1
|
Shahzad R, Jones MR, Viles JH, Jones CE. Endocytosis of the tachykinin neuropeptide, neurokinin B, in astrocytes and its role in cellular copper uptake. J Inorg Biochem 2016; 162:319-325. [PMID: 26948444 DOI: 10.1016/j.jinorgbio.2016.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/27/2016] [Accepted: 02/25/2016] [Indexed: 01/06/2023]
Abstract
The tachykinin neuropeptide, neurokinin B (NKB), belongs to a family of peptides having diverse roles in the brain. NKB, along with several other tachykinins, has been identified as a copper-binding peptide, however the physiological relevance of the binding is unclear. Previously, NKB was shown to limit the ability of copper to enter astrocytes and disrupt calcium homeostasis and it was thought that the peptide was sequestering the metal extracellularly. Here we use a fluorescein-labelled NKB peptide (F-NKB) to show that NKB is not retained extracellularly, but is endocytosed within 10-20min after addition to the cell media. The endocytosis is not inhibited when NKB is delivered as a copper-complex, [CuII(F-NKB)2]. Endocytosis of NKB can increase intracellular copper. Comparison to cells cultured in copper-free buffer indicated that apo-NKB can facilitate uptake of copper found in normal culture media. To achieve this NKB must compete with a variety of copper proteins, and we show that NKB can successfully compete with copper-binding peptides derived from the prion protein, itself associated with Cu(II) and Zn(II) metabolism. We suggest a mechanism of receptor mediated endocytosis to account for the observations.
Collapse
Affiliation(s)
- Reeha Shahzad
- The School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, 2759, NSW, Australia
| | - Mark R Jones
- The School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, 2759, NSW, Australia
| | - John H Viles
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Christopher E Jones
- The School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, 2759, NSW, Australia.
| |
Collapse
|
2
|
Sandweiss AJ, Vanderah TW. The pharmacology of neurokinin receptors in addiction: prospects for therapy. Subst Abuse Rehabil 2015; 6:93-102. [PMID: 26379454 PMCID: PMC4567173 DOI: 10.2147/sar.s70350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Addiction is a chronic disorder in which consumption of a substance or a habitual behavior becomes compulsive and often recurrent, despite adverse consequences. Substance p (SP) is an undecapeptide and was the first neuropeptide of the neurokinin family to be discovered. The subsequent decades of research after its discovery implicated SP and its neurokinin relatives as neurotransmitters involved in the modulation of the reward pathway. Here, we review the neurokinin literature, giving a brief historical perspective of neurokinin pharmacology, localization in various brain regions involved in addictive behaviors, and the functional aspects of neurokinin pharmacology in relation to reward in preclinical models of addiction that have shaped the rational drug design of neurokinin antagonists that could translate into human research. Finally, we will cover the clinical investigations using neurokinin antagonists and discuss their potential as a therapy for drug abuse.
Collapse
Affiliation(s)
- Alexander J Sandweiss
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Todd W Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Miklos Z, Flynn FW, Lessard A. Stress-induced dendritic internalization and nuclear translocation of the neurokinin-3 (NK3) receptor in vasopressinergic profiles of the rat paraventricular nucleus of the hypothalamus. Brain Res 2014; 1590:31-44. [DOI: 10.1016/j.brainres.2014.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/31/2023]
|
4
|
Song Z, Levin BE, Stevens W, Sladek CD. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors. Am J Physiol Regul Integr Comp Physiol 2014; 306:R447-56. [PMID: 24477542 DOI: 10.1152/ajpregu.00520.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurons in the supraoptic nuclei (SON) produce oxytocin and vasopressin and express insulin receptors (InsR) and glucokinase. Since oxytocin is an anorexigenic agent and glucokinase and InsR are hallmarks of cells that function as glucose and/or metabolic sensors, we evaluated the effect of glucose, insulin, and their downstream effector ATP-sensitive potassium (KATP) channels on calcium signaling in SON neurons and on oxytocin and vasopressin release from explants of the rat hypothalamo-neurohypophyseal system. We also evaluated the effect of blocking glucokinase and phosphatidylinositol 3 kinase (PI3K; mediates insulin-induced mobilization of glucose transporter, GLUT4) on responses to glucose and insulin. Glucose and insulin increased intracellular calcium ([Ca(2+)]i). The responses were glucokinase and PI3K dependent, respectively. Insulin and glucose alone increased vasopressin release (P < 0.002). Oxytocin release was increased by glucose in the presence of insulin. The oxytocin (OT) and vasopressin (VP) responses to insulin+glucose were blocked by the glucokinase inhibitor alloxan (4 mM; P ≤ 0.002) and the PI3K inhibitor wortmannin (50 nM; OT: P = 0.03; VP: P ≤ 0.002). Inactivating K ATP channels with 200 nM glibenclamide increased oxytocin and vasopressin release (OT: P < 0.003; VP: P < 0.05). These results suggest that insulin activation of PI3K increases glucokinase-mediated ATP production inducing closure of K ATP channels, opening of voltage-sensitive calcium channels, and stimulation of oxytocin and vasopressin release. The findings are consistent with SON oxytocin and vasopressin neurons functioning as glucose and "metabolic" sensors to participate in appetite regulation.
