1
|
Luebke L, Lopes CG, Myka Y, Lumma A, Adamczyk WM, Carvalho GF, Scholten-Peeters GGM, Luedtke K, Szikszay TM. Assessing the Influence of Nonischemic A-Fiber Conduction Blockade on Offset Analgesia: An Experimental Study. THE JOURNAL OF PAIN 2024; 25:104611. [PMID: 38908497 DOI: 10.1016/j.jpain.2024.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Offset analgesia (OA) is believed to reflect the efficiency of the endogenous pain modulatory system. However, the underlying mechanisms are still being debated. Previous research suggested both, central and peripheral mechanisms, with the latter involving the influence of specific A-delta-fibers. Therefore, this study aimed to investigate the influence of a nonischemic A-fiber conduction blockade on the OA response in healthy participants. A total of 52 participants were recruited for an A-fiber conduction blockade via compression of the superficial radial nerve. To monitor fiber-specific peripheral nerve conduction capacity, quantitative sensory testing was performed continuously. Before, during, and after the A-fiber block, an individualized OA paradigm was applied to the dorsum of both hands (blocked and control sides were randomized). The pain intensity of each heat stimulus was evaluated by an electronic visual analog scale. A successful A-fiber conduction blockade was achieved in thirty participants. OA has been verified within time (before, during, and after blockade) and condition (blocked and control side) (P < .01, d > .5). Repeated measurements analysis of variance showed no significant interaction effects between OA within condition and time (P = .24, η²p = .05). Hence, no significant effect of A-fiber blockade was detected on OA during noxious heat stimulation. The results suggest that peripheral A-fiber afferents may play a minor role in OA compared with alternative central mechanisms or other fibers. However, further studies are needed to substantiate a central rather than peripheral influence on OA. PERSPECTIVE: This article presents the observation of OA before, during, and after a successful A-fiber conduction blockade in healthy volunteers. A better understanding of the mechanisms of OA and endogenous pain modulation, in general, may help to explain the underlying aspects of pain disorders.
Collapse
Affiliation(s)
- Luisa Luebke
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Germany.
| | - Clara Gieseke Lopes
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Program Musculoskeletal Health, Amsterdam, The Netherlands
| | - Yasmin Myka
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany
| | - Annika Lumma
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany
| | - Wacław M Adamczyk
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Germany; Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Gabriela F Carvalho
- Department of Physiotherapy, Faculty of Health, Safety and Society, Furtwangen University, Furtwangen, Germany
| | - Gwendolyne G M Scholten-Peeters
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Program Musculoskeletal Health, Amsterdam, The Netherlands
| | - Kerstin Luedtke
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Germany
| | - Tibor M Szikszay
- Department of Physiotherapy, Pain and Exercise Research Luebeck (P.E.R.L.), Institute of Health Sciences, University of Luebeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Luebeck, Lübeck, Germany
| |
Collapse
|
2
|
Zhou X, Li Q, Luo Q, Wang L, Chen J, Xiong Y, Wu G, Chang L, Liu P, Shu H. A single dose of ketamine relieves fentanyl-induced-hyperalgesia by reducing inflammation initiated by the TLR4/NF-κB pathway in rat spinal cord neurons. Drug Discov Ther 2023; 17:279-288. [PMID: 37558466 DOI: 10.5582/ddt.2023.01029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A large amount of clinical evidence has revealed that ketamine can relieve fentanyl-induced hyperalgesia. However, the underlying mechanism is still unclear. In the current study, a single dose of ketamine (5 mg/kg or 10 mg/kg), TAK-242 (3 mg/kg), or saline was intraperitoneally injected into rats 15 min before four subcutaneous injections of fentanyl. Results revealed that pre-administration of ketamine alleviated fentanyl-induced hyperalgesia according to hind paw-pressure and paw-withdrawal tests. High-dose ketamine can reverse the expression of toll-like receptor-dimer (d-TLR4), phospho- nuclear factor kappa-B (p-NF-κB, p-p65), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) 1 d after fentanyl injection in the spinal cord. Moreover, fentany-linduced-hyperalgesia and changes in the expression of the aforementioned proteins can be attenuated by TAK-242, an inhibitor of TLR4, as well as ketamine. Importantly, TLR4, p-p65, COX-2, and IL-1β were expressed in neurons but not in glial cells in the spinal cord 1 d after fentanyl injection. In conclusion, results suggested that a single dose of ketamine can relieve fentanyl-induced-hyperalgesia via the TLR4/NF-κB pathway in spinal cord neurons.
