1
|
Jin M, Shi R, Gao D, Wang B, Li N, Li X, Sik A, Liu K, Zhang X. ErbB2 pY -1248 as a predictive biomarker for Parkinson's disease based on research with RPPA technology and in vivo verification. CNS Neurosci Ther 2024; 30:e14407. [PMID: 37564024 PMCID: PMC10848095 DOI: 10.1111/cns.14407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
AIMS This study aims to reveal a promising biomarker for Parkinson's disease (PD) based on research with reverse phase protein array (RPPA) technology for the first time and in vivo verification, which gains time for early intervention in PD, thus increasing the effectiveness of treatment and reducing disease morbidity. METHODS AND RESULTS We employed RPPA technology which can assess both total and post-translationally modified proteins to identify biomarker candidates of PD in a cellular PD model. As a result, the phosphorylation (pY-1248) of the epidermal growth factor receptor (EGFR) ErbB2 is a promising biomarker candidate for PD. In addition, lapatinib, an ErbB2 tyrosine kinase inhibitor, was used to verify this PD biomarker candidate in vivo. We found that lapatinib-attenuated dopaminergic neuron loss and PD-like behavior in the zebrafish PD model. Accordingly, the expression of ErbB2pY-1248 significantly increased in the MPTP-induced mouse PD model. Our results suggest that ErbB2pY-1248 is a predictive biomarker for PD. CONCLUSIONS In this study, we found that ErbB2pY-1248 is a predictive biomarker of PD by using RPPA technology and in vivo verification. It offers a new perspective on PD diagnosing and treatment, which will be essential in identifying individuals at risk of PD. In addition, this study provides new ideas for digging into biomarkers of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
- School of PsychologyNorth China University of Science and TechnologyTang'shanChina
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Baokun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Ning Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Xia Li
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd.Ji'nanChina
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical SchoolUniversity of PecsPécsHungary
- Institute of Clinical Sciences, Medical SchoolUniversity of BirminghamBirminghamUK
- Institute of Physiology, Medical SchoolUniversity of PecsPécsHungary
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences)Ji'nanChina
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong ProvinceJi'nanChina
| | - Xiujun Zhang
- School of PsychologyNorth China University of Science and TechnologyTang'shanChina
| |
Collapse
|
2
|
Gao X, Kang J, Li X, Chen C, Luo D. Deletion of the tyrosine phosphatase Shp2 in cervical cancer cells promotes reprogramming of glutamine metabolism. FASEB J 2023; 37:e22880. [PMID: 36943407 DOI: 10.1096/fj.202202078rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Shp2 is a nonreceptor protein tyrosine phosphatase that is overexpressed in cervical cancer. However, the role of Shp2 in the regulation of cervical cancer metabolism and tumorigenesis is unclear. EGFR signaling pathways are commonly dysregulated in cervical cancer. We showed that Shp2 knockout in cervical cancer cells decreased EGFR expression and downregulated downstream RAS-ERK activation. Although AKT was activated in Shp2 knockout cells, inhibition of AKT activation could not make cells more sensitive to death. Shp2 depletion inhibited cervical cancer cell proliferation and reduced tumor growth in a xenograft mouse model. 1 H NMR spectroscopic analysis showed that glutamine, glutamate, succinate, creatine, glutathione, and UDP-GlcNAc were significantly changed in Shp2 knockout cells. The intracellular glutamine level was higher in Shp2 knockout cells than in control cells. Further analysis demonstrated that Shp2 knockout promoted glutaminolysis and glutathione production by up-regulating the glutamine metabolism-related genes such as glutaminase (GLS). However, inhibition of GLS did not always make cells sensitive to death, which was dependent on glucose concentration. The level of oxidative phosphorylation was significantly increased, accompanied by an increased generation of reactive oxygen species in Shp2 knockout cells. Shp2 deficiency increased c-Myc and c-Jun expression, which may be related to the upregulation of glutamine metabolism. These findings suggested that Shp2 regulates cervical cancer proliferation, glutamine metabolism, and tumorigenicity.
