1
|
Tavanai E, Rahimi V, Khalili ME, Falahzadeh S, Motasaddi Zarandy M, Mohammadkhani G. Age-related hearing loss: An updated and comprehensive review of the interventions. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:256-269. [PMID: 38333758 PMCID: PMC10849199 DOI: 10.22038/ijbms.2023.72863.15849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/17/2023] [Indexed: 02/10/2024]
Abstract
Aging causes progressive degenerative changes in many organs, particularly the auditory system. Several attempts have been conducted to investigate preventive and therapeutic strategy/strategies for age-related auditory dysfunction, such as maintaining a healthy lifestyle through good nutrition, lower anxiety levels, and noise exposure, different pharmacological approaches, gene and cell therapy, and other strategies. However, it is not clear which approach is the best to slow down these dysfunctions because several different underlying mechanistic pathways are associated with presbycusis which eventually leads to different types of this disease. A combination of several methods is probably required, whereas the effectiveness for some people needs to be monitored. The effectiveness of treatments will not be the same for all; therefore, we may need to have a unique and personalized approach to the prevention and treatment of ARHL for each person. In addition, each method needs to specify what type of presbycusis can prevent or treat and provide complete information about the extent, duration of treatment, persistency of treatment, side effects, and whether the approach is for treatment or prevention or even both. This paper reviews the updated literature, which targets current interventions for age-related hearing loss.
Collapse
Affiliation(s)
- Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ehsan Khalili
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Falahzadeh
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Motasaddi Zarandy
- Otolaryngology Research Center, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghassem Mohammadkhani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lu Y, Hu Y, Wang S, Pan S, An K, Wang T, He Y, Tian C, Lei J. Hereditary Hearing Loss: A Systematic Review of Potential Treatments and Interventions. Am J Audiol 2023; 32:972-989. [PMID: 37889166 DOI: 10.1044/2023_aja-23-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
PURPOSE The purpose of this study was to systematically review the research literature with regards to treatments and intervention methods for hereditary hearing loss. Our goal was to provide reference guidelines for the rational use of medication and gene-targeted therapy for patients with hereditary hearing loss and discuss the future development of research in this area. METHOD We searched two core databases, PubMed and Web of Science, for relevant literature relating to potential treatments and interventional methods for hereditary hearing loss. Then, we used Microsoft Excel to perform basic statistical analysis of the data, the R language to perform bibliometric analyses, and VOSviewer and CiteSpace to visualize data. In addition, we clustered and descriptively analyzed the data and identified the relative importance of each approach with regard to precise patient outcomes. RESULTS In this study, we followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standardized screening process and identified a total of 103 research articles. The average annual growth rate of publications in this area was 12.73%. The country with the highest number of publications and citations was the United States; 80 of these publications (associated with 76.92% of funding) were supported by grants from 16 countries. Potential treatments and interventions were clustered according to the stage of research and showed that 8.74% remain in the research design stage, 59.22% are in the clinical validation stage, and 32.04% are being applied in the clinic. The main research focus in this field is cochlear implants and gene therapy. CONCLUSIONS Hereditary hearing loss is in a critical period of transition from preventive to therapeutic research. Gene-targeted interventions represent one of the most promising and effective treatments. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24309193.
