1
|
Liu YJ, Hashemi-Nezhad M, Lyon DC. Differences in orientation tuning between pinwheel and domain neurons in primary visual cortex depend on contrast and size. NEUROPHOTONICS 2017; 4:031209. [PMID: 28523280 PMCID: PMC5429862 DOI: 10.1117/1.nph.4.3.031209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Intrinsic signal optical imaging reveals a highly modular map of orientation preference in the primary visual cortex (V1) of several species. This orientation map is characterized by domains and pinwheels where local circuitry is either more or less orientation selective, respectively. It has now been repeatedly demonstrated that neurons in pinwheels tend to be more broadly tuned to orientation, likely due to the broad range of orientation preference of the neighboring neurons forming pinwheels. However, certain stimulus conditions, such as a decrease in contrast or an increase in size, significantly sharpen tuning widths of V1 neurons. Here, we find that pinwheel neuron tuning widths are broader than domain neurons only for high contrast, optimally sized stimuli, conditions that maximize excitation through feedforward, and local cortical processing. When contrast was lowered or size increased, orientation tuning width sharpened and became equal. These latter conditions are conducive to less local excitation either through lower feedforward drive or by surround suppression arising from long-range cortical circuits. Tuning width differences between pinwheel and domain neurons likely arise through more local circuitry and are overcome through recruitment of longer-range cortical circuits.
Collapse
Affiliation(s)
- Yong-Jun Liu
- University of California Irvine, School of Medicine, Department of Anatomy and Neurobiology, Irvine, California, United States
- Chinese Academy of Agricultural Sciences, Institute of Apicultural Research, Department of Honeybee Protection and Biosafety, Beijing, China
| | - Maziar Hashemi-Nezhad
- University of California Irvine, School of Medicine, Department of Anatomy and Neurobiology, Irvine, California, United States
- Technical University Berlin, Neuroinformatics Group, Department of Software Engineering and Theoretical Computer Science, Administrative Office MAR 5-6, Marchstraße, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - David C. Lyon
- University of California Irvine, School of Medicine, Department of Anatomy and Neurobiology, Irvine, California, United States
| |
Collapse
|
2
|
Early suppression effect in human primary visual cortex during Kanizsa illusion processing: A magnetoencephalographic evidence. Vis Neurosci 2016; 33:E007. [PMID: 27485162 DOI: 10.1017/s0952523816000031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40-120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect-a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection.
Collapse
|
3
|
Liu YJ, Hashemi-Nezhad M, Lyon DC. Contrast invariance of orientation tuning in cat primary visual cortex neurons depends on stimulus size. J Physiol 2015; 593:4485-98. [PMID: 26227285 DOI: 10.1113/jp271180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/27/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The process of orientation tuning is an important and well-characterized feature of neurons in primary visual cortex. The combination of ascending and descending circuits involved is not only relevant to understanding visual processing but the function of neocortex in general. The classic feed-forward model of orientation tuning predicts a broadening effect due to increasing contrast; yet, experimental results consistently report contrast invariance. We show here that contrast invariance actually depends on stimulus size such that large stimuli extending beyond the neuron's receptive field engage circuits that promote invariance, whereas optimally sized, smaller stimuli result in contrast variance that is more in line with the classical orientation tuning model. These results illustrate the importance of optimizing stimulus parameters to best reflect the sensory pathways under study and provide new clues about different circuits that may be involved in variant and invariant response properties. ABSTRACT Selective response to stimulus orientation is a key feature of neurons in primary visual cortex, yet the underlying mechanisms generating orientation tuning are not fully understood. The combination of feed-forward and cortical mechanisms involved is not only relevant to understanding visual processing but the function of neocortex in general. The classic feed-forward model predicts that orientation tuning should broaden considerably with increasing contrast; however, experimental results consistently report contrast invariance. We show here, in primary visual cortex of anaesthetized cats under neuromuscular blockade, that contrast invariance occurs when visual stimuli are large enough to include the extraclassical surround (ECS), which is likely to involve circuits of suppression that may not be entirely feed-forward in origin. On the other hand, when stimulus size is optimized to the classical receptive field of each neuron, the population average shows a statistically significant 40% increase in tuning width at high contrast, demonstrating that contrast variance of orientation tuning can occur. Conversely, our results also suggest that the phenomenon of contrast invariance relies in part on the presence of the ECS. Moreover, these results illustrate the importance of optimizing stimulus parameters to best reflect the neural pathways under study.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, 364 Med Surge II, Irvine, CA, 92697, USA
