1
|
Cai Y, Li J, Fan K, Zhang D, Lu H, Chen G. Downregulation of chloride voltage-gated channel 7 contributes to hyperalgesia following spared nerve injury. J Biol Chem 2024; 300:107779. [PMID: 39276933 PMCID: PMC11490881 DOI: 10.1016/j.jbc.2024.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Alterations in anion balance potential, along with the involvement of cation-chloride cotransporters, play pivotal roles in the development of hyperalgesia after peripheral nerve injury. Chloride voltage-gated channel seven (CLCN7) is the predominant member of the CLC protein family. Investigations on CLCN7 have focused primarily on its involvement in osteosclerosis and lysosomal storage disorders; nevertheless, its contribution to neuropathic pain has not been determined. In this investigation, we noted high expression of CLCN7 in neurons situated within the spinal dorsal horns and dorsal root ganglions (DRGs). Immunofluorescence analysis revealed that CLCN7 was predominantly distributed among IB4-positive and CGRP-positive neurons. Furthermore, the expression of CLCN7 was observed to be mainly reduced in neurons within the spinal dorsal horns and in small- and medium-sized neurons located in the DRGs of spared nerve injury mice. Knockdown of CLCN7 via siRNA in the DRGs resulted in increased mechanical and thermal hyperalgesia in naïve mice. Furthermore, the excitability of cultured DRG neurons in vitro was augmented upon treatment with CLCN7 siRNA. These findings suggested that CLCN7 downregulation following SNI was crucial for the manifestation of mechanical and thermal hyperalgesia, highlighting potential targeting strategies for treating neuropathic pain.
Collapse
Affiliation(s)
- Yunyun Cai
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
| | - Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Kewei Fan
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
| | - Dongmei Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Hongjian Lu
- Department of Rehabilitation Medicine, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China; Jiangsu Provincial Medical Key Discipline (Laboratory) Cultivation Unit of Immunology, Nantong First People's Hospital, Nantong, Jiangsu, China; Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
2
|
Karst H, Droogers WJ, van der Weerd N, Damsteegt R, van Kroonenburg N, Sarabdjitsingh RA, Joëls M. Acceleration of GABA-switch after early life stress changes mouse prefrontal glutamatergic transmission. Neuropharmacology 2023; 234:109543. [PMID: 37061088 DOI: 10.1016/j.neuropharm.2023.109543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Early life stress (ELS) alters the excitation-inhibition-balance (EI-balance) in various rodent brain areas and may be responsible for behavioral impairment later in life. The EI-balance is (amongst others) influenced by the switch of GABAergic transmission from excitatory to inhibitory, the so-called "GABA-switch". Here, we investigated how ELS affects the GABA-switch in mouse infralimbic Prefrontal Cortex layer 2/3 neurons, using the limited-nesting-and-bedding model. In ELS mice, the GABA-switch occurred already between postnatal day (P) 6 and P9, as opposed to P15-P21 in controls. This was associated with increased expression of the inward chloride transporter NKCC1, compared to the outward chloride transporter KCC2, both of which are important for the intracellular chloride concentration and, hence, the GABA reversal potential (Erev). Chloride transporters are not only important for regulating chloride concentration postsynaptically, but also presynaptically. Depending on the Erev of GABA, presynaptic GABAA receptor stimulation causes a depolarization or hyperpolarization, and thereby enhanced or reduced fusion of glutamate vesicles respectively, in turn changing the frequency of miniature postsynaptic currents (mEPSCs). In accordance, bumetanide, a blocker of NKCC1, shifted the Erev GABA towards more hyperpolarized levels in P9 control mice and reduced the mEPSC frequency. Other modulators of chloride transporters, e.g. VU0463271 (a KCC2 antagonist) and aldosterone -which increases NKCC1 expression-did not affect postsynaptic Erev in ELS P9 mice, but did increase the mEPSC frequency. We conclude that the mouse GABA-switch is accelerated after ELS, affecting both the pre- and postsynaptic chloride homeostasis, the former altering glutamatergic transmission. This may considerably affect brain development.
Collapse
Affiliation(s)
- Henk Karst
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Wouter J Droogers
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Nelleke van der Weerd
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Ruth Damsteegt
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Nicky van Kroonenburg
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - R Angela Sarabdjitsingh
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Marian Joëls
- Dept Translational Neuroscience, University Medical Center Utrecht, Utrecht University, the Netherlands; University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|
3
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Kurki SN, Uvarov P, Pospelov AS, Trontti K, Hübner AK, Srinivasan R, Watanabe M, Hovatta I, Hübner CA, Kaila K, Virtanen MA. Expression patterns of NKCC1 in neurons and non-neuronal cells during cortico-hippocampal development. Cereb Cortex 2022; 33:5906-5923. [PMID: 36573432 PMCID: PMC10183754 DOI: 10.1093/cercor/bhac470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 12/28/2022] Open
Abstract
Abstract
The Na-K-2Cl cotransporter NKCC1 is widely expressed in cells within and outside the brain. However, our understanding of its roles in brain functions throughout development, as well as in neuropsychiatric and neurological disorders, has been severely hindered by the lack of reliable data on its developmental and (sub)cellular expression patterns. We provide here the first properly controlled analysis of NKCC1 protein expression in various cell types of the mouse brain using custom-made antibodies and an NKCC1 knock-out validated immunohistochemical procedure, with parallel data based on advanced mRNA approaches. NKCC1 protein and mRNA are expressed at remarkably high levels in oligodendrocytes. In immature neurons, NKCC1 protein was located in the somata, whereas in adult neurons, only NKCC1 mRNA could be clearly detected. NKCC1 immunoreactivity is also seen in microglia, astrocytes, developing pericytes, and in progenitor cells of the dentate gyrus. Finally, a differential expression of NKCC1 splice variants was observed, with NKCC1a predominating in non-neuronal cells and NKCC1b in neurons. Taken together, our data provide a cellular basis for understanding NKCC1 functions in the brain and enable the identification of major limitations and promises in the development of neuron-targeting NKCC1-blockers.