Collapse
Affiliation(s)
- Xuehui Gao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jie Kang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Xiangke Li
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Chuan Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, China
| | - Duqiang Luo
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
3
|
Ahmad K. Meet the Editorial Board Member. Mini Rev Med Chem 2022. [DOI: 10.2174/138955752215220729100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology
Yeungnam University
Republic of Korea
| |
Collapse
|
4
|
Sampaio-Dias IE, Santejo M, Silva-Reis SC, Liz MA, Alcoholado C, Algarra M, García-Mera X, Rodríguez-Borges JE. Design, Synthesis, and Biological Evaluation of Hybrid Glypromate Analogues Using 2-Azanorbornane as a Prolyl and Pipecolyl Surrogate. ACS Chem Neurosci 2021; 12:3615-3624. [PMID: 34515466 DOI: 10.1021/acschemneuro.1c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative disorders of the central nervous system are a class of heterogeneous pathologies affecting millions of people worldwide and represent a global health burden in developed and developing countries. Without restorative treatments currently available, research on neuroprotective drugs is considered a health priority. In this study, new analogues of the glycyl-l-prolyl-l-glutamic acid (Glypromate) neuropeptide were designed, synthesized, and biologically evaluated using (1R,3S,4S)-2-azanorbornane-3-carboxylic acid as a hybrid construct of l-proline and l-pipecolic acid. Neuroprotection assays carried out in human neuroblastoma SH-SY5Y cells using 6-hydroxydopamine as a stress inducer showed great percentage of recovery (29.7-40.0%) at 100 μM. Among this series, [(1R,3S,4S)-2-glycyl-2-azanorbornane-3-carbonyl]-l-aspartic acid (2a) stands out with a remarkable percentage of recovery (40.0%, at 100 μM) and safe toxicological profile in SH-SY5Y and human adipose mesenchymal stem cells.
Collapse
Affiliation(s)
- Ivo E. Sampaio-Dias
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Miguel Santejo
- Neurodegeneration Team, Nerve Regeneration Group, IBMC − Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sara C. Silva-Reis
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Márcia A. Liz
- Neurodegeneration Team, Nerve Regeneration Group, IBMC − Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal, and i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Cristina Alcoholado
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Xerardo García-Mera
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José E. Rodríguez-Borges
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Srivastava R, Choudhury PK, Dev SK, Rathore V. Neuroprotective effect of α-pinene self-emulsifying nanoformulation against 6-OHDA induced neurotoxicity on human SH-SY5Y cells and its in vivo validation for anti-Parkinson's effect. J Biochem Mol Toxicol 2021; 35:e22902. [PMID: 34464010 DOI: 10.1002/jbt.22902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 11/07/2022]
Abstract
Oxidative stress (OS) is involved in the multifaceted pathogenic paradigm of neurodegenerative diseases like Parkinson's disease (PD). Monoterpenes like α-pinene (ALP) is considered to be a therapeutically potent antioxidant agent able to attenuate and scavenge various reactive oxygen species and reactive nitrogen species. The present study aimed to evaluate the in vitro and in vivo neuroprotective effect of α-pinene self-emulsifying nanoformulation (ALP-SENF) for PD. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was done to evaluate the neurotoxic dose of the ALP-SENF; however, the neuroprotective effect was assessed by 6-hydroxydopamine (6-OHDA) induced neurotoxicity model on SH-SY5Y taking NAC (N-acetyl-l-cysteine) as standard. The in vivo anti-Parkinson's activity of the ALP-SENF was compared with that of the plain ALP suspension by using reserpine antagonism and haloperidol-induced Parkinsonism model in rats. Various behavioral tests and biochemical antioxidant enzymes were estimated. The in vitro results revealed that treatment with ALP-SENF at a concentration of 100 and 200 µM was found to show significant neuronal SH-SY5Y cell viability against 50 µM 6-OHDA. ALP-SENF treated animals have seen significant neurobehavioral improvement. Furthermore, the levels of antioxidative enzymes in biochemical test reveals a marked enhancement in the expression of antioxidant enzymes that significantly attenuated the OS induced neurodegeneration. Due to the mechanisms of their antioxidant action, it was probably due to the scavenging of free radicals and the expression of antioxidant enzymes. It also improved neurobehavioral changes induced by reserpine and haloperidol.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Pratim K Choudhury