Collapse
Affiliation(s)
- Yang Lu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanjia Hu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyue Wang
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sijia Pan
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kai An
- Peking University Third Hospital, Beijing, China
- Center for Medical Informatics, Peking University, Beijing, China
| | - Tong Wang
- Department of Medical Informatics, School of Public Health, Jilin University, Changchun, China
| | - Yunfan He
- School of Public Health, Zhejiang University, Hangzhou City, China
| | - Chenghua Tian
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianbo Lei
- Center for Medical Informatics, Peking University, Beijing, China
- Institute of Medical Technology, Peking University, Beijing, China
- School of Medical Informatics and Engineering, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Cochlear hair cells of echolocating bats are immune to intense noise. J Genet Genomics 2021; 48:984-993. [PMID: 34393089 DOI: 10.1016/j.jgg.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022]
Abstract
Exposure to intense noise can damage cochlear hair cells, leading to hearing loss in mammals. To avoid this constraint, most mammals have evolved in relatively quiet environments. Echolocating bats, however, are naturally exposed to continuous intense sounds from their own and neighboring sonar emissions for maintaining sonar directionality and range. Here, we propose the presence of intense noise resistance in cochlear hair cells of echolocating bats against noise-induced hearing loss (NIHL). To test this hypothesis, we performed noise exposure experiments for laboratory mice, one nonecholocating bat species, and five echolocating bat species. Contrary to nonecholocating fruit bats and mice, the hearing and the cochlear hair cells of echolocating bats remained unimpaired after continuous intense noise exposure. The comparative analyses of cochleae transcriptomic data showed that several genes protecting cochlear hair cells from intense sounds were overexpressed in echolocating bats. Particularly, the experimental examinations revealed that ISL1 overexpression significantly improved the survival of cochlear hair cells. Our findings support the existence of protective effects in cochlear hair cells of echolocating bats against intense noises, which provides new insight into understanding the relationship between cochlear hair cells and intense noises, and preventing or ameliorating NIHL in mammals.
Collapse
|
4
|
Zhao H, Wang Y, Li B, Zheng T, Liu X, Hu BH, Che J, Zhao T, Chen J, Hatzoglou M, Zhang X, Fan Z, Zheng Q. Role of Endoplasmic Reticulum Stress in Otitis Media. Front Genet 2020; 11:495. [PMID: 32536938 PMCID: PMC7267009 DOI: 10.3389/fgene.2020.00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 04/20/2020] [Indexed: 11/19/2022] Open
Abstract
Endoplasmic reticulum (ER) stress occurs in many inflammatory responses. Here, we investigated the role of ER stress and its associated apoptosis in otitis media (OM) to elucidate the mechanisms of OM and the signaling crosstalk between ER stress and other cell damage pathways, including inflammatory cytokines and apoptosis. We examined the expression of inflammatory cytokine- and ER stress-related genes by qRT-PCR, Western blotting, and immunohistochemistry (IHC) in the middle ear of C57BL/6J mice after challenge with peptidoglycan polysaccharide (PGPS), an agent inducing OM. We also evaluated the effect of the suppression of ER stress with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor. The study revealed the upregulation of ER stress- and apoptosis-related gene expression after the PGPS treatment, specifically ATF6, CHOP, BIP, caspase-12, and caspase-3. TUDCA treatment of PGPS-treated mice decreased OM; reduced the expression of CHOP, BIP, and caspase 3; and significantly decreased the proinflammatory gene expression of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These results suggest that PGPS triggers ER stress and downstream proinflammatory gene expression in OM and that inhibition of ER stress alleviates OM. We propose that ER stress plays a critical role in inflammation and cell death, leading to the development of OM and points to ER stress inhibition as a potential therapeutic approach for the prevention of OM.
Collapse
Affiliation(s)
- Hongchun Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Yanfei Wang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Xiuzhen Liu
- Clinical Laboratory, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Juan Che
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Tong Zhao
- Hearing and Speech Rehabilitation Institute, College of Special Education, Binzhou Medical University, Yantai, China
| | - Jun Chen
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Maria Hatzoglou
- Department of Genetics, Case Western Reserve University, Cleveland, OH, United States
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
5
|
Chemical chaperone 4-phenylbutyrate prevents hearing loss and cochlear hair cell death in Cdh23erl/erl mutant mice. Neuroreport 2019; 30:145-150. [PMID: 30516593 DOI: 10.1097/wnr.0000000000001173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We previously developed Cdh23 mutant mice (erl mice) as a model of hearing loss for otoprotective drug evaluation and showed that the erl mutation leads to hearing loss related to endoplasmic reticulum (ER) stress-induced cochlear hair cell apoptosis. Small molecular chemical chaperones, 4-phenylbutyrate (4PBA), targeting ER stress exert a neuroprotective effect. To evaluate whether 4PBA exerts an otoprotective effect, we intraperitoneally injected erl mice with 4PBA daily from postnatal age day 7 up to 12 weeks. Our results showed that treatment with 4PBA significantly alleviated hearing loss and suppressed hair cell death in erl mice. In addition, ER stress-related proteins were downregulated by 4PBA treatment. Our study showed that 4PBA exerts an otoprotective effect, which provides the potential to repurpose the drug for otoprotection.