Collapse
Affiliation(s)
- Samu N Kurki
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Pavel Uvarov
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Alexey S Pospelov
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Kalevi Trontti
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
- University of Helsinki SleepWell Research Program, Faculty of Medicine, , 00014 Helsinki , Finland
- University of Helsinki Department of Psychology and Logopedics, , 00014 Helsinki , Finland
| | - Antje K Hübner
- Jena University Hospital, Friedrich Schiller Universität Institute of Human Genetics, , 07747 Jena , Germany
| | - Rakenduvadhana Srinivasan
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Masahiko Watanabe
- Hokkaido University Department of Anatomy, Faculty of Medicine, , Sapporo 060–8638 , Japan
| | - Iiris Hovatta
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
- University of Helsinki SleepWell Research Program, Faculty of Medicine, , 00014 Helsinki , Finland
- University of Helsinki Department of Psychology and Logopedics, , 00014 Helsinki , Finland
| | - Christian A Hübner
- Jena University Hospital, Friedrich Schiller Universität Institute of Human Genetics, , 07747 Jena , Germany
| | - Kai Kaila
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| | - Mari A Virtanen
- University of Helsinki Molecular and Integrative Biosciences, , 00014 Helsinki , Finland
- Helsinki Institute of Life Science, University of Helsinki Neuroscience Center, , 00014 Helsinki , Finland
| |
Collapse
|
5
|
Zhang YY, Liu F, Fang ZH, Li YL, Liao HL, Song QX, Zhou C, Shen JF. Differential roles of NMDAR subunits 2A and 2B in mediating peripheral and central sensitization contributing to orofacial neuropathic pain. Brain Behav Immun 2022; 106:129-146. [PMID: 36038077 DOI: 10.1016/j.bbi.2022.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
The spinal N-methyl-d-aspartate receptor (NMDAR), particularly their subtypes NR2A and NR2B, plays pivotal roles in neuropathic and inflammatory pain. However, the roles of NR2A and NR2B in orofacial pain and the exact molecular and cellular mechanisms mediating nervous system sensitization are still poorly understood. Here, we exhaustively assessed the regulatory effect of NMDAR in mediating peripheral and central sensitization in orofacial neuropathic pain. Von-Frey filament tests showed that the inferior alveolar nerve transection (IANX) induced ectopic allodynia behavior in the whisker pad of mice. Interestingly, mechanical allodynia was reversed in mice lacking NR2A and NR2B. IANX also promoted the production of peripheral sensitization-related molecules, such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, brain-derived neurotrophic factor (BDNF), and chemokine upregulation (CC motif) ligand 2 (CCL2), and decreased the inward potassium channel (Kir) 4.1 on glial cells in the trigeminal ganglion, but NR2A conditional knockout (CKO) mice prevented these alterations. In contrast, NR2B CKO only blocked the changes of Kir4.1, IL-1β, and TNF-α and further promoted the production of CCL2. Central sensitization-related c-fos, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) were promoted and Kir4.1 was reduced in the spinal trigeminal caudate nucleus by IANX. Differential actions of NR2A and NR2B in mediating central sensitization were also observed. Silencing of NR2B was effective in reducing c-fos, GFAP, and Iba-1 but did not affect Kir4.1. In contrast, NR2A CKO only altered Iba-1 and Kir4.1 and further increased c-fos and GFAP. Gain-of-function and loss-of-function approaches provided insight into the differential roles of NR2A and NR2B in mediating peripheral and central nociceptive sensitization induced by IANX, which may be a fundamental basis for advancing knowledge of the neural mechanisms' reaction to nerve injury.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin-Xuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Szmyd B, Sołek J, Błaszczyk M, Jankowski J, Liberski PP, Jaskólski DJ, Wysiadecki G, Karuga FF, Gabryelska A, Sochal M, Tubbs RS, Radek M. The Underlying Pathogenesis of Neurovascular Compression Syndromes: A Systematic Review. Front Mol Neurosci 2022; 15:923089. [PMID: 35860499 PMCID: PMC9289473 DOI: 10.3389/fnmol.2022.923089] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular compression syndromes (NVC) are challenging disorders resulting from the compression of cranial nerves at the root entry/exit zone. Clinically, we can distinguish the following NVC conditions: trigeminal neuralgia, hemifacial spasm, and glossopharyngeal neuralgia. Also, rare cases of geniculate neuralgia and superior laryngeal neuralgia are reported. Other syndromes, e.g., disabling positional vertigo, arterial hypertension in the course of NVC at the CN IX-X REZ and torticollis, have insufficient clinical evidence for microvascular decompression. The exact pathomechanism leading to characteristic NVC-related symptoms remains unclear. Proposed etiologies have limited explanatory scope. Therefore, we have examined the underlying pathomechanisms stated in the medical literature. To achieve our goal, we systematically reviewed original English language papers available in Pubmed and Web of Science databases before 2 October 2021. We obtained 1694 papers after eliminating duplicates. Only 357 original papers potentially pertaining to the pathogenesis of NVC were enrolled in full-text assessment for eligibility. Of these, 63 were included in the final analysis. The systematic review suggests that the anatomical and/or hemodynamical changes described are insufficient to account for NVC-related symptoms by themselves. They must coexist with additional changes such as factors associated with the affected nerve (e.g., demyelination, REZ modeling, vasculature pathology), nucleus hyperexcitability, white and/or gray matter changes in the brain, or disturbances in ion channels. Moreover, the effects of inflammatory background, altered proteome, and biochemical parameters on symptomatic NVC cannot be ignored. Further studies are needed to gain better insight into NVC pathophysiology.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Julia Sołek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Maciej Błaszczyk
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Jakub Jankowski
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
| | - Paweł P. Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Dariusz J. Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Wysiadecki
- Department of Normal and Clinical Anatomy, Medical University of Lodz, Lodz, Poland
| | - Filip F. Karuga
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - R. Shane Tubbs
- Department of Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, LA, United States
- Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Anatomical Sciences, St. George's University, St. George's, Grenada
- University of Queensland, Brisbane, QLD, Australia
| | - Maciej Radek
- Department of Neurosurgery, Spine and Peripheral Nerve Surgery, Medical University of Lodz, Lodz, Poland
- *Correspondence: Maciej Radek
| |
Collapse
|
7
|
Liedtke W. Long March Toward Safe and Effective Analgesia by Enhancing Gene Expression of Kcc2: First Steps Taken. Front Mol Neurosci 2022; 15:865600. [PMID: 35645734 PMCID: PMC9137411 DOI: 10.3389/fnmol.2022.865600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Low intraneuronal chloride in spinal cord dorsal horn pain relay neurons is critical for physiologic transmission of primary pain afferents because low intraneuronal chloride dictates whether GABA-ergic and glycin-ergic neurotransmission is inhibitory. If the neuronal chloride elevates to pathologic levels, then spinal cord primary pain relay becomes leaky and exhibits the behavioral hallmarks of pathologic pain, namely hypersensitivity and allodynia. Low chloride in spinal cord dorsal horn neurons is maintained by proper gene expression of Kcc2 and sustained physiologic function of the KCC2 chloride extruding electroneutral transporter. Peripheral nerve injury and other forms of neural injury evoke greatly diminished Kcc2 gene expression and subsequent corruption of inhibitory neurotransmission in the spinal cord dorsal horn, thus causing derailment of the gate function for pain. Here I review key discoveries that have helped us understand these fundamentals, and focus on recent insights relating to the discovery of Kcc2 gene expression enhancing compounds via compound screens in neurons. One such study characterized the kinase inhibitor, kenpaullone, more in-depth, revealing its function as a robust and long-lasting analgesic in preclinical models of nerve injury and cancer bone pain, also elucidating its mechanism of action via GSK3β inhibition, diminishing delta-catenin phosphorylation, and facilitating its nuclear transfer and subsequent enhancement of Kcc2 gene expression by de-repressing Kaiso epigenetic transcriptional regulator. Future directions re Kcc2 gene expression enhancement are discussed, namely combination with other analgesics and analgesic methods, such as spinal cord stimulation and electroacupuncture, gene therapy, and leveraging Kcc2 gene expression-enhancing nanomaterials.
Collapse
|
8
|
Zhang YY, Liu F, Lin J, Li YL, Fang ZH, Zhou C, Li CJ, Shen JF. Activation of the N-methyl-D-aspartate receptor contributes to orofacial neuropathic and inflammatory allodynia by facilitating calcium-calmodulin-dependent protein kinase II phosphorylation in mice. Brain Res Bull 2022; 185:174-192. [DOI: 10.1016/j.brainresbull.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022]
|
9
|
Puja G, Sonkodi B, Bardoni R. Mechanisms of Peripheral and Central Pain Sensitization: Focus on Ocular Pain. Front Pharmacol 2021; 12:764396. [PMID: 34916942 PMCID: PMC8669969 DOI: 10.3389/fphar.2021.764396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Persistent ocular pain caused by corneal inflammation and/or nerve injury is accompanied by significant alterations along the pain axis. Both primary sensory neurons in the trigeminal nerves and secondary neurons in the spinal trigeminal nucleus are subjected to profound morphological and functional changes, leading to peripheral and central pain sensitization. Several studies using animal models of inflammatory and neuropathic ocular pain have provided insight about the mechanisms involved in these maladaptive changes. Recently, the advent of new techniques such as optogenetics or genetic neuronal labelling has allowed the investigation of identified circuits involved in nociception, both at the spinal and trigeminal level. In this review, we will describe some of the mechanisms that contribute to the perception of ocular pain at the periphery and at the spinal trigeminal nucleus. Recent advances in the discovery of molecular and cellular mechanisms contributing to peripheral and central pain sensitization of the trigeminal pathways will be also presented.