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Suresh K Dev
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Vaibhav Rathore
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
6
|
Dirks WG, Capes-Davis A, Eberth S, Fähnrich S, Wilting J, Nagel S, Steenpass L, Becker J. Cross contamination meets misclassification: Awakening of CHP-100 from sleeping beauty sleep-A reviewed model for Ewing's sarcoma. Int J Cancer 2021; 148:2608-2613. [PMID: 33460449 DOI: 10.1002/ijc.33474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 11/11/2022]
Abstract
A human cell line of neuroblastic tissue, which was believed to have been lost to science due to its unavailability in public repositories, is revived and reclassified. In the 1970s, a triple set of neuroblastoma (NB) cell lines became available for research as MYCN-amplified vs nonamplified models (CHP-126/-134 and CHP-100, respectively). Confusingly, CHP-100 was used in subsequent years as a model for NB and, since the 1990s, as a model for neuroepithelioma and later as a model for Ewing's sarcoma (ES), which inevitably led to non-reproducible results. A deposit at a bioresource center revealed that globally available stocks of CHP-100 were identical to the prominent NB cell line IMR-32 and CHP-100 was included into the list of misidentified cell lines. Now we report on the rediscovery of an authentic CHP-100 cell line and provide evidence of incorrect classification during establishment. We show that CHP-100 cells carry a t(11;22)(q24;q12) type II EWSR1-FLI1 fusion and identify it as a classic ES. Although the question of whether CHP-100 was a virtual and never existing cell line from the beginning is now clarified, the results of all relevant publications should be considered questionable. Neither the time of the cross-contamination event with IMR-32 is known nor was the final classification as a model for Ewing family of tumors available with an associated short tandem repeat profile. After a long road of errors and confusion, authentic CHP-100 is now characterized as a type II EWSR1-FLI1 fusion model 44 years after its establishment.
Collapse
Affiliation(s)
- Wilhelm Gerhard Dirks
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Amanda Capes-Davis
- Cell Bank Australia, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Sonja Eberth
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Silke Fähnrich
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| | - Stefan Nagel
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Laura Steenpass
- Leibniz-Institute DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Jürgen Becker
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Sampaio-Dias IE, Reis-Mendes A, Costa VM, García-Mera X, Brea J, Loza MI, Pires-Lima BL, Alcoholado C, Algarra M, Rodríguez-Borges JE. Discovery of New Potent Positive Allosteric Modulators of Dopamine D 2 Receptors: Insights into the Bioisosteric Replacement of Proline to 3-Furoic Acid in the Melanostatin Neuropeptide. J Med Chem 2021; 64:6209-6220. [PMID: 33861612 DOI: 10.1021/acs.jmedchem.1c00252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The control of Parkinson's disease (PD) is challenged by the motor and non-motor fluctuations as well as dyskinesias associated with levodopa long-term therapy. As such, pharmacological alternatives to reduce the reliance on this drug are needed. Melanostatin (MIF-1), a positive allosteric modulator (PAM) of D2 receptors (D2R), is being explored as a novel pharmacological approach focused on D2R potentiation. In this work, 3-furoic acid (3-Fu) was successfully employed as an l-proline (Pro) surrogate, affording two potent MIF-1 analogues, methyl 3-furoyl-l-leucylglycinate (4a) and 3-furoyl-l-leucylglycinamide (6a). In this series, the C-terminal carboxamide moiety was found crucial to enhancing the potency and toxicological profile, yet it is not considered a requisite for the PAM activity. Conformational analysis excludes 4a from adopting the claimed type II β-turn. The discovery and validation of 6a as a lead compound open a new avenue for the development of a novel class of anti-Parkinson therapeutics targeting the D2R.