Collapse
|
6
|
Null Mutation of the Fascin2 Gene by TALEN Leading to Progressive Hearing Loss and Retinal Degeneration in C57BL/6J Mice. G3-GENES GENOMES GENETICS 2018; 8:3221-3230. [PMID: 30082328 PMCID: PMC6169377 DOI: 10.1534/g3.118.200405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fascin2 (FSCN2) is an actin cross-linking protein that is mainly localized in retinas and in the stereocilia of hair cells. Earlier studies showed that a deletion mutation in human FASCIN2 (FSCN2) gene could cause autosomal dominant retinitis pigmentosa. Recent studies have indicated that a missense mutation in mouse Fscn2 gene (R109H) can contribute to the early onset of hearing loss in DBA/2J mice. To explore the function of the gene, Fscn2 was knocked out using TALEN (transcription activator-like effector nucleases) on the C57BL/6J background. Four mouse strains with deletions of 1, 4, 5, and 41 nucleotides in the target region of Fscn2 were developed. F1 heterozygous (Fscn2+/- ) mice carrying the same deletion of 41 nucleotides were mated to generate the Fscn2-/- mice. As a result, the Fscn2-/- mice showed progressive hearing loss, as measured in the elevation of auditory brainstem-response thresholds. The hearing impairment began at age 3 weeks at high-stimulus frequencies and became most severe at age 24 weeks. Moreover, degeneration of hair cells and loss of stereocilia were remarkable in Fscn2-/- mice, as revealed by F-actin staining and scanning electron microscopy. Furthermore, compared to the controls, the Fscn2-/- mice displayed significantly lower electroretinogram amplitudes and thinner retinas at 8, 16, and 24 weeks. These results demonstrate that, in C57BL/6Jmice, Fscn2 is essential for maintaining ear and eye function and that a null mutation of Fscn2 leads to progressive hearing loss and retinal degeneration.
Collapse
|
7
|
Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice. Toxicol Lett 2018; 291:121-128. [PMID: 29654830 DOI: 10.1016/j.toxlet.2018.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/10/2023]
Abstract
Aminoglycosides have detrimental effects on the hair cells of the inner ear, yet these agents indisputably are one of the cornerstones in antibiotic therapy. Hence, there is a demand for strategies to prevent aminoglycoside-induced ototoxicity, which are not available today. In vitro data suggests that the pleiotropic growth factor erythropoietin (EPO) is neuroprotective against aminoglycoside-induced hair cell loss. Here, we use a mouse model with EPO-overexpression in neuronal tissue to evaluate whether EPO could also in vivo protect from aminoglycoside-induced hearing loss. Auditory brainstem response (ABR) thresholds were measured in 12-weeks-old mice before and after treatment with kanamycin for 15 days, which resulted in both C57BL/6 and EPO-transgenic animals in a high-frequency hearing loss. However, ABR threshold shifts in EPO-transgenic mice were significantly lower than in C57BL/6 mice (mean difference in ABR threshold shift 13.6 dB at 32 kHz, 95% CI 3.8-23.4 dB, p = 0.003). Correspondingly, quantification of hair cells and spiral ganglion neurons by immunofluorescence revealed that EPO-transgenic mice had a significantly lower hair cell and spiral ganglion neuron loss than C57BL/6 mice. In conclusion, neuronal overexpression of EPO is protective against aminoglycoside-induce hearing loss, which is in accordance with its known neuroprotective effects in other organs, such as the eye or the brain.