Collapse
Affiliation(s)
- Xin Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Qianyi Li
- Guangzhou Kingmylab Pharmaceutical Research Co., Ltd., Guangzhou, Guangdong, China
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, Guangdong, China
| | - Quehua Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Le Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaxin Chen
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine South China University of Technology, Guangzhou, Guangdong, China
| | - Ying Xiong
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guiyun Wu
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lu Chang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Pingping Liu
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Haihua Shu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Anders M, Dreismickenbecker E, Fleckenstein J, Walter C, Enax-Krumova EK, Fischer MJM, Kreuzer M, Zinn S. EEG-based sensory testing reveals altered nociceptive processing in elite endurance athletes. Exp Brain Res 2023; 241:341-354. [PMID: 36520191 PMCID: PMC9894977 DOI: 10.1007/s00221-022-06522-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022]
Abstract
Increased exercise loads, as observed in elite athletes, seem to modulate the subjective pain perception in healthy subjects. The combination of electroencephalography (EEG) and standardized noxious stimulation can contribute to an objective assessment of the somatosensory stimulus processing. We assessed the subjective pain ratings and the electroencephalogram (EEG)-based response after standardized noxious mechanical and thermal stimuli as well as during conditioned pain modulation (CPM) in 26 elite endurance athletes and compared them to 26 recreationally active controls. Elite endurance athletes had consistently stronger somatosensory responses in the EEG to both mechanical and thermal noxious stimuli than the control group. We observed no significant group differences in the subjective pain ratings, which may have been influenced by our statistics and choice of stimuli. The CPM testing revealed that our conditioning stimulus modulated the subjective pain perception only in the control group, whereas the EEG indicated a modulatory effect of the conditioning stimulus on the spectral response only in the athletes group. We conclude that a higher activation in the cortical regions that process nociceptive information may either be an indicator for central sensitization or an altered stimulus salience in the elite endurance athletes' group. Our findings from our CPM testing were limited by our methodology. Further longitudinal studies are needed to examine if exercise-induced changes in the somatosensory system might have a critical impact on the long-term health of athletes.
Collapse
Affiliation(s)
- Malte Anders
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany.
| | - Elias Dreismickenbecker
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
- Center for Pediatric and Adolescent Medicine, Childhood Cancer Center, University Medical Center Mainz, 55131, Mainz, Germany
| | - Johannes Fleckenstein
- Department of Sports Medicine and Exercise Physiology, Institute of Sports Sciences, Goethe University, 60596, Frankfurt, Germany
| | - Carmen Walter
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
| | - Elena K Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil gGmbH Bochum, Ruhr University Bochum, 44789, Bochum, Germany
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, 81675, Munich, Germany
| | - Sebastian Zinn
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe University, University Hospital Frankfurt, 60590, Frankfurt, Germany
| |
Collapse
|
4
|
Fabig SC, Kersebaum D, Lassen J, Sendel M, Jendral S, Muntean A, Baron R, Hüllemann P. A modality-specific somatosensory evoked potential test protocol for clinical evaluation: A feasibility study. Clin Neurophysiol 2021; 132:3104-3115. [PMID: 34740042 DOI: 10.1016/j.clinph.2021.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/26/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We aimed to establish an objective neurophysiological test protocol that can be used to assess the somatosensory nervous system. METHODS In order to assess most fiber subtypes of the somatosensory nervous system, repetitive stimuli of seven different modalities (touch, vibration, pinprick, cold, contact heat, laser, and warmth) were synchronized with the electroencephalogram (EEG) and applied on the cheek and dorsum of the hand and dorsum of the foot in 21 healthy subjects and three polyneuropathy (PNP) patients. Latencies and amplitudes of the modalities were assessed and compared. Patients received quantitative sensory testing (QST) as reference. RESULTS We found reproducible evoked potentials recordings for touch, vibration, pinprick, contact-heat, and laser stimuli. The recording of warm-evoked potentials was challenging in young healthy subjects and not applicable in patients. Latencies were shortest within Aβ-fiber-mediated signals and longest within C-fibers. The test protocol detected function loss within the Aβ-fiber and Aδ-fiber-range in PNP patients. This function loss corresponded with QST findings. CONCLUSION In this pilot study, we developed a neurophysiological test protocol that can specifically assess most of the somatosensory modalities. Despite technical challenges, initial patient data appear promising regarding a possible future clinical application. SIGNIFICANCE Established and custom-made stimulators were combined to assess different fiber subtypes of the somatosensory nervous system using modality-specific evoked potentials.