Collapse
Affiliation(s)
- Giulia Puja
- Department of Life Sciences, University of Modena and Reggio Emilia, Emilia-Romagna, Italy
| | - Balazs Sonkodi
- Department of Health Sciences and Sport Medicine, University of Physical Education, Budapest, Hungary
| | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Emilia-Romagna, Italy
| |
Collapse
|
10
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Ho YJ, Chang J, Yeh KT, Gong Z, Lin YM, Lu JW. Prognostic and Clinical Implications of WNK Lysine Deficient Protein Kinase 1 Expression in Patients With Hepatocellular Carcinoma. In Vivo 2021; 34:2631-2640. [PMID: 32871793 DOI: 10.21873/invivo.12081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Hepatocellular carcinoma (HCC) is a particularly malignant form of cancer prevalent throughout the world; however, there is a pressing need for HCC biomarkers to facilitate prognosis and risk assessment. PATIENTS AND METHODS This paper reports on the potential prognostic value of WNK lysine deficient protein kinase 1 (WNK1) in cases of HCC. We analyzed the expression of WNK1 at the mRNA level using omics data from the UALCAN database. We then verified our findings through the immunohistochemical (IHC) staining of various human cancer tissue as well as 59 HCC samples paired with corresponding normal tissues. The prognostic value of mRNA or protein expression by WNK1 was evaluated using the Kaplan-Meier method. RESULTS Initial screening results revealed significantly higher WNK1 expression levels in HCC tissue compared to normal tissue. Verification using the paired HCC samples confirmed that the expression of WNK1 was indeed significantly higher in HCC tissue samples than in adjacent normal tissues. High WNK1 expression levels were significantly correlated with clinicopathological variables, including gender and histologic grade. Kaplan-Meier survival analysis revealed that high WNK1 expression levels were associated with poor HCC prognosis. Finally, univariate and multivariate analysis identified WNK1 as a prognostic factor for TNM stage in cases of HCC. CONCLUSION In summary, WNK1 is overexpressed at the mRNA and protein levels, and correlated with poor prognosis. Thus, WNK1 expression could potentially be used as a biomarker in HCC prognosis.
Collapse
Affiliation(s)
- Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, R.O.C.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, R.O.C
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C. .,School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.,Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
García-Magro N, Martin YB, Negredo P, Zafra F, Avendaño C. Microglia and Inhibitory Circuitry in the Medullary Dorsal Horn: Laminar and Time-Dependent Changes in a Trigeminal Model of Neuropathic Pain. Int J Mol Sci 2021; 22:4564. [PMID: 33925417 PMCID: PMC8123867 DOI: 10.3390/ijms22094564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Craniofacial neuropathic pain affects millions of people worldwide and is often difficult to treat. Two key mechanisms underlying this condition are a loss of the negative control exerted by inhibitory interneurons and an early microglial reaction. Basic features of these mechanisms, however, are still poorly understood. Using the chronic constriction injury of the infraorbital nerve (CCI-IoN) model of neuropathic pain in mice, we have examined the changes in the expression of GAD, the synthetic enzyme of GABA, and GlyT2, the membrane transporter of glycine, as well as the microgliosis that occur at early (5 days) and late (21 days) stages post-CCI in the medullary and upper spinal dorsal horn. Our results show that CCI-IoN induces a down-regulation of GAD at both postinjury survival times, uniformly across the superficial laminae. The expression of GlyT2 showed a more discrete and heterogeneous reduction due to the basal presence in lamina III of 'patches' of higher expression, interspersed within a less immunoreactive 'matrix', which showed a more substantial reduction in the expression of GlyT2. These patches coincided with foci lacking any perceptible microglial reaction, which stood out against a more diffuse area of strong microgliosis. These findings may provide clues to better understand the neural mechanisms underlying allodynia in neuropathic pain syndromes.
Collapse
Affiliation(s)
- Nuria García-Magro
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, 28029 Madrid, Spain; (N.G.-M.); (P.N.)
- Ph.D. Programme in Neuroscience, Doctoral School, Autónoma University of Madrid, 28049 Madrid, Spain
| | - Yasmina B. Martin
- Departamento de Anatomía, Facultad de Medicina, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, 28029 Madrid, Spain; (N.G.-M.); (P.N.)
| | - Francisco Zafra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, 28029 Madrid, Spain; (N.G.-M.); (P.N.)
| |
Collapse
|
13
|
GABAergic Mechanisms Can Redress the Tilted Balance between Excitation and Inhibition in Damaged Spinal Networks. Mol Neurobiol 2021; 58:3769-3786. [PMID: 33826070 PMCID: PMC8279998 DOI: 10.1007/s12035-021-02370-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Correct operation of neuronal networks depends on the interplay between synaptic excitation and inhibition processes leading to a dynamic state termed balanced network. In the spinal cord, balanced network activity is fundamental for the expression of locomotor patterns necessary for rhythmic activation of limb extensor and flexor muscles. After spinal cord lesion, paralysis ensues often followed by spasticity. These conditions imply that, below the damaged site, the state of balanced networks has been disrupted and that restoration might be attempted by modulating the excitability of sublesional spinal neurons. Because of the widespread expression of inhibitory GABAergic neurons in the spinal cord, their role in the early and late phases of spinal cord injury deserves full attention. Thus, an early surge in extracellular GABA might be involved in the onset of spinal shock while a relative deficit of GABAergic mechanisms may be a contributor to spasticity. We discuss the role of GABA A receptors at synaptic and extrasynaptic level to modulate network excitability and to offer a pharmacological target for symptom control. In particular, it is proposed that activation of GABA A receptors with synthetic GABA agonists may downregulate motoneuron hyperexcitability (due to enhanced persistent ionic currents) and, therefore, diminish spasticity. This approach might constitute a complementary strategy to regulate network excitability after injury so that reconstruction of damaged spinal networks with new materials or cell transplants might proceed more successfully.
Collapse
|
14
|
Stress-Induced Alteration in Chloride Transporters in the Trigeminal Nerve May Explain the Comorbidity between Depression and Migraine. PSYCHIATRY INTERNATIONAL 2020. [DOI: 10.3390/psychiatryint1020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Migraine is frequently comorbid with depression and anxiety disorders. In the case of depression and panic disorder, the associations seem to be bidirectional. Stress (activation of the hypothalamic-pituitary-adrenal axis) is thought to be involved in increasing the attack frequency. In the current review, it is argued that elevated levels of cortisol increase the function of chloride-ion transporter NKCC1 and decrease the function of chloride-extruder KCC2 in the trigeminal nerve. This leads to a diminished inhibitory effect of gamma-aminobutyric acid (GABA) and an enhanced likelihood of a migraine attack. Since migraine attacks themselves are stressful, and since brain areas are activated that could contribute to panic, anxiety and depression, a number of self-sustaining circular processes could occur that would explain the bi-directionality of the associations. On the basis of this hypothesis, several novel therapeutic approaches to counter the pathological process can be proposed. These include inhibition of corticotrophin releasing factor by CRF1 receptor antagonists, blockade of adrenocorticotropic hormone (ACTH) at the MC2 receptor, and inhibition of the hyperactive NKCC1 chloride-transporter.
Collapse
|
15
|
Dong W, Jin SC, Allocco A, Zeng X, Sheth AH, Panchagnula S, Castonguay A, Lorenzo LÉ, Islam B, Brindle G, Bachand K, Hu J, Sularz A, Gaillard J, Choi J, Dunbar A, Nelson-Williams C, Kiziltug E, Furey CG, Conine S, Duy PQ, Kundishora AJ, Loring E, Li B, Lu Q, Zhou G, Liu W, Li X, Sierant MC, Mane S, Castaldi C, López-Giráldez F, Knight JR, Sekula RF, Simard JM, Eskandar EN, Gottschalk C, Moliterno J, Günel M, Gerrard JL, Dib-Hajj S, Waxman SG, Barker FG, Alper SL, Chahine M, Haider S, De Koninck Y, Lifton RP, Kahle KT. Exome Sequencing Implicates Impaired GABA Signaling and Neuronal Ion Transport in Trigeminal Neuralgia. iScience 2020; 23:101552. [PMID: 33083721 PMCID: PMC7554653 DOI: 10.1016/j.isci.2020.101552] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Trigeminal neuralgia (TN) is a common, debilitating neuropathic face pain syndrome often resistant to therapy. The familial clustering of TN cases suggests that genetic factors play a role in disease pathogenesis. However, no unbiased, large-scale genomic study of TN has been performed to date. Analysis of 290 whole exome-sequenced TN probands, including 20 multiplex kindreds and 70 parent-offspring trios, revealed enrichment of rare, damaging variants in GABA receptor-binding genes in cases. Mice engineered with a TN-associated de novo mutation (p.Cys188Trp) in the GABAA receptor Cl− channel γ-1 subunit (GABRG1) exhibited trigeminal mechanical allodynia and face pain behavior. Other TN probands harbored rare damaging variants in Na+ and Ca+ channels, including a significant variant burden in the α-1H subunit of the voltage-gated Ca2+ channel Cav3.2 (CACNA1H). These results provide exome-level insight into TN and implicate genetically encoded impairment of GABA signaling and neuronal ion transport in TN pathogenesis.