Collapse
Affiliation(s)
- Ivo E Sampaio-Dias
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Ana Reis-Mendes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Xerardo García-Mera
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - José Brea
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - María Isabel Loza
- Innopharma Screening Platform, Biofarma Research group, Centre of Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Beatriz L Pires-Lima
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Cristina Alcoholado
- Department of Cellular Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Manuel Algarra
- Department of Inorganic Chemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - José E Rodríguez-Borges
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Silva J, Alves C, Pinteus S, Mendes S, Pedrosa R. Seaweeds' neuroprotective potential set in vitro on a human cellular stress model. Mol Cell Biochem 2020; 473:229-238. [PMID: 32656679 DOI: 10.1007/s11010-020-03824-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Neurodegenerative diseases, such as Parkinson's disease, represent a biggest challenge for medicine, imposing high social and economic impacts. As a result, it is of utmost importance to develop new therapeutic strategies. The present work evaluated the neuroprotective potential of seaweeds extracts on an in vitro dopamine (DA)-induced neurotoxicity cellular model. The neuroprotective effects on SH-SY5Y cells' viability were estimated by the MTT assay. Changes in mitochondrial membrane potential (MMP), caspase-3 activity, and hydrogen peroxide (H2O2) production were determined. DA (30-3000 µM; 24 h) treatment decreased SH-SY5Y cells' viability in concentration and time-dependent manner, increasing the H2O2 production, MMP depolarization, and caspase-3 activity. On the other hand, DA (1000 µM; 24 h) toxicity was reduced (10-15%) with Sargassum muticum and Codium tomentosum extracts (1000 µg/mL; 24 h). The highest neuroprotective activity was exhibited by a methanolic extract obtained from Saccorhiza polyschides, which completely blunted DA effects. Results show that the marine seaweed S. polyschides contain substances with high neuroprotective potential against the toxicity induced by DA, exhibiting anti-apoptotic effects associated with both mitochondrial protection and caspase-3 inhibition. S. polyschides reveals, therefore, to be an excellent source of bioactive molecules, for new drugs development aiming PD therapeutics.
Collapse
Affiliation(s)
- Joana Silva
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal.
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal
| | - Susana Mendes
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, Politécnico de Leiria, 2520-630, Peniche, Portugal
| |
Collapse
|
9
|
Wang T, Ye X, Bian W, Chen Z, Du J, Li M, Zhou P, Cui H, Ding YQ, Qi S, Liao M, Sun C. Allopregnanolone Modulates GABAAR-Dependent CaMKIIδ3 and BDNF to Protect SH-SY5Y Cells Against 6-OHDA-Induced Damage. Front Cell Neurosci 2020; 13:569. [PMID: 31998078 PMCID: PMC6970471 DOI: 10.3389/fncel.2019.00569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022] Open
Abstract
Allopregnanolone (APα), as a functional neurosteroid, exhibits the neuroprotective effect on neurodegenerative diseases such as Parkinson’s disease (PD) through γ-aminobutyric acid A receptor (GABAAR), but it has not been completely understood about its molecular mechanisms. In order to investigate the neuroprotective effect of APα, as well as to clarify its possible molecular mechanisms, SH-SY5Y neuronal cell lines were incubated with 6-hydroxydopamine (6-OHDA), which has been widely used as an in vitro model for PD, along with APα alone or in combination with GABAAR antagonist (bicuculline, Bic), intracellular Ca2+ chelator (EGTA) and voltage-gated L-type Ca2+ channel blocker (Nifedipine). The viability, proliferation, and differentiation of SH-SY5Y cells, the expression levels of calmodulin (CaM), Ca2+/calmodulin-dependent protein kinase II δ3 (CaMKIIδ3), cyclin-dependent kinase-1 (CDK1) and brain-derived neurotrophic factor (BDNF), as well as the interaction between CaMKIIδ3 and CDK1 or BDNF, were detected by morphological and molecular biological methodology. Our results found that the cell viability and the number of tyrosine hydroxylase (TH), bromodeoxyuridine (BrdU) and TH/BrdU-positive cells in 6-OHDA-treated SH-SY5Y cells were significantly decreased with the concomitant reduction in the expression levels of aforementioned proteins, which were ameliorated following APα administration. In addition, Bic could further increase the number of TH or BrdU-positive cells as well as the expression levels of aforementioned proteins except for TH/BrdU-double positive cells, while EGTA and Nifedipine could attenuate the expression levels of CaM, CaMKIIδ3 and BDNF. Moreover, there existed a direct interaction between CaMKIIδ3 and CDK1 or BDNF. As a result, APα-induced an increase in the number of TH-positive SH-SY5Y cells might be mediated through GABAAR via Ca2+/CaM/CaMKIIδ3/BDNF (CDK1) signaling pathway, which would ultimately facilitate to elucidate PD pathogenesis and hold a promise as an alternative therapeutic target for PD.