Collapse
Affiliation(s)
- Sophie-Charlotte Fabig
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany.
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Josephine Lassen
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Swantje Jendral
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Alexandra Muntean
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| | - Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, Haus D, 24105 Kiel, Germany
| |
Collapse
|
5
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Linde LD, Srbely JZ. The Acute Effect of Skin Preheating on Capsaicin-Induced Central Sensitization in Humans. Pain Pract 2019; 19:811-820. [PMID: 31231923 DOI: 10.1111/papr.12811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/17/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Topical capsaicin is commonly employed to experimentally induce central sensitization (CS) in humans. While previous studies have investigated the effect of skin preheating on the sensitizing effect of capsaicin, no studies have compared the synergistic effect of skin preheating on the magnitude of sensitization via topical capsaicin within the first 30 minutes of application. We tested the hypothesis that skin preheating potentiates the sensitizing effect of topical capsaicin by evoking a larger region of secondary hyperalgesia vs. topical capsaicin alone. METHODS Twenty young, healthy subjects each received topical capsaicin (Zostrix HP 0.075%) only (CAP), topical capsaicin with preheating (CAP + HEAT), and topical nonsensitizing placebo cream (CON) in a crossover design. Capsaicin and placebo creams were applied to a 50 cm2 area of the dorsal forearm. The CAP + HEAT session also included a 10-minute preheating session. Regions of secondary hyperalgesia were assessed using mechanical brush allodynia testing, and skin temperature was assessed via infrared thermography. Outcomes were normalized to baseline and compared at 10, 20, and 30 minutes after cream application. RESULTS The CAP + HEAT session led to a significantly larger area of secondary hyperalgesia compared to the CAP session as measured by brush allodynia (CON: 0 ± 0 cm; CAP: 2.08 ± 0.45 cm; CAP + HEAT: 3.70 ± 0.46 cm; P < 0.05) and skin temperature (CON: -2.92% ± 0.03%; CAP: -0.63% ± 0.09%; CAP + HEAT: 2.50% ± 0.11%; ( of baseline) P < 0.05). CONCLUSION Preheating amplifies the sensitizing effect of topical capsaicin within 30 minutes of application. The heat-capsaicin technique may be employed to assess differing magnitudes of CS induction and enables future studies investigating the development and progression of CS in humans.
Collapse
Affiliation(s)
- Lukas D Linde
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - John Z Srbely
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Hüllemann P, Nerdal A, Sendel M, Dodurgali D, Forstenpointner J, Binder A, Baron R. Cold‐evoked potentials versus contact heat‐evoked potentials—Methodological considerations and clinical application. Eur J Pain 2019; 23:1209-1220. [DOI: 10.1002/ejp.1389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/22/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Philipp Hüllemann
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Annika Nerdal
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Dilara Dodurgali
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Andreas Binder
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology University clinic Schleswig‐Holstein Kiel Germany
| |
Collapse
|
8
|
Castellote JM, Valls-Solé J. Temporal relationship between perceptual and physiological events triggered by nociceptive heat stimuli. Sci Rep 2019; 9:3264. [PMID: 30824733 PMCID: PMC6397156 DOI: 10.1038/s41598-019-39509-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
A combined assessment tool for the perceptual-motor aspects of pain processing will be valuable to clinicians. Fifteen healthy subjects were exposed to contact-heat stimulation (Pathway, Medoc, Israel) to assess perception through a simple task (motor response or conscious appraisal of the time the stimulus was felt) or with a dual task (both responses). The outcome measure was the temporal relationship between contact heat evoked potentials (CHEPS), reaction time (RT) and conscious awareness (AW). There were different temporal profiles for CHEPs, RT and AW to changes in stimulus intensity, AW being the least affected. Performing the dual task led to a significantly more pronounced effect on RT than on AW, while CHEPS were not influenced by task performance. Our results support the dissociation between physiological, behavioral and cognitive events elicited by nociceptive stimuli. The time of conscious appraisal of stimulus occurrence is a complementary information to other responses such as evoked potentials or behavioral tasks. The combined assessment of physiological and behavioral aspects of pain processing may provide clinicians with information on the different paths followed by nociceptive afferent inputs in the central nervous system.