Collapse
|
8
|
Zhong C, Jiang Z, Guo Q, Zhang X. Protective effect of adenovirus-mediated erythropoietin expression on the spiral ganglion neurons in the rat inner ear. Int J Mol Med 2018; 41:2669-2677. [PMID: 29436578 PMCID: PMC5846647 DOI: 10.3892/ijmm.2018.3455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/11/2018] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to evaluate the expression of erythropoietin (Epo) and the Epo receptor (Epo-R) in the spiral ganglion neurons (SGNs) of the rat inner ear, and to assess the effect of Epo adenovirus vector (Ad-Epo) on the spontaneous apoptosis of SGNs. A total of 60 ears from 30 healthy neonatal (2-3 days postnatal) Sprague-Dawley rats were used to examine the expression of Epo in the SGNs. The rats were divided into three groups: The negative control group, the vector control group [infected with a green fluorescent protein expression vector (Ad-GFP)] and the Ad-Epo group (infected with Ad-Epo). The expression of Epo and Epo-R was detected by immunohistochemistry and dual immunofluorescence staining using polyclonal antibodies directed against Epo and Epo-R, followed by confocal laser-scanning microscopy. An adenovirus vector was constructed and used to transfect the cultured SGNs. Following adenovirus infection, apoptosis of the SGNs was evaluated and Epo protein expression was assessed. Epo and Epo-R were widely expressed in the plasma membrane and the cytoplasm of the SGNs, as well as in the organ of Corti and the stria vascularis within the inner ear. Epo protein expression was upregulated in the Ad-Epo group compared with that in the other two groups (P<0.05). Apoptotic cells were seldom observed at day 4 of SGN culture in the negative control group. At day 7, marked apoptotic cells were detected in the negative control group and the vector control group. The apoptosis level in the Ad-Epo group was significantly decreased compared with that in the negative control group or the vector control group at day 7 (P<0.05). In conclusion, Epo and Epo-R are expressed in the SGNs of the inner ear of the rat, and Ad-Epo can decrease the spontaneous apoptosis of SGNs, which may provide a basis for the prevention or alleviation of sensorineural hearing loss.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Otolaryngology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhendong Jiang
- Department of Otolaryngology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Qiang Guo
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, The Third Military Medical University, Chongqing 400038, P.R. China
| | - Xueyuan Zhang
- Department of Otolaryngology, Southwest Hospital, The Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
9
|
Sang L, Zheng T, Min L, Zhang X, Ma X, Entenman S, Su Y, Zheng Q. Otoprotective effects of ethosuximide in NOD/LtJ mice with age-related hearing loss. Int J Mol Med 2017; 40:146-154. [PMID: 28560432 PMCID: PMC5466398 DOI: 10.3892/ijmm.2017.3004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/12/2017] [Indexed: 11/30/2022] Open
Abstract
Despite long-term efforts to elucidate the mechanisms responsible for age-related hearing loss (AHL), there is currently no available treatment strategy able to provide a cure. Apoptotic cell death, including that of hair cells and spiral ganglion neurons (SGNs) in the cochlea has been proposed to be the classic theory behind the development of AHL. As calcium signaling plays key roles in signal transduction in apoptosis, in this study, we selected ethosuximide, which is able to block T-type calcium (Ca2+ion) channels, suppressing Ca2+. We hypothesized that the apoptotic pathway may be blocked through the inhibition of T-type Ca2+ channels in cochlear cells in NOD/LtJ mice. NOD/LtJ mice were divided into 2 groups as follows: the ethosuximide-treated and untreated (control) groups. Ethosuximide was administered by intraperitoneal injection every other day from post-natal day seven (P7) until the mice were 8 weeks of age. Following treatment, auditory-evoked brainstem response (ABR) thresholds and distortion product oto-acoustic emission (DPOAE) of the mice in the 2 groups were measured at different time points. Morphometric analysis and the expression of genes involved in the T-type Ca2+-mediated apoptotic pathway were monitored. The ABR and DPOAE results revealed that the NOD/LtJ mice exhibited early-onset and rapidly progressive AHL. A histological examination revealed that hair cell degeneration coincided with the progression of hearing loss. Hair cell and SGN was were significantly lower and auditory function was significantly improved in the ethosuximide-treated group compared to the untreated group. Our data thus indicate that ethosuximide prevents the degeneration of cochlear cells by regulating the expression of genes in apoptotic pathways. Our findings suggest that activating the T-type Ca2+ channel and downstream genes may be key pathological mechanisms responsible for AHL in NOD/LtJ mice.
