and γ-amino butyric acid in hippocampus after paradoxical sleep deprivation in rats. Neurol Res 2016; 37:1102-7. [PMID: 26923580 DOI: 10.1080/01616412.2015.1114231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fang Xie
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xueyang Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Mengmeng Bao
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Rong Shi
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Yue
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
7
|
Qiu H, Zhong R, Liu H, Zhang F, Li S, Le W. Chronic Sleep Deprivation Exacerbates Learning-Memory Disability and Alzheimer’s Disease-Like Pathologies in AβPPswe/PS1ΔE9 Mice. J Alzheimers Dis 2016; 50:669-85. [PMID: 26757041 DOI: 10.3233/jad-150774] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hongyan Qiu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Rujia Zhong
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, P.R. China
| | - Hui Liu
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Feng Zhang
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, P.R. China
| | - Song Li
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, P.R. China
| | - Weidong Le
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
8
|
Chang HM, Liao WC, Sheu JN, Chang CC, Lan CT, Mai FD. Sleep deprivation impairs Ca2+ expression in the hippocampus: ionic imaging analysis for cognitive deficiency with TOF-SIMS. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:425-435. [PMID: 22494489 DOI: 10.1017/s1431927612000086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sleep deprivation causes cognitive dysfunction in which impaired neuronal plasticity in hippocampus may underlie the molecular mechanisms of this deficiency. Considering calcium-mediated NMDA receptor subunit 1 (NMDAR1) and neuronal nitric oxide synthase (nNOS) activation plays an important role in the regulation of neuronal plasticity, the present study is aimed to determine whether total sleep deprivation (TSD) would impair calcium expression, together with injury of the neuronal plasticity in hippocampus. Adult rats subjected to TSD were processed for time-of-flight secondary ion mass spectrometry, NMDAR1 immunohistochemistry, nNOS biochemical assay, cytochrome oxidase histochemistry, and the Morris water maze learning test to detect ionic, neurochemical, bioenergetic as well as behavioral changes of neuronal plasticity, respectively. Results indicated that in normal rats, strong calcium signaling along with intense NMDAR1/nNOS expression were observed in hippocampal regions. Enhanced calcium imaging and neurochemical expressions corresponded well with strong bioenergetic activity and good performance of behavioral testing. However, following TSD, both calcium intensity and NMDAR1/nNOS expressions were significantly decreased. Behavioral testing also showed poor responses after TSD. As proper calcium expression is essential for maintaining hippocampal neuronal plasticity, impaired calcium expression would depress downstream NMDAR1-mediated nNOS activation, which might contribute to the initiation or development of TSD-related cognitive deficiency.
Collapse
Affiliation(s)
- Hung-Ming Chang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | | | |
Collapse
|
9
|
Xue WN, Wang Y, He SM, Wang XL, Zhu JL, Gao GD. SK- and h-current contribute to the generation of theta-like resonance of rat substantia nigra pars compacta dopaminergic neurons at hyperpolarized membrane potentials. Brain Struct Funct 2011; 217:379-94. [DOI: 10.1007/s00429-011-0361-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 11/03/2011] [Indexed: 11/25/2022]
|
10
|
Neurochemical and electrophysiological changes induced by paradoxical sleep deprivation in rats. Behav Brain Res 2011; 225:39-46. [PMID: 21729722 DOI: 10.1016/j.bbr.2011.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/12/2011] [Accepted: 06/18/2011] [Indexed: 12/26/2022]
Abstract
The present study aims to investigate the effects of paradoxical sleep deprivation (PSD) on the waking EEG and amino acid neurotransmitters in the hippocampus and cortex of rats. Animals were deprived of paradoxical sleep for 72h by using the multiple platform method. The EEG power spectral analysis was carried out to assess the brain's electrophysiological changes due to sleep deprivation. The concentrations of amino acid neurotransmitters were assessed in the hippocampus and cortex using HPLC. Control data showed slight differences from normal animals in the delta, theta and alpha waves while an increase in the beta wave was obtained. After 24h of PSD, delta relative power increased and the rest of EEG wave's power decreased with respect to control. After 48h and 72h the spectral power analysis showed non-significant changes to control. The amino acid neurotransmitter analysis revealed a significant increase in cortical glutamate, glycine and taurine levels while in the hippocampus, glutamate, aspartate, glutamine and glycine levels increased significantly. Both the waking EEG and neurotransmitter analyses suggest that PSD induced neurochemical and electrophysiological changes that may affect brain proper functionality.
Collapse
|