Genomic analysis of trigeminal neuralgia (TN) using exome sequencing Rare mutations in GABA signaling and ion transport genes are enriched in TN cases Generation of a genetic TN mouse model engineered with a patient-specific mutation
Collapse
Affiliation(s)
- Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - August Allocco
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Amar H Sheth
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Annie Castonguay
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | | | - Barira Islam
- University College London, School of Pharmacy, London, England
| | | | - Karine Bachand
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Jamie Hu
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Agata Sularz
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan Gaillard
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA.,Department of Biomedical Sciences, Korea University College of Medicine, 02841 Seoul, Korea
| | - Ashley Dunbar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Sierra Conine
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Erin Loring
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Geyu Zhou
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Xinyue Li
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Michael C Sierant
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, West Haven, CT, USA
| | | | | | | | - Raymond F Sekula
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emad N Eskandar
- Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, New York
| | | | | | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jason L Gerrard
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Sulayman Dib-Hajj
- Center for Neuroscience & Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Neurology; Yale University, New Haven, CT, USA
| | - Stephen G Waxman
- Center for Neuroscience & Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Neurology; Yale University, New Haven, CT, USA
| | - Fred G Barker
- Harvard Medical School, Boston, MA, USA.,Cancer Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohamed Chahine
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.,Department of Medicine, Université Laval, Québec, QC, Canada
| | - Shozeb Haider
- University College London, School of Pharmacy, London, England
| | - Yves De Koninck
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
16
|
Differential expression of Na +/K +/Cl - cotransporter 1 in neurons and glial cells within the superficial spinal dorsal horn of rodents. Sci Rep 2020; 10:11715. [PMID: 32678166 PMCID: PMC7367302 DOI: 10.1038/s41598-020-68638-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Although convincing experimental evidence indicates that Na+/K+/Cl- cotransporter 1 (NKCC1) is involved in spinal nociceptive information processing and in the generation of hyperalgesia and allodynia in chronic pain states, the cellular distribution of NKCC1 in the superficial spinal dorsal horn is still poorly understood. Because this important piece of knowledge is missing, the effect of NKCC1 on pain processing is still open to conflicting interpretations. In this study, to provide the missing experimental data, we investigated the cellular distribution of NKCC1 in the superficial spinal dorsal horn by immunohistochemical methods. We demonstrated for the first time that almost all spinal axon terminals of peptidergic nociceptive primary afferents express NKCC1. In contrast, virtually all spinal axon terminals of nonpeptidergic nociceptive primary afferents were negative for NKCC1. Data on the colocalization of NKCC1 with axonal and glial markers indicated that it is almost exclusively expressed by axon terminals and glial cells in laminae I-IIo. In lamina IIi, however, we observed a strong immunostaining for NKCC1 also in the dendrites and cell bodies of PV-containing inhibitory neurons and a weak staining in PKCγ-containing excitatory neurons. Our results facilitate further thinking about the role of NKCC1 in spinal pain processing.
Collapse
|
17
|
Hughes DI, Todd AJ. Central Nervous System Targets: Inhibitory Interneurons in the Spinal Cord. Neurotherapeutics 2020; 17:874-885. [PMID: 33029722 PMCID: PMC7641291 DOI: 10.1007/s13311-020-00936-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Pain is a percept of critical importance to our daily survival. In most cases, it serves both an adaptive function by helping us respond appropriately in a potentially hostile environment and also a protective role by alerting us to tissue damage. Normally, it is evoked by the activation of peripheral nociceptive nerve endings and the subsequent relay of information to distinct cortical and sub-cortical regions, but under pathological conditions that result in chronic pain, it can become spontaneous. Given that one in three chronic pain patients do not respond to the treatments currently available, the need for more effective analgesics is evident. Two principal obstacles to the development of novel analgesic therapies are our limited understanding of how neuronal circuits that comprise these pain pathways transmit and modulate sensory information under normal circumstances and how these circuits change under pathological conditions leading to chronic pain states. In this review, we focus on the role of inhibitory interneurons in setting pain thresholds and, in particular, how disinhibition in the spinal dorsal horn can lead to aberrant sensory processing associated with chronic pain states.
Collapse
Affiliation(s)
- David I Hughes
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland.
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
18
|
Li C, Lei Y, Tian Y, Xu S, Shen X, Wu H, Bao S, Wang F. The etiological contribution of GABAergic plasticity to the pathogenesis of neuropathic pain. Mol Pain 2020; 15:1744806919847366. [PMID: 30977423 PMCID: PMC6509976 DOI: 10.1177/1744806919847366] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain developing after peripheral or central nerve injury is the result of pathological changes generated through complex mechanisms. Disruption in the homeostasis of excitatory and inhibitory neurons within the central nervous system is a crucial factor in the formation of hyperalgesia or allodynia occurring with neuropathic pain. The central GABAergic pathway has received attention for its extensive distribution and function in neural circuits, including the generation and development of neuropathic pain. GABAergic inhibitory changes that occur in the interneurons along descending modulatory and nociceptive pathways in the central nervous system are believed to generate neuronal plasticity, such as synaptic plasticity or functional plasticity of the related genes or proteins, that is the foundation of persistent neuropathic pain. The primary GABAergic plasticity observed in neuropathic pain includes GABAergic synapse homo- and heterosynaptic plasticity, decreased synthesis of GABA, down-expression of glutamic acid decarboxylase and GABA transporter, abnormal expression of NKCC1 or KCC2, and disturbed function of GABA receptors. In this review, we describe possible mechanisms associated with GABAergic plasticity, such as central sensitization and GABAergic interneuron apoptosis, and the epigenetic etiologies of GABAergic plasticity in neuropathic pain. Moreover, we summarize potential therapeutic targets of GABAergic plasticity that may allow for successful relief of hyperalgesia from nerve injury. Finally, we compare the effects of the GABAergic system in neuropathic pain to other types of chronic pain to understand the contribution of GABAergic plasticity to neuropathic pain.
Collapse
Affiliation(s)
- Caijuan Li
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanying Lei
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yi Tian
- 3 Department of Anesthesiology, Haikou Affiliated Hospital of Xiangya Medical School, Central South University, Haikou People's Hospital, Haikou, China
| | - Shiqin Xu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaofeng Shen
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Haibo Wu
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Senzhu Bao
- 2 Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, China
| | - Fuzhou Wang
- 1 Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,4 Group of Neuropharmacology and Neurophysiology, Division of Neuroscience, The Bonoi Academy of Science and Education, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Kosaka Y, Yafuso T, Shimizu-Okabe C, Kim J, Kobayashi S, Okura N, Ando H, Okabe A, Takayama C. Development and persistence of neuropathic pain through microglial activation and KCC2 decreasing after mouse tibial nerve injury. Brain Res 2020; 1733:146718. [PMID: 32045595 DOI: 10.1016/j.brainres.2020.146718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Gamma-amino butyric acid (GABA) is an inhibitory neurotransmitter in the mature brain, but is excitatory during development and after motor nerve injury. This difference in GABAergic action depends on the intracellular chloride ion concentration ([Cl-]i), primarily regulated by potassium chloride co-transporter 2 (KCC2). To reveal precise processes of the neuropathic pain through changes in GABAergic action, we prepared tibial nerve ligation and severance models using male mice, and examined temporal relationships amongst changes in (1) the mechanical withdrawal threshold in the sural nerve area, (2) localization of the molecules involved in GABAergic transmission and its upstream signaling in the dorsal horn, and (3) histology of the tibial nerve. In the ligation model, tibial nerve degeneration disappeared by day 56, but mechanical allodynia, reduced KCC2 localization, and increased microglia density remained until day 90. Microglia density was higher in the tibial zone than the sural zone before day 21, but this result was inverted after day 28. In contrast, in the severance model, all above changes were detected until day 28, but were simultaneously and significantly recovered by day 90. These results suggested that in male mice, allodynia may be caused by reduced GABAergic synaptic inhibition, resulting from elevated [Cl-]i after the reduction of KCC2 by activated microglia. Furthermore, our results suggested that factors from degenerating nerve terminals may diffuse into the sural zone, whereby they induced the development of allodynia in the sural nerve area, while other factors in the sural zone may mediate persistent allodynia through the same pathway.