Collapse
Affiliation(s)
- Lu Sang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Tihua Zheng
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Lingqian Min
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xiaolin Zhang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xiufang Ma
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Shami Entenman
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106-4952, USA
| | - Yipeng Su
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Qingyin Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH 44106-4952, USA
| |
Collapse
|
10
|
Wang Q, Zhao H, Zheng T, Wang W, Zhang X, Wang A, Li B, Wang Y, Zheng Q. Otoprotective effects of mouse nerve growth factor in DBA/2J mice with early-onset progressive hearing loss. J Neurosci Res 2017; 95:1937-1950. [PMID: 28345280 DOI: 10.1002/jnr.24056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 02/17/2017] [Accepted: 03/02/2017] [Indexed: 12/12/2022]
Abstract
As it displays progressive hair-cell loss and degeneration of spiral ganglion neurons (SGNs) characterized by early-onset progressive hearing loss (ePHL), DBA/2J is an inbred mouse strain widely used in hearing research. Mouse nerve growth factor (mNGF), as a common exogenous nerve growth factor (NGF), has been studied extensively for its ability to promote neuronal survival and growth. To determine whether mNGF can ameliorate progressive hearing loss (PHL) in DBA/2J mice, saline or mNGF was given to DBA/2J mice of either sex by daily intramuscular injection from the 1st to the 9th week after birth. At 5, 7, and 9 weeks of age, in comparison with vehicle groups, mNGF groups experienced decreased auditory-evoked brainstem response (ABR) thresholds and increased distortion product otoacoustic emission (DPOAE) amplitudes, the prevention of hair cell loss, and the inhibition of apoptosis of SGNs. Downregulation of Bak/Bax and Caspase genes and proteins in cochleae of mice receiving the mNGF treatment was detected by real-time PCR, Western blot, and immunohistochemistry. This suggests that the Bak-dependent mitochondrial apoptosis pathway may be involved in the otoprotective mechanism of mNGF in progressive hearing loss of DBA/2J mice. Our results demonstrate that mNGF can act as an otoprotectant in the DBA/2J mice for the early intervention of PHL and, thus, could become of great value in clinical applications. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qingzhu Wang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China.,Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China
| | - Hongchun Zhao
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China
| | - Tihua Zheng
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Wenjun Wang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China.,Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China.,Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xiaolin Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China
| | - Andi Wang
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Bo Li
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Yanfei Wang
- Transformative Otology and Neuroscience Center, Binzhou Medical University, Yantai, 264003, Shandong, PR China.,Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, PR China
| | - Qingyin Zheng
- Department of Otolaryngology-HNS, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
11
|
ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23 erl/erl mutant mice. Cell Death Dis 2016; 7:e2485. [PMID: 27882946 PMCID: PMC5260868 DOI: 10.1038/cddis.2016.386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/19/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
Abstract
Hearing loss is one of the most common sensory impairments in humans. Mouse mutant models helped us to better understand the mechanisms of hearing loss. Recently, we have discovered that the erlong (erl) mutation of the cadherin23 (Cdh23) gene leads to hearing loss due to hair cell apoptosis. In this study, we aimed to reveal the molecular pathways upstream to apoptosis in hair cells to exploit more effective therapeutics than an anti-apoptosis strategy. Our results suggest that endoplasmic reticulum (ER) stress is the earliest molecular event leading to the apoptosis of hair cells and hearing loss in erl mice. We also report that the ER stress inhibitor, Salubrinal (Sal), could delay the progression of hearing loss and preserve hair cells. Our results provide evidence that therapies targeting signaling pathways in ER stress development prevent hair cell apoptosis at an early stage and lead to better outcomes than those targeting downstream factors, such as tip-link degeneration and apoptosis.