Collapse
Affiliation(s)
- Tongtong Wang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xin Ye
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Bian
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhichi Chen
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juanjuan Du
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengyi Li
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peng Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huairui Cui
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu-Qiang Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuangshuang Qi
- Department of Pharmacy, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyou Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Ko YH, Kwon SH, Kim SK, Lee BR, Hur KH, Kim YJ, Kim SE, Lee SY, Jang CG. Protective effects of 6,7,4'-trihydroxyisoflavone, a major metabolite of daidzein, on 6-hydroxydopamine-induced neuronal cell death in SH-SY5Y human neuroblastoma cells. Arch Pharm Res 2019; 42:1081-1091. [PMID: 31705299 DOI: 10.1007/s12272-019-01191-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
Daidzein, one of the important isoflavones, is extensively metabolized in the human body following consumption. In particular, 6,7,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, has been the focus of recent investigations due to its various health benefits, such as anti-cancer and anti-obesity effects. However, the protective effects of 6,7,4'-THIF have not yet been studied in models of Parkinson's disease (PD). Therefore, the present study aimed to investigate the protective activity of 6,7,4'-THIF on 6-hydroxydopamine (OHDA)-induced neurotoxicity in SH-SY5Y human neuroblastoma cells. Pretreatment of SH-SY5Y cells with 6,7,4'-THIF significantly inhibited 6-OHDA-induced neuronal cell death, lactate dehydrogenase release, and reactive oxygen species production. In addition, 6,7,4'-THIF significantly attenuated reductions in 6-OHDA-induced superoxide dismutase activity and glutathione content. Moreover, 6,7,4'-THIF attenuated alterations in Bax and Bcl-2 expression and caspase-3 activity in 6-OHDA-induced SH-SY5Y cells. Furthermore, 6,7,4'-THIF significantly reduced 6-OHDA-induced phosphorylation of c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and extracellular signal-regulated kinase 1/2. Additionally, 6,7,4'-THIF effectively prevented 6-OHDA-induced loss of tyrosine hydroxylase. Taken together, these results suggest that 6,7,4'-THIF, a major metabolite of daidzein, may be an attractive option for treating and/or preventing neurodegenerative disorders such as PD.
Collapse
Affiliation(s)
- Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong-Eon Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
11
|
Deletion of the Creatine Transporter (Slc6a8) in Dopaminergic Neurons Leads to Hyperactivity in Mice. J Mol Neurosci 2019; 70:102-111. [PMID: 31520365 DOI: 10.1007/s12031-019-01405-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/30/2019] [Indexed: 12/27/2022]
Abstract
The lack of cerebral creatine (Cr) causes intellectual disability and epilepsy. In addition, a significant portion of individuals with Cr transporter (Crt) deficiency (CTD), the leading cause of cerebral Cr deficiency syndromes (CCDS), are diagnosed with attention-deficit hyperactivity disorder. While the neurological effects of CTD are clear, the mechanisms that underlie these deficits are unknown. Part of this is due to the heterogenous nature of the brain and the unique metabolic demands of specific neuronal systems. Of particular interest related to Cr physiology are dopaminergic neurons, as many CCDS patients have ADHD and Cr has been implicated in dopamine-associated neurodegenerative disorders, such as Parkinson's and Huntington's diseases. The purpose of this study was to examine the effect of a loss of the Slc6a8 (Crt) gene in dopamine transporter (Slc6a3; DAT) expressing cells on locomotor activity and motor function as the mice age. Floxed Slc6a8 (Slc6a8flox) mice were mated to DATIREScre expressing mice to generate DAT-specific Slc6a8 knockouts (dCrt-/y). Locomotor activity, spontaneous activity, and performance in the challenging beam test were evaluated monthly in dCrt-/y and control (Slc6a8flox) mice from 3 to 12 months of age. dCrt-/y mice were hyperactive compared with controls throughout testing. In addition, dCrt-/y mice showed increased rearing and hindlimb steps in the spontaneous activity test. Latency to cross the narrow bridge was increased in dCrt-/y mice while foot slips were unchanged. Taken together, these data suggest that the lack of Cr in dopaminergic neurons causes hyperactivity while sparing motor function.