| | - Maziar Hashemi-Nezhad
- Department of Anatomy and Neurobiology, School of Medicine, University of California, 364 Med Surge II, Irvine, CA, 92697, USA
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, 364 Med Surge II, Irvine, CA, 92697, USA
| |
Collapse
|
4
|
Niu X, Shi L, Wan H, Wang Z, Shang Z, Li Z. Dynamic functional connectivity among neuronal population during modulation of extra-classical receptive field in primary visual cortex. Brain Res Bull 2015; 117:45-53. [DOI: 10.1016/j.brainresbull.2015.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
5
|
Yang KF, Li CY, Li YJ. Potential roles of the interaction between model V1 neurons with orientation-selective and non-selective surround inhibition in contour detection. Front Neural Circuits 2015; 9:30. [PMID: 26136664 PMCID: PMC4468869 DOI: 10.3389/fncir.2015.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/30/2015] [Indexed: 11/29/2022] Open
Abstract
Both the neurons with orientation-selective and with non-selective surround inhibition have been observed in the primary visual cortex (V1) of primates and cats. Though the inhibition coming from the surround region (named as non-classical receptive field, nCRF) has been considered playing critical role in visual perception, the specific role of orientation-selective and non-selective inhibition in the task of contour detection is less known. To clarify above question, we first carried out computational analysis of the contour detection performance of V1 neurons with different types of surround inhibition, on the basis of which we then proposed two integrated models to evaluate their role in this specific perceptual task by combining the two types of surround inhibition with two different ways. The two models were evaluated with synthetic images and a set of challenging natural images, and the results show that both of the integrated models outperform the typical models with orientation-selective or non-selective inhibition alone. The findings of this study suggest that V1 neurons with different types of center–surround interaction work in cooperative and adaptive ways at least when extracting organized structures from cluttered natural scenes. This work is expected to inspire efficient phenomenological models for engineering applications in field of computational machine-vision.
Collapse
Affiliation(s)
- Kai-Fu Yang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| | - Chao-Yi Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China ; Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yong-Jie Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China Chengdu, China
| |
Collapse
|
6
|
Liu YJ, Arreola M, Coleman CM, Lyon DC. Very-long-range disynaptic V1 connections through layer 6 pyramidal neurons revealed by transneuronal tracing with rabies virus. Eye Brain 2014; 6:45-56. [PMID: 28539788 PMCID: PMC5417745 DOI: 10.2147/eb.s51818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurons in primary visual cortex (V1) integrate across the representation of the visual field through networks of long-range projecting pyramidal neurons. These projections, which originate from within V1 and through feedback from higher visual areas, are likely to play a key role in such visual processes as low contrast facilitation and extraclassical surround suppression. The extent of the visual field representation covered by feedback is generally much larger than that covered through monosynaptic horizontal connections within V1, and, although it may be possible that multisynaptic horizontal connections across V1 could also lead to more widespread spatial integration, nothing is known regarding such circuits. In this study, we used injections of the CVS-11 strain of rabies virus to examine disynaptic long-range horizontal connections within macaque monkey V1. Injections were made around the representation of 5° eccentricity in the lower visual field. Along the opercular surface of V1, we found that the majority of connected neurons extended up to 8 mm in most layers, consistent with twice the typically reported distances of monosynaptic connections. In addition, mainly in layer 6, a steady presence of connected neurons within V1 was observed up to 16 mm away. A relatively high percentage of these connected neurons had large-diameter somata characteristic of Meynert cells, which are known to project as far as 8 mm individually. Several neurons, predominantly in layer 6, were also found deep within the calcarine sulcus, reaching as far as 20° of eccentricity, based on estimates, and extending well into the upper visual field representation. Thus, our anatomical results provide evidence for a wide-ranging disynaptic circuit within V1, mediated largely through layer 6, that accounts for integration across a large region of the visual field.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Miguel Arreola