Collapse
Affiliation(s)
- J M Castellote
- National School of Occupational Medicine, Carlos III Institute of Health and CIBERNED, Madrid, Spain. .,Department of Physical Medicine and Rehabilitation, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - J Valls-Solé
- EMG and Motor Control Section, Neurology Department, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Abstract
Clinical neurophysiologic investigation of pain pathways in humans is based on specific techniques and approaches, since conventional methods of nerve conduction studies and somatosensory evoked potentials do not explore these pathways. The proposed techniques use various types of painful stimuli (thermal, laser, mechanical, or electrical) and various types of assessments (measurement of sensory thresholds, study of nerve fiber excitability, or recording of electromyographic reflexes or cortical potentials). The two main tests used in clinical practice are quantitative sensory testing and pain-related evoked potentials (PREPs). In particular, PREPs offer the possibility of an objective assessment of nociceptive pathways. Three types of PREPs can be distinguished depending on the type of stimulation used to evoke pain: laser-evoked potentials, contact heat evoked potentials, and intraepidermal electrical stimulation evoked potentials (IEEPs). These three techniques investigate both small-diameter peripheral nociceptive afferents (mainly Aδ nerve fibers) and spinothalamic tracts without theoretically being able to differentiate the level of lesion in the case of abnormal results. In routine clinical practice, PREP recording is a reliable method of investigation for objectifying the existence of a peripheral or central lesion or loss of function concerning the nociceptive pathways, but not the existence of pain. Other methods, such as nerve fiber excitability studies using microneurography, more directly reflect the activities of nociceptive axons in response to provoked pain, but without detecting or quantifying the presence of spontaneous pain. These methods are more often used in research or experimental study design. Thus, it should be kept in mind that most of the results of neurophysiologic investigation performed in clinical practice assess small fiber or spinothalamic tract lesions rather than the neuronal mechanisms directly at the origin of pain and they do not provide objective quantification of pain.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Excitabilité Nerveuse et Thérapeutique, Faculté de Médecine de Créteil, Université Paris-Est-Créteil, Hôpital Henri Mondor, Créteil, France; Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|
10
|
Weyer-Menkhoff I, Lötsch J. Human pharmacological approaches to TRP-ion-channel-based analgesic drug development. Drug Discov Today 2018; 23:2003-2012. [PMID: 29969684 DOI: 10.1016/j.drudis.2018.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/07/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
The discovery of novel analgesic drug targets is an active research topic owing to insufficient treatment options for persisting pain. Modulators of temperature-sensing transient receptor potential ion channels (thermoTRPs), in particular TRPV1, TRPV2, TRPM8 and TRPA1, have reached clinical development. This requires access for TRP channels and the effects of specific modulators in humans. This is currently possible via (i) the study of TRP channel function in human-derived cell lines, (ii) immunohistochemical visualization of TRP channel expression in human tissues, (iii) human experimental pain models employing sensitization by means of topical application of TRP channel activators including capsaicin (TRPV1), menthol (TRPM8), mustard oil and cinnamaldehyde (TRPA1), and (iv) the study of phenotypic consequences of human TRP gene variants.