Collapse
|
12
|
Eo H, Kwon Y, Huh E, Sim Y, Choi JG, Jeong JS, Du XF, Soh HY, Hong SP, Kim Pak Y, Oh MS. Protective effects of DA-9805 on dopaminergic neurons against 6-hydroxydopamine-induced neurotoxicity in the models of Parkinson's disease. Biomed Pharmacother 2019; 117:109184. [PMID: 31387167 DOI: 10.1016/j.biopha.2019.109184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 11/19/2022] Open
Abstract
With the elderly population rapidly growing, the prevalence of Parkinson's disease (PD) is quickly increasing because neurodegenerative disorders are usually late-onset. Herbal medicines and formula are adjuvant therapies of conventional PD agents, which result in serious side effects with long-term use. This study evaluated the neuroprotective effects of DA-9805, a standardized herbal formula that consists of an ethanolic extract of Moutan Cortex Radix, Angelica Dahuricae Radix, and Bupleuri Radix against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity in vitro and in vivo. In PC12 cells, DA-9805 at concentrations of 1 and 10 μg/mL ameliorated cell viability, which was reduced by 6-OHDA. In addition, DA-9805 activated the extracellular-regulated kinase-nuclear transcription factor-erythroid 2-related factor 2 pathway, subsequently stimulating antioxidative enzymes such as NAD(P)H:quinone oxidoreductase 1 and catalase and suppressing apoptosis. Furthermore, DA-9805 prevented 6-OHDA-induced movement impairment, as well as a decrease of dopaminergic neurons and dopamine transmission in rodents. Taken together, these results suggest that the mixed herbal formula DA-9805 may be a pharmaceutical agent for preventing or improving PD.
Collapse
Affiliation(s)
- Hyeyoon Eo
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Youngji Kwon
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Eugene Huh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Medical Science of Meridian, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yeomoon Sim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jin Gyu Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jin Seok Jeong
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Republic of Korea
| | - Xiao Fei Du
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Republic of Korea
| | - Hye Yeon Soh
- R&D Center of Dong-A ST, Yong-in, Kyungki-do, 17073, Republic of Korea
| | - Seon-Pyo Hong
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Youngmi Kim Pak
- Neurodegeneration Control Research Center, Department of Physiology, College of Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Pazini FL, Cunha MP, Rodrigues ALS. The possible beneficial effects of creatine for the management of depression. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:193-206. [PMID: 30193988 DOI: 10.1016/j.pnpbp.2018.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 01/23/2023]
Abstract
Depression, a highly prevalent neuropsychiatric disorder worldwide, causes a heavy burden for the society and is associated with suicide risk. The treatment of this disorder remains a challenge, since currently available antidepressants provide a slow and, often, incomplete response and cause several side effects that contribute to diminish the adhesion of patients to treatment. In this context, several nutraceuticals have been investigated regarding their possible beneficial effects for the management of this neuropsychiatric disorder. Creatine stands out as a supplement frequently used for ergogenic purpose, but it also is a neuroprotective compound with potential to treat or mitigate a broad range of central nervous systems diseases, including depression. This review presents preclinical and clinical evidence that creatine may exhibit antidepressant properties. The focus is given on the possible molecular mechanisms underlying its effects based on the results obtained with different animal models of depression. Finally, evidence obtained in animal models of depression addressing the possibility that creatine may produce rapid antidepressant effect, similar to ketamine, are also presented and discussed.
Collapse
Affiliation(s)
- Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Camargo A, Rodrigues ALS. Novel Targets for Fast Antidepressant Responses: Possible Role of Endogenous Neuromodulators. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2019; 3:2470547019858083. [PMID: 32440595 PMCID: PMC7219953 DOI: 10.1177/2470547019858083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
The available medications for the treatment of major depressive disorder have limitations, particularly their limited efficacy, delayed therapeutic effects, and the side effects associated with treatment. These issues highlight the need for better therapeutic agents that provide more efficacious and faster effects for the management of this disorder. Ketamine, an N-methyl-D-aspartate receptor antagonist, is the prototype for novel glutamate-based antidepressants that has been shown to cause a rapid and sustained antidepressant effect even in severe refractory depressive patients. Considering the importance of these findings, several studies have been conducted to elucidate the molecular targets for ketamine's effect. In addition, efforts are under way to characterize ketamine-like drugs. This review focuses particularly on evidence that endogenous glutamatergic neuromodulators may be able to modulate mood and to elicit fast antidepressant responses. Among these molecules, agmatine and creatine stand out as those with more published evidence of similarities with ketamine, but guanosine and ascorbic acid have also provided promising results. The possibility that these neuromodulators and ketamine have common neurobiological mechanisms, mainly the ability to activate mechanistic target of rapamycin and brain-derived neurotrophic factor signaling, and synthesis of synaptic proteins in the prefrontal cortex and/or hippocampus is presented and discussed.