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - Cassandra M Coleman
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
7
|
Kim T, Freeman RD. Selective stimulation of neurons in visual cortex enables segregation of slow and fast connections. Neuroscience 2014; 274:170-86. [PMID: 24881577 DOI: 10.1016/j.neuroscience.2014.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 11/16/2022]
Abstract
Organization of the central visual pathway is generally studied from a perspective of feedforward processes. However, there are horizontal connections and also strong feedback from extra striate to visual cortex. Here, we use visual stimuli designed to maximize relative differential involvements of these three main types of connections. The approach relies on differences between stimulation within the classical receptive field (CRF) and that of the surround region. Although previous studies have used similar approaches, they were limited primarily to spatial segregation of neural connections. Our experimental design provides clear segregation of fast and slow components of surround modulation. We assume these are mediated by feedback and horizontal connections, respectively, but other factors may be involved. Our results imply that both horizontal and feedback connections contribute to integration of visual information outside the CRF and provide suppressive or facilitative modulation. For a given cell, modulation may change in strength and sign from suppression to facilitation or the reverse depending on surround parameters. Sub-threshold input from the CRF surround increases local field potential (LFP) power in distinct frequency ranges which differ for suppression and facilitation. Horizontal connections have delayed CRF-surround modulation and are sensitive to position changes in the surround. Therefore, surround information beyond the CRF is initially processed by fast connections which we consider to be feedback, whereas spatially tuned mechanisms are relatively slow and presumably mediated by horizontal connections. Overall, results suggest that convergent fast (feedforward) inputs determine size and structure of the CRFs of recipient cells in visual cortex. And fast connections from extra striate regions (feedback) plus slow-tuned connections (horizontal) within visual cortex contribute to spatial influences of CRF surround activation.
Collapse
Affiliation(s)
- T Kim
- Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA 94720-2020, United States
| | - R D Freeman
- Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA 94720-2020, United States; Helen Wills Neuroscience Institute, and School of Optometry, University of California, Berkeley, Berkeley, CA 94720-2020, United States.
| |
Collapse
|
8
|
Tracing inputs to inhibitory or excitatory neurons of mouse and cat visual cortex with a targeted rabies virus. Curr Biol 2013; 23:1746-55. [PMID: 23993841 DOI: 10.1016/j.cub.2013.07.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/07/2013] [Accepted: 07/05/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cortical inhibition plays a critical role in controlling and modulating cortical excitation, and a more detailed understanding of the neuronal circuits contributing to each will provide more insight into their roles in complex cortical computations. Traditional neuronal tracers lack a means for easily distinguishing between circuits of inhibitory and excitatory neurons. To overcome this limitation, we have developed a technique for retrogradely labeling inputs to local clusters of inhibitory or excitatory neurons, but not both, using neurotropic adenoassociated and lentiviral vectors, cell-type-specific promoters, and a modified rabies virus. RESULTS Applied to primary visual cortex (V1) in mouse, the cell-type-specific tracing technique labeled thousands of presynaptically connected neurons and revealed that the dominant source of input to inhibitory and excitatory neurons is local in origin. Neurons in other visual areas are also labeled; the percentage of these intercortical inputs to excitatory neurons is somewhat higher (~20%) than to inhibitory neurons (<10%), suggesting that intercortical connections have less direct control over inhibition. The inputs to inhibitory neurons were also traced in cat V1, and when aligned with the orientation preference map revealed for the first time that long-range inputs to inhibitory neurons are well tuned to orientation. CONCLUSIONS These novel findings for inhibitory and excitatory circuits in the visual cortex demonstrate the efficacy of our new technique and its ability to work across species, including larger-brained mammals such as the cat. This paves the way for a better understanding of the roles of specific cell types in higher-order perceptual and cognitive processes.
Collapse
|