Collapse
Affiliation(s)
- Iris Weyer-Menkhoff
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Biomarkers of neuropathic pain in skin nerve degeneration neuropathy: contact heat-evoked potentials as a physiological signature. Pain 2017; 158:516-525. [DOI: 10.1097/j.pain.0000000000000791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Terkelsen AJ, Karlsson P, Lauria G, Freeman R, Finnerup NB, Jensen TS. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 2017; 16:934-944. [DOI: 10.1016/s1474-4422(17)30329-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/31/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022]
|
13
|
Omori S, Isose S, Misawa S, Watanabe K, Sekiguchi Y, Shibuya K, Beppu M, Amino H, Kuwabara S. Pain-related evoked potentials after intraepidermal electrical stimulation to Aδ and C fibers in patients with neuropathic pain. Neurosci Res 2017; 121:43-48. [DOI: 10.1016/j.neures.2017.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 11/26/2022]
|
14
|
Abstract
Although animal models of pain have brought invaluable information on basic processes underlying pain pathophysiology, translation to humans is a problem. This Review will summarize what information has been gained by the direct study of patients with chronic pain. The techniques discussed range from patient phenotyping using quantitative sensory testing to specialized nociceptor neurophysiology, imaging methods of peripheral nociceptors, analyses of body fluids, genetics and epigenetics, and the generation of sensory neurons from patients via inducible pluripotent stem cells.
Collapse
Affiliation(s)
- Claudia Sommer
- Department of Neurology, University of Würzburg, Josef-Schneider-Straße 11, D-97080 Würzburg, Germany.
| |
Collapse
|
15
|
Eckert NR, Vierck CJ, Simon CB, Cruz-Almeida Y, Fillingim RB, Riley JL. Testing Assumptions in Human Pain Models: Psychophysical Differences Between First and Second Pain. THE JOURNAL OF PAIN 2016; 18:266-273. [PMID: 27888117 DOI: 10.1016/j.jpain.2016.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/12/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
Acute pain arises from activation of myelinated (A delta) and unmyelinated (C) nociceptive afferents, leading to first (A-fiber) or second (C-fiber) pain sensations. The current study sought to investigate first and second pain within glabrous and hairy skin sites in human upper limbs. Fifty healthy adults (25 male/25 female, 18-30 years old, mean = 20.5 ± 1.4 years) participated in a psychophysical study investigating electronically rated, thermal first and second pain sensations within the glabrous skin at the palm and hairy skin of the forearm. Repeated measures analysis of variance indicated that the threshold for first pain was lower (more sensitive) than for second pain (P = .004), for glabrous as well as hairy skin, and thresholds at glabrous skin were higher than for hairy skin (P = .001). Hairy skin presented a steeper slope for testing, whereas there were no differences in slope between first and second pain. The study findings support assumptions associated with mechanistic differences between first and second pain sensations, while offering a novel method for producing first and second pain with the same thermal stimulus. Efforts to understand abnormalities among people with clinical pain and development of new therapeutic agents will benefit from specific psychophysical methods. PERSPECTIVE This article presents a novel method for directly comparing first and second pain within the same thermal stimulus. The ability to directly compare first and second pain sensations can aid in understanding pain abnormalities in clinical pain and development of therapeutic aids.
Collapse
Affiliation(s)
- Nathanial R Eckert
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida.
| | - Charles J Vierck
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| | - Corey B Simon
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| | - Yenisel Cruz-Almeida
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| | - Roger B Fillingim
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| | - Joseph L Riley
- University of Florida, College of Dentistry, Pain Research and Intervention Center of Excellence (PRICE), Gainesville, Florida
| |
Collapse
|
16
|
Hüllemann P, Nerdal A, Binder A, Helfert S, Reimer M, Baron R. Cold-evoked potentials - Ready for clinical use? Eur J Pain 2016; 20:1730-1740. [DOI: 10.1002/ejp.896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 11/12/2022]
Affiliation(s)
- P. Hüllemann
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - A. Nerdal
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - A. Binder
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - S. Helfert
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - M. Reimer
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| | - R. Baron
- Division of Neurological Pain Research and Therapy; Department of Neurology; University Clinic Schleswig-Holstein; Campus Kiel Germany
| |
Collapse
|
17
|
Kim JS, Oh HB, Kim AH, Kim JS, Lee ES, Goh BJ, Kim JY, Jang K, Park JR, Chung SC, Jun JH. Responses of human sensory characteristics to 532 nm pulse laser stimuli. Technol Health Care 2016; 24 Suppl 2:S697-705. [PMID: 27259083 DOI: 10.3233/thc-161198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lasers are advantageous in some applications to stimulate a small target area and is used in various fields such as optogenetic, photoimmunological and neurophysiological studies. OBJECTIVE This study aims to implement a non-contact sense of touch without damaging biological tissues using laser. METHODS Various laser parameters were utilized in safety range to induce a sense of touch and investigate the human responses. With heat distribution simulation, the amount of changes in the temperature and the tendency in laser parameters of sensory stimulation were analyzed. RESULTS The results showed the identified tactile responses in safety range with various laser parameters and temperature distribution for the laser stimulus was obtained through the simulation. CONCLUSIONS This study can be applied to the areas of sensory receptor stimulation, neurophysiology and clinical medicine.