Collapse
|
12
|
Han F, Wang O, Cai Q. Anti-apoptotic treatment in mouse models of age-related hearing loss. J Otol 2016; 11:7-12. [PMID: 29937804 PMCID: PMC6002598 DOI: 10.1016/j.joto.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 01/05/2023] Open
Abstract
Age-related hearing loss (AHL), or presbycusis, is the most common neurodegenerative disorder and top communication deficit of the aged population. Genetic predisposition is one of the major factors in the development of AHL. Generally, AHL is associated with an age-dependent loss of sensory hair cells, spiral ganglion neurons and stria vascularis cells in the inner ear. Although the mechanisms leading to genetic hearing loss are not completely understood, caspase-family proteases function as important signals in the inner ear pathology. It is now accepted that mouse models are the best tools to study the mechanism of genetic hearing loss or AHL. Here, we provide a brief review of recent studies on hearing improvement in mouse models of AHL by anti-apoptotic treatment.
Collapse
Affiliation(s)
- Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Corresponding author. Key Laboratory for Genetic Hearing Disorders in Shandong, and Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China.
| | - Oumei Wang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Quanxiang Cai
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
- Institute of Neurobiology, School of Special Education, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| |
Collapse
|
13
|
Li S, Hang L, Ma Y. FGF22 protects hearing function from gentamycin ototoxicity by maintaining ribbon synapse number. Hear Res 2016; 332:39-45. [DOI: 10.1016/j.heares.2015.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/13/2015] [Accepted: 11/23/2015] [Indexed: 01/16/2023]
|
14
|
Hu J, Xu M, Yuan J, Li B, Entenman S, Yu H, Zheng QY. Tauroursodeoxycholic acid prevents hearing loss and hair cell death in Cdh23(erl/erl) mice. Neuroscience 2015; 316:311-20. [PMID: 26748055 DOI: 10.1016/j.neuroscience.2015.12.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Sensorineural hearing loss has long been the subject of experimental and clinical research for many years. The recently identified novel mutation of the Cadherin23 (Cdh23) gene, Cdh23(erl/erl), was proven to be a mouse model of human autosomal recessive nonsyndromic deafness (DFNB12). Tauroursodeoxycholic acid (TUDCA), a taurine-conjugated bile acid, has been used in experimental research and clinical applications related to liver disease, diabetes, neurodegenerative diseases, and other diseases associated with apoptosis. Because hair cell apoptosis was implied to be the cellular mechanism leading to hearing loss in Cdh23(erl/erl) mice (erl mice), this study investigated TUDCA's otoprotective effects in erl mice: preventing hearing impairment and protecting against hair cell death. Our results showed that systemic treatment with TUDCA significantly alleviated hearing loss and suppressed hair cell death in erl mice. Additionally, TUDCA inhibited apoptotic genes and caspase-3 activation in erl mouse cochleae. The data suggest that TUDCA could be a potential therapeutic agent for human DFNB12.
Collapse
Affiliation(s)
- J Hu
- Department of Otorhinolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, 157 Xiwu Road, Xi'an 710014, Shaanxi, PR China; Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - M Xu
- Department of Otorhinolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, 157 Xiwu Road, Xi'an 710014, Shaanxi, PR China
| | - J Yuan
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - B Li
- Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - S Entenman
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - H Yu
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Q Y Zheng
- Department of Otorhinolaryngology-Head & Neck Surgery, Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, 157 Xiwu Road, Xi'an 710014, Shaanxi, PR China; Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China.
| |
Collapse
|
15
|
Neuronal erythropoietin overexpression protects mice against age-related hearing loss (presbycusis). Neurobiol Aging 2015; 36:3278-3287. [PMID: 26364734 DOI: 10.1016/j.neurobiolaging.2015.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 11/21/2022]
Abstract
So far, typical causes of presbycusis such as degeneration of hair cells and/or primary auditory (spiral ganglion) neurons cannot be treated. Because erythropoietin's (Epo) neuroprotective potential has been shown previously, we determined hearing thresholds of juvenile and aged mice overexpressing Epo in neuronal tissues. Behavioral audiometry revealed in contrast to 5 months of age, that 11-month-old Epo-transgenic mice had up to 35 dB lower hearing thresholds between 1.4 and 32 kHz, and at the highest frequencies (50-80 kHz), thresholds could be obtained in aged Epo-transgenic only but not anymore in old C57BL6 control mice. Click-evoked auditory brainstem response showed similar results. Numbers of spiral ganglion neurons in aged C57BL6 but not Epo-transgenic mice were dramatically reduced mainly in the basal turn, the location of high frequencies. In addition, there was a tendency to better preservation of inner and outer hair cells in Epo-transgenic mice. Hence, Epo's known neuroprotective action effectively suppresses the loss of spiral ganglion cells and probably also hair cells and, thus, development of presbycusis in mice.