Collapse
Affiliation(s)
- Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
20
|
Tashiro A, Bereiter DA. The effects of estrogen on temporomandibular joint pain as influenced by trigeminal caudalis neurons. J Oral Sci 2020; 62:150-155. [PMID: 32132330 DOI: 10.2334/josnusd.19-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The signs and symptoms of persistent temporomandibular joint (TMJ)/muscle disorder (TMJD) pain suggest the existence of a central neural dysfunction or a problem of pain amplification. The etiology of chronic TMJD is not known; however, female sex hormones have been identified as significant risk factors. Converging lines of evidence indicate that the junctional region between the trigeminal subnucleus caudalis (Vc) and the upper cervical spinal cord, termed the Vc/C1-2 region, is the primary site for the synaptic integration of sensory input from TMJ nociceptors. In this paper, the mechanisms behind the estrogen effects on the processing of nociceptive inputs by neurons in the Vc/C1-2 region reported by human and animal studies are reviewed. The Vc/C1-2 region has direct connections to endogenous pain and autonomic control pathways, which are modified by estrogen status and are suggested to be critical for somatomotor and autonomic reflex responses of TMJ-related sensory signals.
Collapse
Affiliation(s)
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry
| |
Collapse
|
21
|
Gao JL, Peng K, Shen MW, Hou YH, Qian XB, Meng XW, Ji FH, Wang LN, Yang JP. Suppression of WNK1-SPAK/OSR1 Attenuates Bone Cancer Pain by Regulating NKCC1 and KCC2. THE JOURNAL OF PAIN 2019; 20:1416-1428. [PMID: 31085334 DOI: 10.1016/j.jpain.2019.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Our preliminary experiment indicated the activation of with-nolysine kinases 1 (WNK1) in bone cancer pain (BCP) rats. This study aimed to investigate the underlying mechanisms via which WNK1 contributed to BCP. A rat model of BCP was induced by Walker-256 tumor cell implantation. WNK1 expression and distribution in the lumbar spinal cord dorsal horn and dorsal root ganglion were examined. SPS1-related proline/alanine-rich kinase (SPAK), oxidative stress-responsive kinase 1 (OSR1), sodium-potassium-chloride cotransporter 1 (NKCC1), and potassium-chloride cotransporter 2 (KCC2) expression were assessed. Pain behaviors including mechanical allodynia and movement-evoked pain were measured. BCP rats exhibited significant mechanical allodynia, with increased WNK1 expression in the dorsal horn and dorsal root ganglion neurons, elevated SPAK/OSR1 and NKCC1 expression in the dorsal root ganglion, and decreased KCC2 expression in the dorsal horn. WNK1 knock-down by small interfering alleviated mechanical allodynia and movement-evoked pain, inhibited WNK1-SPAK/OSR1-NKCC1 activities, and restored KCC2 expression. In addition, closantel (a WNK1-SPAK/OSR1 inhibitor) improved pain behaviors, downregulated SPAK/OSR1 and NKCC1 expression, and upregulated KCC2 expression in BCP rats. Activation of WNK1-SPAK/OSR1 signaling contributed to BCP in rats by modulating NKCC1 and KCC2 expression. Therefore, suppression of WNK1-SPAK/OSR1 may serve as a potential target for BCP therapy. PERSPECTIVE: Our findings demonstrated that the WNK1-SPAK/OSR1 signaling contributed to BCP in rats via regulating NKCC1 and KCC2. Suppressing this pathway reduced pain behaviors. Based on these findings, the WNK1-SPAK/OSR1 signaling may be a potential target for BCP therapy.
Collapse
Affiliation(s)
- Jian-Ling Gao
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ke Peng
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meng-Wei Shen
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Anesthesiology, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu, China
| | - Yong-Heng Hou
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Bo Qian
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Wen Meng
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Hai Ji
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Li-Na Wang
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian-Ping Yang
- Department of Anesthesiology, Intensive Care Medicine, and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
22
|
Paulsen RT, Burrell BD. Comparative studies of endocannabinoid modulation of pain. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190279. [PMID: 31544609 PMCID: PMC6790382 DOI: 10.1098/rstb.2019.0279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Cannabinoid-based therapies have long been used to treat pain, but there remain questions about their actual mechanisms and efficacy. From an evolutionary perspective, the cannabinoid system would appear to be highly conserved given that the most prevalent endogenous cannabinoid (endocannabinoid) transmitters, 2-arachidonyl glycerol and anandamide, have been found throughout the animal kingdom, at least in the species that have been analysed to date. This review will first examine recent findings regarding the potential conservation across invertebrates and chordates of the enzymes responsible for endocannabinoid synthesis and degradation and the receptors that these transmitters act on. Next, comparisons of how endocannabinoids modulate nociception will be examined for commonalities between vertebrates and invertebrates, with a focus on the medicinal leech Hirudo verbana. Evidence is presented that there are distinct, evolutionarily conserved anti-nociceptive and pro-nociceptive effects. The combined studies across various animal phyla demonstrate the utility of using comparative approaches to understand conserved mechanisms for modulating nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | - Brian D. Burrell
- Division of Basic Biomedical Sciences, Neuroscience, Nanotechnology, and Networks Program, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
23
|
Gradwell MA, Callister RJ, Graham BA. Reviewing the case for compromised spinal inhibition in neuropathic pain. J Neural Transm (Vienna) 2019; 127:481-503. [PMID: 31641856 DOI: 10.1007/s00702-019-02090-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
A striking and debilitating property of the nervous system is that damage to this tissue can cause chronic intractable pain, which persists long after resolution of the initial insult. This neuropathic form of pain can arise from trauma to peripheral nerves, the spinal cord, or brain. It can also result from neuropathies associated with disease states such as diabetes, human immunodeficiency virus/AIDS, herpes, multiple sclerosis, cancer, and chemotherapy. Regardless of the origin, treatments for neuropathic pain remain inadequate. This continues to drive research into the underlying mechanisms. While the literature shows that dysfunction in numerous loci throughout the CNS can contribute to chronic pain, the spinal cord and in particular inhibitory signalling in this region have remained major research areas. This review focuses on local spinal inhibition provided by dorsal horn interneurons, and how such inhibition is disrupted during the development and maintenance of neuropathic pain.