Collapse
Affiliation(s)
- Ji-Sun Kim
- Department of Biomedical Engineering, BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Han-Byeol Oh
- Department of Biomedical Engineering, BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - A-Hee Kim
- Department of Biomedical Engineering, BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Jun-Sik Kim
- Department of Biomedical Engineering, BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Eun-Suk Lee
- Department of Biomedical Engineering, BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Bong-Jun Goh
- Department of Biomedical Engineering, BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Jae-Young Kim
- Department of Photonic Engineering, Chosun University, Gwangju, Korea
| | - Kyungmin Jang
- Department of Photonic Engineering, Chosun University, Gwangju, Korea
| | - Jong-Rak Park
- Department of Photonic Engineering, Chosun University, Gwangju, Korea
| | - Soon-Cheol Chung
- Department of Biomedical Engineering, BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | - Jae-Hoon Jun
- Department of Biomedical Engineering, BK21 Plus Research Institute of Biomedical Engineering, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| |
Collapse
|
18
|
Landmann G, Lustenberger C, Schleinzer W, Schmelz M, Stockinger L, Rukwied R. Short lasting transient effects of a capsaicin 8% patch on nociceptor activation in humans. Eur J Pain 2016; 20:1443-53. [DOI: 10.1002/ejp.867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 11/08/2022]
Affiliation(s)
- G. Landmann
- Centre for Pain Medicine; Swiss Paraplegic Centre; Nottwil Switzerland
| | - C. Lustenberger
- Centre for Pain Medicine; Swiss Paraplegic Centre; Nottwil Switzerland
| | - W. Schleinzer
- Centre for Pain Medicine; Swiss Paraplegic Centre; Nottwil Switzerland
| | - M. Schmelz
- University Medicine Mannheim; Department of Anesthesiology and Intensive Care Medicine; University of Heidelberg; Germany
| | - L. Stockinger
- Centre for Pain Medicine; Swiss Paraplegic Centre; Nottwil Switzerland
| | - R. Rukwied
- University Medicine Mannheim; Department of Anesthesiology and Intensive Care Medicine; University of Heidelberg; Germany
| |
Collapse
|
19
|
Altered thermal grill response and paradoxical heat sensations after topical capsaicin application. Pain 2015; 156:1101-1111. [DOI: 10.1097/j.pain.0000000000000155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol 2014; 13:924-35. [PMID: 25142459 DOI: 10.1016/s1474-4422(14)70102-4] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Allodynia (pain due to a stimulus that does not usually provoke pain) and hyperalgesia (increased pain from a stimulus that usually provokes pain) are prominent symptoms in patients with neuropathic pain. Both are seen in various peripheral neuropathies and central pain disorders, and affect 15-50% of patients with neuropathic pain. Allodynia and hyperalgesia are classified according to the sensory modality (touch, pressure, pinprick, cold, and heat) that is used to elicit the sensation. Peripheral sensitisation and maladaptive central changes contribute to the generation and maintenance of these reactions, with separate mechanisms in different subtypes of allodynia and hyperalgesia. Pain intensity and relief are important measures in clinical pain studies, but might be insufficient to capture the complexity of the pain experience. Better understanding of allodynia and hyperalgesia might provide clues to the underlying pathophysiology of neuropathic pain and, as such, they represent new or additional endpoints in pain trials.