Collapse
Affiliation(s)
- Zhilin Song
- Department of Physiology, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | | |
Collapse
|
5
|
Russino D, McDonald E, Hejazi L, Hanson GR, Jones CE. The tachykinin peptide neurokinin B binds copper forming an unusual [CuII(NKB)2] complex and inhibits copper uptake into 1321N1 astrocytoma cells. ACS Chem Neurosci 2013; 4:1371-81. [PMID: 23875773 DOI: 10.1021/cn4000988] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides that have neuroinflammatory, neuroimmunological, and neuroprotective functions. In a neuroprotective role, tachykinins can help protect cells against the neurotoxic processes observed in Alzheimer's disease. A change in copper homeostasis is a clear feature of Alzheimer's disease, and the dysregulation may be a contributory factor in toxicity. Copper has recently been shown to interact with neurokinin A and neuropeptide γ and can lead to generation of reactive oxygen species and peptide degradation, which suggests that copper may have a place in tachykinin function and potentially misfunction. To explore this, we have utilized a range of spectroscopic techniques to show that NKB, but not substance P, can bind Cu(II) in an unusual [Cu(II)(NKB)2] neutral complex that utilizes two N-terminal amine and two imidazole nitrogen ligands (from each molecule of NKB) and the binding substantially alters the structure of the peptide. Using 1321N1 astrocytoma cells, we show that copper can enter the cells and subsequently open plasma membrane calcium channels but when bound to neurokinin B copper ion uptake is inhibited. This data suggests a novel role for neurokinin B in protecting cells against copper-induced calcium changes and implicates the peptide in synaptic copper homeostasis.
Collapse
Affiliation(s)
- Debora Russino
- The School of Science
and Health, The University of Western Sydney, Locked bag 1797, Penrith, New South Wales 2759, Australia
| | - Elle McDonald
- The School of Science
and Health, The University of Western Sydney, Locked bag 1797, Penrith, New South Wales 2759, Australia
| | - Leila Hejazi
- Mass Spectroscopy Laboratory, The University of Western Sydney, Locked bag 1797,
Penrith, New South Wales 2759, Australia
| | - Graeme R. Hanson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher E. Jones
- The School of Science
and Health, The University of Western Sydney, Locked bag 1797, Penrith, New South Wales 2759, Australia
| |
Collapse
|
6
|
The neurokinin-3 receptor (NK3R) antagonist SB222200 prevents the apomorphine-evoked surface but not nuclear NK3R redistribution in dopaminergic neurons of the rat ventral tegmental area. Neuroscience 2013; 247:12-24. [DOI: 10.1016/j.neuroscience.2013.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/23/2022]
|
7
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Sabariego M, Donaire R, Morón I, Torres C, Martínez-Conejero JA, Tobeña A, Esteban FJ, Fernández-Teruel A. Gene expression in amygdala as a function of differential trait anxiety levels in genetically heterogeneous NIH-HS rats. Behav Brain Res 2013; 252:422-31. [PMID: 23777796 DOI: 10.1016/j.bbr.2013.05.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/07/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
To identify genes involved in anxiety/fear traits, we analyzed the gene expression profile in the amygdala of genetically heterogeneous NIH-HS rats. The NIH-HS rat stock has revealed to be a unique genetic resource for the fine mapping of Quantitative Trait Loci (QTLs) to very small genomic regions, due to the high amount of genetic recombinants accumulated along more than 50 breeding generations, and for the same reason it can be expected that those genetically heterogeneous rats should be especially useful for studying differential gene expression as a function of anxiety-(or other)-related traits. We selected high- and low-anxious NIH-HS rats differing in their number of avoidances in a single 50-trial session of the two-way active avoidance task. Rats were also tested in unconditioned anxiety tests (e.g., elevated zero-maze). Three weeks after behavioural testing, the amygdala was dissected and prepared for the microarray study. There appeared 6 significantly down-regulated and 28 up-regulated genes (fold-change >|2|, FDR<0.05) between the low- and high-anxious groups, with central nervous system-related functions. Regression analyses (stepwise) revealed that differential expression of some genes could be predictive of anxiety/fear responses. Among those genes for which the present results suggest a link with individual differences in trait anxiety, six relevant genes were examined with qRT-PCR, four of which (Ucn3, Tacr3, H2-M9 and Arr3) were validated. Remarkably, some of them are characterized by sharing known functions related with hormonal HPA-axis responses to (and/or modulation of) stress, anxiety or fear, and putative involvement in related neurobehavioural functions. The results confirm the usefulness of NIH-HS rats as a good animal model for research on the neurogenetic basis of anxiety and fear, while suggesting the involvement of some neuropeptide/neuroendocrine pathways on the development of differential anxiety profiles.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The magnocellular neurones in the supraoptic nucleus project to the neural lobe and release vasopressin and oxytocin into the peripheral circulation, where they act on the kidney to promote fluid retention or stimulate smooth muscles in the vasculature, uterus and mammary glands to support blood pressure, promote parturition or induce milk let-down, respectively. Hormone release is regulated by complex afferent pathways carrying information about plasma osmolality, blood pressure and volume, cervical stretch, and suckling. These afferent pathways utilise a broad array of neurotransmitters and peptides that activate both ligand-gated ion channels and G-protein coupled receptors (GPCRs). The ligand-gated ion channels induce rapid changes in membrane potential resulting in the generation of action potentials, initiation of exocytosis and the release of hormone into the periphery. By contrast, the GPCRs activate a host of diverse signalling cascades that modulate action potential firing and regulate other cellular functions required to support hormone release (e.g. hormone synthesis, processing, packaging and trafficking). The diversity of these actions is critical for integration of the distinct regulatory signals into a response appropriate for maintaining homeostasis. This review describes several diverse roles of GPCRs in magnocellular neurones, focusing primarily on adrenergic, purinergic and peptidergic (neurokinin and angiotensin) receptors.
Collapse
Affiliation(s)
- C D Sladek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA.
| | | |
Collapse
|
9
|
Misono K, Lessard A. Apomorphine-evoked redistribution of neurokinin-3 receptors in dopaminergic dendrites and neuronal nuclei of the rat ventral tegmental area. Neuroscience 2012; 203:27-38. [DOI: 10.1016/j.neuroscience.2011.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/16/2022]
|