Collapse
Affiliation(s)
- M A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - R J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - B A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia.
| |
Collapse
|
24
|
Xia L, Liu MX, Zhong J, Dou NN. Pain threshold monitoring during chronic constriction injury of the infraorbital nerve in rats. Br J Neurosurg 2018; 33:409-412. [PMID: 30431370 DOI: 10.1080/02688697.2018.1538483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: The chronic constriction injury (CCI) of the infraorbital nerve (ION) has been used to establish an animal mode of trigeminal neuralgia (TN), but key parameters of the model have not been quantified until now. Objective: The aim of the study was to quantify a standard of pain threshold to evaluate a successful TN model in Sprague-Dawley (SD) rats. Methods: Forty-eight adult SD rats (200-220 g) underwent chronic constriction injury of the infraorbital nerve. The pain threshold was tested one day preoperatively (baseline) and day 1, 3, 7, 14, 28 postoperatively using the up-down method. At day 28, all the animals were killed by dislocation of the cervical spine and the trigeminal nerve specimens were removed for electron microscopy. Results: The baseline pain threshold was 14.40 ± 0.87 g. Postoperatively, all the rats presented an initial reduced sensitivity to mechanical stimulation from day 1 (15.63 ± 1.92 g) through 7 (17.39 ± 1.43 g) after the surgery. At day 14, 32 (66.7%) began to show significant mechanical allodynia (0.71 ± 0.43 g) which did not change significantly till day 28 (0.88 ± 0.54 g). These animals were regarded as successful TN models with a 95% confidence interval of the pain threshold of 0.58-1.27 at Day 14. The electron microscopy demonstrated homogeneously demyelinated changes in those successful TN model animals rather than severe or mild epineurial lesions in those unsuccessful model animals. Conclusion: Our study showed that an animal TN model could be established with a two-week chronic constriction injury of the infraorbital nerve. The mechanical allodynia index <1.27 at Day 14 was suggested as a criterion for a successful model.
Collapse
Affiliation(s)
- Lei Xia
- a Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Ming-Xing Liu
- a Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Jun Zhong
- a Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| | - Ning-Ning Dou
- a Department of Neurosurgery, XinHua Hospital (The Cranial Nerve Disease Center of Shanghai), Shanghai JiaoTong University School of Medicine , Shanghai , China
| |
Collapse
|
25
|
Sánchez-Brualla I, Boulenguez P, Brocard C, Liabeuf S, Viallat-Lieutaud A, Navarro X, Udina E, Brocard F. Activation of 5-HT 2A Receptors Restores KCC2 Function and Reduces Neuropathic Pain after Spinal Cord Injury. Neuroscience 2018; 387:48-57. [PMID: 28844001 DOI: 10.1016/j.neuroscience.2017.08.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022]
Abstract
Downregulation of the potassium chloride cotransporter type 2 (KCC2) after a spinal cord injury (SCI) disinhibits motoneurons and dorsal horn interneurons causing spasticity and neuropathic pain, respectively. We showed recently (Bos et al., 2013) that specific activation of 5-HT2A receptors by TCB-2 [(4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide] upregulates KCC2 function, restores motoneuronal inhibition and reduces SCI-induced spasticity. Here, we tested the potential analgesic effect of TCB-2 on central (thoracic hemisection) and peripheral [spared nerve injury (SNI)] neuropathic pain. We found mechanical and thermal hyperalgesia reduced by an acute administration of TCB-2 in rats with SCI. This analgesic effect was associated with an increase in dorsal horn membrane KCC2 expression and was prevented by pharmacological blockade of KCC2 with an intrathecal injection of DIOA [(dihydroindenyl)oxy]alkanoic acid]. In contrast, the SNI-induced neuropathic pain was not attenuated by TCB-2 although there was a slight increase of membrane KCC2 expression in the dorsal horn ipsilateral to the lesion. Up-regulation of KCC2 function by targeting 5-HT2A receptors, therefore, has therapeutic potential in the treatment of neuropathic pain induced by SCI but not by SNI.
Collapse
Affiliation(s)
- Irene Sánchez-Brualla
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France; Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pascale Boulenguez
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Cécile Brocard
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Sylvie Liabeuf
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Annelise Viallat-Lieutaud
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Esther Udina
- Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Frédéric Brocard
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix Marseille Université and Centre National de la Recherche Scientifique (CNRS), Marseille, France.
| |
Collapse
|
26
|
Hidaka S, Kanai Y, Takehana S, Syoji Y, Kubota Y, Uotsu N, Yui K, Shimazu Y, Takeda M. Systemic administration of α-lipoic acid suppresses excitability of nociceptive wide-dynamic range neurons in rat spinal trigeminal nucleus caudalis. Neurosci Res 2018; 144:14-20. [PMID: 29885345 DOI: 10.1016/j.neures.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Although a modulatory role has been reported for α-lipoic acid (LA) on T-type Ca2+ channels in the nervous system, the acute effects of LA in vivo, particularly on nociceptive transmission in the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous LA administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from seventeen SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was significantly and dose-dependently inhibited by LA (1-100 mM, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 5 min. These inhibitory effects lasted for approximately 10 min. These results suggest that acute intravenous LA administration suppresses trigeminal sensory transmission, including nociception, via possibly blocking T-type Ca2+ channels. LA may be used as a therapeutic agent for the treatment of trigeminal nociceptive pain.
Collapse
Affiliation(s)
- S Hidaka
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Y Kanai
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - S Takehana
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Y Syoji
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Y Kubota
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - N Uotsu
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - K Yui
- FANCL Health Science Research Center, Research Institute, FANCL Corporation, 12-13, Kamishinano, Totsuka-ku, Yokohama, Kanagawa, 244-0806, Japan
| | - Y Shimazu
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - M Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
27
|
Castro A, Li Y, Raver C, Chandra R, Masri R, Lobo MK, Keller A. Neuropathic pain after chronic nerve constriction may not correlate with chloride dysregulation in mouse trigeminal nucleus caudalis neurons. Pain 2017; 158:1366-1372. [PMID: 28426550 PMCID: PMC5482239 DOI: 10.1097/j.pain.0000000000000926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Changes in chloride reversal potential in rat spinal cord neurons have previously been associated with persistent pain in nerve injury and inflammation models. These changes correlate with a decrease in the expression of the potassium chloride transporter, KCC2, and with increases in neuronal excitability. Here, we test the hypothesis that similar changes occur in mice with neuropathic pain induced by chronic constriction injury of the trigeminal infraorbital nerve (CCI-ION). This model allows us to distinguish an acute pain phase (3-5 days after injury) from a persistent pain phase (12-14 days after CCI-ION). Chronic constriction injury of the trigeminal infraorbital nerve induced significant decreases in mechanical pain thresholds in both the acute and persistent phases. To estimate GABAA reversal potentials in neurons from trigeminal nucleus caudalis, we obtained perforated patch recordings in vitro. GABAA reversal potential decreased by 8% during the acute phase in unidentified neurons, but not in GABAergic interneurons. However, at 12 to 14 days after CCI-ION, GABAA reversal potential recovered to normal values. Quantitative real-time polymerase chain reaction analysis revealed no significant changes, at either 3 to 5 days or 12 to 14 days after CCI-ION, in either KCC2 or NKCC1. These findings suggest that CCI-ION in mice results in transient and modest changes in chloride reversal potentials, and that these changes may not persist during the late phase. This suggests that, in the mouse model of CCI-ION, chloride dysregulation may not have a prominent role in the central mechanisms leading to the maintenance of chronic pain.
Collapse
Affiliation(s)
- Alberto Castro
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Ying Li
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Charles Raver
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Ramesh Chandra
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Radi Masri
- Program in Neuroscience, University of Maryland
- Department of Endodontics, Prosthodontics and Operative Surgery, Baltimore College of Dentistry. Baltimore, MD 21201
| | - Mary Kay Lobo
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| | - Asaf Keller
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine
- Program in Neuroscience, University of Maryland
| |
Collapse
|
28
|
Rahman M, Shiozaki K, Okamoto K, Thompson R, Bereiter DA. Trigeminal brainstem modulation of persistent orbicularis oculi muscle activity in a rat model of dry eye. Neuroscience 2017; 349:208-219. [PMID: 28288901 PMCID: PMC5408357 DOI: 10.1016/j.neuroscience.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 01/16/2023]
Abstract
Altered corneal reflex activity is a common feature of dry eye disease (DE). Trigeminal sensory nerves supply the ocular surface and terminate at the trigeminal interpolaris/caudalis (ViVc) transition and spinomedullary (VcC1) regions. Although both regions contribute to corneal reflexes, their role under dry eye conditions is not well defined. This study assessed the influence of local inhibitory and excitatory amino acid neurotransmission at the ViVc transition and VcC1 regions on hypertonic saline (HS) evoked orbicularis oculi muscle activity (OOemg) in urethane-anesthetized male rats after exorbital gland removal (DE). HS increased the magnitude of long-duration OOemg activity (OOemgL, >200ms) in DE compared to sham rats, while short-duration OOemg activity (OOemgS, <200ms) was similar for both groups. Inhibition of the ViVc transition by muscimol, a GABAA receptor agonist, greatly reduced HS-evoked OOemgL activity in DE rats, whereas injections at the VcC1 region had only minor effects in both groups. Blockade of GABAA receptors by bicuculline methiodide at the ViVc transition or VcC1 region increased HS-evoked OOemgL activity in DE rats. Blockade of N-methyl-D-aspartate (NMDA) receptors at either region reduced HS-evoked OOemgL activity in DE and sham rats. GABAαβ3 receptor density was reduced at the ViVc transition, while NMDA receptor density was increased at both regions in DE rats. Loss of GABAergic inhibition at the ViVc transition coupled with enhanced NMDA excitatory amino acid neurotransmission at the ViVc transition and the VcC1 region likely contribute to altered corneal reflexes under dry eye conditions.