Collapse
|
21
|
Abstract
A three-factor three-level Box-Behnken design(BBD) was employed to optimize capsaicin-loaded nanoparticles(Cap-NPs), and its properties in vitro and in vivo were evaluated. Particle size, morphological characteristics, entrapment efficiency of Cap-NPs were investigated respectively by Zetasizer, H7000 TEM and HPLC. Release, skin permeation and skin irritation test were investigated on mouse and rabbits. The predicted values of Cap-NPs were 94.50±6.33% for entrapment efficiency(EE) and 170.30±7.81 nm for particle mean diameter(PMD) under optimal conditions which were 346.33 bar (homogenization pressure, X1), 4.67 min(homogenization time, X2), and 15421.42 rpm (shear rate, X3). The in vitro permeation study showed that capsaicin permeability in NPs-gel was a 2.80-fold greater flux values than conventional ointment after 24 h. Cap-NPs-gel produce no observable skin irritation in rabbits within 72h. The optimized Cap-NPs-gel would be a good candidate for transdermal delivery.
Collapse
|
22
|
Cortical responses to C-fiber stimulation by intra-epidermal electrical stimulation: An MEG study. Neurosci Lett 2014; 570:69-74. [DOI: 10.1016/j.neulet.2014.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/24/2014] [Accepted: 04/04/2014] [Indexed: 10/25/2022]
|
23
|
Madsen CS, Finnerup NB, Baumgärtner U. Assessment of small fibers using evoked potentials. Scand J Pain 2014; 5:111-118. [DOI: 10.1016/j.sjpain.2013.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/16/2013] [Indexed: 01/08/2023]
Abstract
Abstract
Background and purpose
Conventional neurophysiological techniques do not assess the function of nociceptive pathways and are inadequate to detect abnormalities in patients with small-fiber damage. This overview aims to give an update on the methods and techniques used to assess small fiber (Aδ- and C-fibers) function using evoked potentials in research and clinical settings.
Methods
Noxious radiant or contact heat allows the recording of heat-evoked brain potentials commonly referred to as laser evoked potentials (LEPs) and contact heat-evoked potentials (CHEPs). Both methods reliably assess the loss of Aδ-fiber function by means of reduced amplitude and increased latency of late responses, whereas other methods have been developed to record ultra-late C-fiber-related potentials. Methodological considerations with the use of LEPs and CHEPs include fixed versus variable stimulation site, application pressure, and attentional factors. While the amplitude of LEPs and CHEPs often correlates with the reported intensity of the stimulation, these factors may also be dissociated. It is suggested that the magnitude of the response may be related to the saliency of the noxious stimulus (the ability of the stimulus to stand out from the background) rather than the pain perception.
Results
LEPs and CHEPs are increasingly used as objective laboratory tests to assess the pathways mediating thermal pain, but new methods have recently been developed to evaluate other small-fiber pathways. Pain-related electrically evoked potentials with a low-intensity electrical simulation have been proposed as an alternative method to selectively activate Aδ-nociceptors. A new technique using a flat tip mechanical stimulator has been shown to elicit brain potentials following activation of Type I A mechano-heat (AMH) fibers. These pinprick-evoked potentials (PEP) have a morphology resembling those of heat-evoked potentials following activation of Type II AMH fibers, but with a shorter latency. Cool-evoked potentials can be used for recording the non-nociceptive pathways for cooling. At present, the use of cool-evoked potentials is still in the experimental state. Contact thermodes designed to generate steep heat ramps may be programmed differently to generate cool ramps from a baseline of 35◦C down to 32◦C or 30◦C. Small-fiber evoked potentials are valuable tools for assessment of small-fiber function in sensory neuropathy, central nervous system lesion, and for the diagnosis of neuropathic pain. Recent studies suggest that both CHEPs and pinprick-evoked potentials may also be convenient tools to assess sensitization of the nociceptive system.
Conclusions
In future studies, small-fiber evoked potentials may also be used in studies that aim to understand pain mechanisms including different neuropathic pain phenotypes, such as cold- or touch-evoked allodynia, and to identify predictors of response to pharmacological pain treatment.
Implications
Future studies are needed for some of the newly developed methods.