Collapse
|
16
|
Yang L, Zhang H, Han X, Zhao X, Hu F, Li P, Xie G, Gao L, Cheng L, Song X, Han F. Attenuation of hearing loss in DBA/2J mice by anti-apoptotic treatment. Hear Res 2015; 327:109-16. [PMID: 26003529 DOI: 10.1016/j.heares.2015.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/11/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023]
Abstract
DBA/2J mice are characterized by early onset hearing loss at about 3-4 weeks of age. Mutations in cadherin 23 (Cdh23) and fascin-2 (Fscn2) are responsible for the phenotypes, but the underlying mechanism is unknown. In the present study, DBA/2J mice displayed progressive hair cell loss and degeneration of spiral ganglion neurons (SGNs) after 2 weeks of age; however, the mRNA level of Caspase-3 in the inner ears was much higher at 2 weeks of age than that at 4 or 8 weeks of age. Moreover, transcriptional levels of Caspase-3 and Caspase-9 in the inner ears of DBA/2J mice were significantly higher than those of C57BL/6J mice at 2 or 8 weeks of age. Immunohistochemistry localized Caspase-3 and Caspase-9 mainly to the hair cells, SGNs and stria vascularis of the cochleae. To determine the significance of caspase-dependent apoptosis in the hearing loss, the pan-caspase inhibitor Z-VAD-FMK was given intraperitoneally to DBA/J2 mice over an 8-week period starting at one week of age. Blockage of caspases preserved hearing in the mice by more than 10 dB (dB) sound pressure level (SPL) of the ABR thresholds and significantly reduced outer hair cell loss at the basal turns of the cochleae. These results demonstrate that apoptosis in the cochleae of DBA/J2 mice contributes to the early onset of hearing loss, which can be attenuated by anti-apoptotic treatment.
Collapse
Affiliation(s)
- Linlin Yang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Department of Otorhinolaryngology-Head and Neck Surgery, Yuhuangding Hospital, 20 East Yuhuangding Road, Yantai 264000, Shandong, PR China
| | - Heng Zhang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Xu Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Xin Zhao
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Fangyuan Hu
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Ping Li
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Gang Xie
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Lixiang Gao
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Lin Cheng
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China
| | - Xicheng Song
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Department of Otorhinolaryngology-Head and Neck Surgery, Yuhuangding Hospital, 20 East Yuhuangding Road, Yantai 264000, Shandong, PR China.
| | - Fengchan Han
- Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China; Transformative Otology and Neuroscience Center, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, Shandong, PR China.
| |
Collapse
|
17
|
Maiese K. Cutting through the complexities of mTOR for the treatment of stroke. Curr Neurovasc Res 2014; 11:177-86. [PMID: 24712647 DOI: 10.2174/1567202611666140408104831] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/06/2023]
Abstract
On a global basis, at least 15 million individuals suffer some form of a stroke every year. Of these individuals, approximately 800,000 of these cerebrovascular events occur in the United States (US) alone. The incidence of stroke in the US has declined from the third leading cause of death to the fourth, a result that can be attributed to multiple factors that include improved vascular disease management, reduced tobacco use, and more rapid time to treatment in patients that are clinically appropriate to receive recombinant tissue plasminogen activator. However, treatment strategies for the majority of stroke patients are extremely limited and represent a critical void for care. A number of new therapeutic considerations for stroke are under consideration, but it is the mammalian target of rapamycin (mTOR) that is receiving intense focus as a potential new target for cerebrovascular disease. As part of the phosphoinositide 3-kinase (PI 3-K) and protein kinase B (Akt) cascade, mTOR is an essential component of mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) to govern cell death involving apoptosis, autophagy, and necroptosis, cellular metabolism, and gene transcription. Vital for the consideration of new therapeutic strategies for stroke is the ability to understand how the intricate and complex pathways of mTOR signaling sometimes lead to disparate clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|