Collapse
Affiliation(s)
- Mostafeezur Rahman
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| | - Kazunari Shiozaki
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Keiichiro Okamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Randall Thompson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Moos Tower 18-186, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Burrell BD. Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol 2017; 117:1461-1473. [PMID: 28053241 DOI: 10.1152/jn.00600.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.
Collapse
Affiliation(s)
- Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
30
|
Takkala P, Zhu Y, Prescott SA. Combined Changes in Chloride Regulation and Neuronal Excitability Enable Primary Afferent Depolarization to Elicit Spiking without Compromising its Inhibitory Effects. PLoS Comput Biol 2016; 12:e1005215. [PMID: 27835641 PMCID: PMC5105942 DOI: 10.1371/journal.pcbi.1005215] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/20/2016] [Indexed: 11/19/2022] Open
Abstract
The central terminals of primary afferent fibers experience depolarization upon activation of GABAA receptors (GABAAR) because their intracellular chloride concentration is maintained above electrochemical equilibrium. Primary afferent depolarization (PAD) normally mediates inhibition via sodium channel inactivation and shunting but can evoke spikes under certain conditions. Antidromic (centrifugal) conduction of these spikes may contribute to neurogenic inflammation while orthodromic (centripetal) conduction could contribute to pain in the case of nociceptive fibers. PAD-induced spiking is assumed to override presynaptic inhibition. Using computer simulations and dynamic clamp experiments, we sought to identify which biophysical changes are required to enable PAD-induced spiking and whether those changes necessarily compromise PAD-mediated inhibition. According to computational modeling, a depolarizing shift in GABA reversal potential (EGABA) and increased intrinsic excitability (manifest as altered spike initiation properties) were necessary for PAD-induced spiking, whereas increased GABAAR conductance density (ḡGABA) had mixed effects. We tested our predictions experimentally by using dynamic clamp to insert virtual GABAAR conductances with different EGABA and kinetics into acutely dissociated dorsal root ganglion (DRG) neuron somata. Comparable experiments in central axon terminals are prohibitively difficult but the biophysical requirements for PAD-induced spiking are arguably similar in soma and axon. Neurons from naïve (i.e. uninjured) rats were compared before and after pharmacological manipulation of intrinsic excitability, and against neurons from nerve-injured rats. Experimental data confirmed that, in most neurons, both predicted changes were necessary to yield PAD-induced spiking. Importantly, such changes did not prevent PAD from inhibiting other spiking or from blocking spike propagation. In fact, since the high value of ḡGABA required for PAD-induced spiking still mediates strong inhibition, we conclude that PAD-induced spiking does not represent failure of presynaptic inhibition. Instead, diminished PAD caused by reduction of ḡGABA poses a greater risk to presynaptic inhibition and the sensory processing that relies upon it.
Collapse
Affiliation(s)
- Petri Takkala
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Yi Zhu
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Steven A. Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Physiology and the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| |
Collapse
|
31
|
Kaushal R, Taylor BK, Jamal AB, Zhang L, Ma F, Donahue R, Westlund KN. GABA-A receptor activity in the noradrenergic locus coeruleus drives trigeminal neuropathic pain in the rat; contribution of NAα1 receptors in the medial prefrontal cortex. Neuroscience 2016; 334:148-159. [PMID: 27520081 DOI: 10.1016/j.neuroscience.2016.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/20/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022]
Abstract
Trigeminal neuropathic pain is described as constant excruciating facial pain. The study goal was to investigate the role of nucleus locus coeruleus (LC) in a model of chronic orofacial neuropathic pain (CCI-ION). The study examines LC's relationship to both the medullary dorsal horn receiving trigeminal nerve sensory innervation and the medial prefrontal cortex (mPFC). LC is a major source of CNS noradrenaline (NA) and a primary nucleus involved in pain modulation. Although descending inhibition of acute pain by LC is well established, contribution of the LC to facilitation of chronic neuropathic pain is also reported. In the present study, a rat orofacial pain model of trigeminal neuropathy was induced by chronic constrictive injury of the infraorbital nerve (CCI-ION). Orofacial neuropathic pain was indicated by development of whisker pad mechanical hypersensitivity. Hypersensitivity was alleviated by selective elimination of NA neurons, including LC (A6 cell group), with the neurotoxin anti-dopamine-β-hydroxylase saporin (anti-DβH-saporin) microinjected either intracerebroventricularly (i.c.v.) or into trigeminal spinal nucleus caudalis (spVc). The GABAA receptor antagonist, bicuculline, administered directly into LC (week 8) inhibited hypersensitivity. This indicates a valence shift in which increased GABAA signaling ongoing in LC after trigeminal nerve injury paradoxically produces excitatory facilitation of the chronic pain state. Microinjection of NAα1 receptor antagonist, benoxathian, into mPFC attenuated whisker pad hypersensitivity, while NAα2 receptor antagonist, idazoxan, was ineffective. Thus, GABAA-mediated activation of NA neurons during CCI-ION can facilitate hypersensitivity through NAα1 receptors in the mPFC. These data indicate LC is a chronic pain generator.
Collapse
Affiliation(s)
- R Kaushal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - B K Taylor
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - A B Jamal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - R Donahue
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
32
|
Kakizawa K, Watanabe M, Mutoh H, Okawa Y, Yamashita M, Yanagawa Y, Itoi K, Suda T, Oki Y, Fukuda A. A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence. SCIENCE ADVANCES 2016; 2:e1501723. [PMID: 27540587 PMCID: PMC4988769 DOI: 10.1126/sciadv.1501723] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 07/19/2016] [Indexed: 05/13/2023]
Abstract
Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)-containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67(+/GFP)), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), but not the K(+)-Cl(-) cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl(-) concentrations ([Cl(-)]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca(2+)) levels in the CRH neuron terminals but decreased the Ca(2+) levels in their somata. In addition, the increases in Ca(2+) concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME.
Collapse
Affiliation(s)
- Keisuke Kakizawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hiroki Mutoh
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yuta Okawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Miho Yamashita
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takafumi Suda
- Second Division, Department of Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaka Oki
- Department of Family and Community Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
33
|
West S, Bannister K, Dickenson A, Bennett D. Circuitry and plasticity of the dorsal horn – Toward a better understanding of neuropathic pain. Neuroscience 2015; 300:254-75. [DOI: 10.1016/j.neuroscience.2015.05.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 11/24/2022]
|
34
|
Involvement of medullary GABAergic system in extraterritorial neuropathic pain mechanisms associated with inferior alveolar nerve transection. Exp Neurol 2015; 267:42-52. [DOI: 10.1016/j.expneurol.2015.02.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/03/2014] [Accepted: 02/22/2015] [Indexed: 01/15/2023]
|
35
|
Chen JTC, Guo D, Campanelli D, Frattini F, Mayer F, Zhou L, Kuner R, Heppenstall PA, Knipper M, Hu J. Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction. Nat Commun 2014; 5:5331. [PMID: 25354791 PMCID: PMC4220496 DOI: 10.1038/ncomms6331] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/22/2014] [Indexed: 01/21/2023] Open
Abstract
The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. Disinhibition of neural activity in the spinal cord is implicated in neuropathic pain. Chen et al. show that disinhibition of neural activity arises from a shift in reversal potential of GABA and a decrease in the conductance of presynaptic GABA, which are both regulated by brain-derived neurotrophic factor.