Collapse
Affiliation(s)
- Caspar Skau Madsen
- Danish Pain Research Center , Aarhus University Hospital , Aarhus , Denmark
| | | | - Ulf Baumgärtner
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM) , Heidelberg University , Mannheim , Germany
| |
Collapse
|
24
|
Iannetti GD, Baumgärtner U, Tracey I, Treede RD, Magerl W. Pinprick-evoked brain potentials: a novel tool to assess central sensitization of nociceptive pathways in humans. J Neurophysiol 2013; 110:1107-16. [DOI: 10.1152/jn.00774.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although hyperalgesia to mechanical stimuli is a frequent sign in patients with inflammation or neuropathic pain, there is to date no objective electrophysiological measure for its evaluation in the clinical routine. Here we describe a technique for recording the electroencephalographic (EEG) responses elicited by mechanical stimulation with a flat-tip probe (diameter 0.25 mm, force 128 mN). Such probes activate Aδ nociceptors and are widely used to assess the presence of secondary hyperalgesia, a psychophysical correlate of sensitization in the nociceptive system. The corresponding pinprick-evoked potentials (PEPs) were recorded in 10 subjects during stimulation of the right and left hand dorsum before and after intradermal injection of capsaicin into the right hand and in 1 patient with a selective lesion of the right spinothalamic tract. PEPs in response to stimulation of normal skin were characterized by a vertex negative-positive (NP) complex, with N/P latencies and amplitudes of 111/245 ms and 3.5/11 μV, respectively. All subjects developed a robust capsaicin-induced increase in the pain elicited by pinprick stimulation of the secondary hyperalgesic area (+91.5%, P < 0.005). Such stimulation also resulted in a significant increase of the N-wave amplitude (+92.9%, P < 0.005), but not of the P wave (+6.6%, P = 0.61). In the patient, PEPs during stimulation of the hypoalgesic side were reduced. These results indicate that PEPs 1) reflect cortical activities triggered by somatosensory input transmitted in Aδ primary sensory afferents and spinothalamic projection neurons, 2) allow quantification of experimentally induced secondary mechanical hyperalgesia, and 3) have the potential to become a diagnostic tool to substantiate mechanical hyperalgesia in patients with presumed central sensitization.
Collapse
Affiliation(s)
- G. D. Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | - U. Baumgärtner
- Chair of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany; and
| | - I. Tracey
- FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, United Kingdom
| | - R. D. Treede
- Chair of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany; and
| | - W. Magerl
- Chair of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany; and
| |
Collapse
|
25
|
Ulrich A, Haefeli J, Blum J, Min K, Curt A. Improved diagnosis of spinal cord disorders with contact heat evoked potentials. Neurology 2013; 80:1393-9. [DOI: 10.1212/wnl.0b013e31828c2ed1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective:To evaluate the sensitivity of contact heat evoked potentials (CHEPs) compared with dermatomal somatosensory evoked potentials (dSSEPs) and clinical sensory testing in myelopathic spinal cord disorders (SCDs).Methods:In a prospective cohort study, light-touch (LT) and pinprick (PP) testing was complemented by dermatomal CHEPs and dSSEPs in patients with a confirmed SCD as defined by MRI. Patients with different etiologies (i.e., traumatic and nontraumatic) and varying degrees of spinal cord damage (i.e., completeness) were included. SCD was distinguished into 3 categories according to MRI pattern and neurologic examination: a) complete, b) incomplete-diffuse, and c) central or anterior cord damage.Results:Seventy-five patients were included (complete n = 7, incomplete-diffuse n = 33, central/anterior n = 35). In total, 319 dermatomes were tested with combined CHEPs and dSSEPs. CHEPs, dSSEPs, and clinical sensory testing were comparably sensitive to detect the myelopathy in complete (CHEPs 100%, dSSEPs 91%, PP and LT 82%) and incomplete-diffuse (CHEPs 92%, dSSEPs and PP 86%, LT 81%, p > 0.05 for all comparisons) cord damage. In central/anterior cord damage, CHEPs showed a significantly higher sensitivity than dSSEPs (89% compared with 24%, p < 0.001) and clinical sensory testing (PP 62%, LT 57%, p < 0.05). A subclinical sensory impairment was detected more frequently by CHEPs than dSSEPs (60% compared with 29%, p = 0.001).Conclusions:Assessment of spinothalamic pathways with CHEPs is reliable and revealed the highest sensitivity in all SCDs. Specifically in incomplete lesions that spare dorsal pathways, CHEPs are sensitive to complement the clinical diagnosis.
Collapse
|