Collapse
Affiliation(s)
| | - Da Guo
- Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany
| | - Dario Campanelli
- 1] Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany [2] Hearing Research Centre, Elfriede Aulhornstrasse 5, 72076 Tübingen, Germany
| | - Flavia Frattini
- Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany
| | - Florian Mayer
- Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany
| | - Luming Zhou
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| | - Rohini Kuner
- Pharmacology Institute, University of Heidelberg, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Paul A Heppenstall
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL), Via Ramarini 32, 00016 Monterotondo, Italy
| | - Marlies Knipper
- Hearing Research Centre, Elfriede Aulhornstrasse 5, 72076 Tübingen, Germany
| | - Jing Hu
- Centre for Integrative Neuroscience, Otfried-Mueller-Strasse 25, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Guo D, Hu J. Spinal presynaptic inhibition in pain control. Neuroscience 2014; 283:95-106. [PMID: 25255936 DOI: 10.1016/j.neuroscience.2014.09.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/10/2014] [Accepted: 09/14/2014] [Indexed: 12/22/2022]
Abstract
The gate control theory proposed that the nociceptive sensory information transmitted to the brain relies on an interplay between the inputs from nociceptive and non-nociceptive primary afferent fibers. Both inputs are normally under strong inhibitory control in the spinal cord. Under healthy conditions, presynaptic inhibition activated by non-nociceptive fibers modulates the afferent input from nociceptive fibers onto spinal cord neurons, while postsynaptic inhibition controls the excitability of dorsal horn neurons, and silences the non-nociceptive information flow to nociceptive-specific (NS) projection neurons. However, under pathological conditions, this spinal inhibition may be altered and lead to chronic pain. This review summarizes our knowledge of presynaptic inhibition in pain control, with particular focus on how its alteration after nerve or tissue injury contributes to neuropathic or inflammatory pain syndromes, respectively.
Collapse
Affiliation(s)
- D Guo
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany
| | - J Hu
- Centre for Integrative Neuroscience (CIN), Otfried-Mueller-Straße 25, 72076 Tuebingen, Germany.
| |
Collapse
|
37
|
GABAergic influence on temporomandibular joint-responsive spinomedullary neurons depends on estrogen status. Neuroscience 2013; 259:53-62. [PMID: 24316475 DOI: 10.1016/j.neuroscience.2013.11.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
Sensory input from the temporomandibular joint (TMJ) to neurons in superficial laminae at the spinomedullary (Vc/C1-2) region is strongly influenced by estrogen status. This study determined if GABAergic mechanisms play a role in estrogen modulation of TMJ nociceptive processing in ovariectomized female rats treated with high- (HE) or low-dose (LE) estradiol (E2) for 2days. Superficial laminae neurons were activated by ATP (1mM) injections into the joint space. The selective GABAA receptor antagonist, bicuculline methiodide (BMI, 5 or 50μM, 30μl), applied at the site of recording greatly enhanced the magnitude and duration of ATP-evoked responses in LE rats, but not in units from HE rats. The convergent cutaneous receptive field (RF) area of TMJ neurons was enlarged after BMI in LE but not HE rats, while resting discharge rates were increased after BMI independent of estrogen status. By contrast, the selective GABAA receptor agonist, muscimol (50μM, 30μl), significantly reduced the magnitude and duration of ATP-evoked activity, resting discharge rate, and cutaneous RF area of TMJ neurons in LE and HE rats, whereas lower doses (5μM) affected only units from LE rats. Protein levels of GABAA receptor β3 isoform at the Vc/C1-2 region were similar for HE and LE rats. These results suggest that GABAergic mechanisms contribute significantly to background discharge rates and TMJ-evoked input to superficial laminae neurons at the Vc/C1-2 region. Estrogen status may gate the magnitude of GABAergic influence on TMJ neurons at the earliest stages of nociceptive processing at the spinomedullary region.
Collapse
|
38
|
Ferrini F, De Koninck Y. Microglia control neuronal network excitability via BDNF signalling. Neural Plast 2013; 2013:429815. [PMID: 24089642 PMCID: PMC3780625 DOI: 10.1155/2013/429815] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/28/2013] [Indexed: 12/27/2022] Open
Abstract
Microglia-neuron interactions play a crucial role in several neurological disorders characterized by altered neural network excitability, such as epilepsy and neuropathic pain. While a series of potential messengers have been postulated as substrates of the communication between microglia and neurons, including cytokines, purines, prostaglandins, and nitric oxide, the specific links between messengers, microglia, neuronal networks, and diseases have remained elusive. Brain-derived neurotrophic factor (BDNF) released by microglia emerges as an exception in this riddle. Here, we review the current knowledge on the role played by microglial BDNF in controlling neuronal excitability by causing disinhibition. The efforts made by different laboratories during the last decade have collectively provided a robust mechanistic paradigm which elucidates the mechanisms involved in the synthesis and release of BDNF from microglia, the downstream TrkB-mediated signals in neurons, and the biophysical mechanism by which disinhibition occurs, via the downregulation of the K⁺-Cl⁻ cotransporter KCC2, dysrupting Cl⁻ homeostasis, and hence the strength of GABA(A)- and glycine receptor-mediated inhibition. The resulting altered network activity appears to explain several features of the associated pathologies. Targeting the molecular players involved in this canonical signaling pathway may lead to novel therapeutic approach for ameliorating a wide array of neural dysfunctions.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095 Turin, Italy
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada G1J 2G3
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada G13 7P4
| |
Collapse
|
39
|
Minlebaev M, Valeeva G, Tcheremiskine V, Coustillier G, Khazipov R. Cell-attached recordings of responses evoked by photorelease of GABA in the immature cortical neurons. Front Cell Neurosci 2013; 7:83. [PMID: 23754981 PMCID: PMC3668178 DOI: 10.3389/fncel.2013.00083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/15/2013] [Indexed: 12/21/2022] Open
Abstract
We present a novel non-invasive technique to measure the polarity of GABAergic responses based on cell-attached recordings of currents activated by laser-uncaging of GABA. For these recordings, a patch pipette was filled with a solution containing RuBi-GABA, and GABA was released from this complex by a laser beam conducted to the tip of the patch pipette via an optic fiber. In cell-attached recordings from neocortical and hippocampal neurons in postnatal days P2-5 rat brain slices in vitro, we found that laser-uncaging of GABA activates integral cell-attached currents mediated by tens of GABA(A) channels. The initial response was inwardly directed, indicating a depolarizing response to GABA. The direction of the initial response was dependent on the pipette potential and analysis of its slope-voltage relationships revealed a depolarizing driving force of +11 mV for the currents through GABA channels. Initial depolarizing responses to GABA uncaging were inverted to hyperpolarizing in the presence of the NKCC1 blocker bumetanide. Current-voltage relationships of the currents evoked by RuBi-GABA uncaging using voltage-ramps at the peak of responses not only revealed a bumetanide-sensitive depolarizing reversal potential of the GABA(A) receptor mediated responses, but also showed a strong voltage-dependent hysteresis. Upon desensitization of the uncaged-GABA response, current-voltage relationships of the currents through single GABA(A) channels revealed depolarizing responses with the driving force values similar to those obtained for the initial response. Thus, cell-attached recordings of the responses evoked by local intrapipette GABA uncaging are suitable to assess the polarity of the GABA(A)-Rs mediated signals in small cell compartments.
Collapse
Affiliation(s)
- Marat Minlebaev
- Institut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U-901 Marseille, France ; Aix-Marseille University Marseille, France ; Laboratory of Neurobiology, Department of Physiology, Kazan Federal University Kazan, Russia
| | | | | | | | | |
Collapse
|
40
|
Doyon N, Ferrini F, Gagnon M, De Koninck Y. Treating pathological pain: is KCC2 the key to the gate? Expert Rev Neurother 2013; 13:469-71. [PMID: 23621303 DOI: 10.1586/ern.13.40] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
|