Collapse
Affiliation(s)
- Anderson Camargo
- Neuroscience Postgraduate Program,
Center of Biological Sciences, Universidade Federal de Santa Catarina,
Florianópolis, Brazil
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of
Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis,
Brazil
| |
Collapse
|
15
|
Anacardium microcarpum Promotes Neuroprotection Dependently of AKT and ERK Phosphorylation but Does Not Prevent Mitochondrial Damage by 6-OHDA. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2131895. [PMID: 30510616 PMCID: PMC6231360 DOI: 10.1155/2018/2131895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/11/2018] [Accepted: 08/18/2018] [Indexed: 11/18/2022]
Abstract
Parkinson's disease is a degenerative and progressive illness characterized by the degeneration of dopaminergic neurons. 6-hydroxydopamine (6-OHDA) is a widespread model for induction of molecular and behavioral alterations similar to Parkinson and has contributed for testing of compounds with neuroprotective potential. The Brazilian plant Anacardium microcarpum is used in folk medicine for treatment of several illnesses; however, the knowledge about toxicology and biological effects for this plant is very rare. The neuroprotective effect from hydroalcoholic extract and methanolic and acetate fraction of A. microcarpum on 6-OHDA-induced damage on chicken brain slices was investigated in this study. 6-OHDA decreased cellular viability measured by MTT reduction assay, induced lipid peroxidation by HPLC, stimulated Glutathione-S-Transferase and Thioredoxin Reductase activity, and decreased Glutathione Peroxidase activity and the total content of thiols containing compounds. The methanolic fraction of A. microcarpum presented the better neuroprotective effects in 6-OHDA-induced damage in relation with hydroalcoholic and acetate fraction. The presence of AKT and ERK1/2 pharmacological inhibitors blocked the protective effect of methanolic fraction suggesting the involvement of survival pathways in the neuroprotection by the plant. The plant did not prevent 6-OHDA autoxidation or 6-OHDA-induced mitochondrial dysfunction. Thus, the neuroprotective effect of the methanolic fraction of A. microcarpum appears to be attributed in part to chelating properties of extract toward reactive species and is dependent on ERK1/2 and AKT phosphorylation. This study contributes to the understanding of biochemical mechanisms implied in neuroprotective effects of the vegetal species A. microcarpum.
Collapse
|
16
|
Cunha MP, Pazini FL, Lieberknecht V, Rodrigues ALS. Subchronic administration of creatine produces antidepressant-like effect by modulating hippocampal signaling pathway mediated by FNDC5/BDNF/Akt in mice. J Psychiatr Res 2018; 104:78-87. [PMID: 30005372 DOI: 10.1016/j.jpsychires.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/18/2018] [Accepted: 07/05/2018] [Indexed: 12/22/2022]
Abstract
Creatine has been shown to play a significant role in the pathophysiology and treatment of major depressive disorder (MDD) in preclinical and clinical studies. However, the biological mechanisms underlying its antidepressant effect is still not fully elucidated. This study investigated the effect of creatine (p.o.) administered for 21 days in the behavior of mice submitted to tail suspension test (TST), a predictive test of antidepressant activity. Creatine reduced the immobility time in the TST (1-10 mg/kg), without affecting locomotor activity, a finding consistent with an antidepressant profile. Creatine administration increased the ubiquitous creatine kinase (uCK) and creatine kinase brain isoform (CK-B) mRNA in the hippocampus of mice. Taking into account that PGC-1α induces FNDC5/irisin expression mediating BDNF-dependent neuroplasticity, the effect of creatine administration (1 mg/kg, p. o.) on the hippocampal PGC-1α, FNDC5 and BDNF gene expression was investigated. Creatine treatment increased PGC-1α, FNDC5 and BDNF mRNA in the hippocampus as well as BDNF immunocontent. The involvement of BDNF downstream intracellular signaling pathway mediated by Akt, proapoptotic proteins BAX and BAD and antiapoptotic proteins Bcl2 and Bcl-xL was also investigated following creatine treatment. Creatine increased Akt phosphorylation (Ser 473), and Bcl2 mRNA and protein levels, and Bcl-xL mRNA, whereas BAD mRNA was decreased following creatine administration in the hippocampus. Altogether these results indicate that creatine antidepressant-like effect may be dependent on Akt activation and increased expression of the neuroprotective proteins in the hippocampus of mice. The obtained data reinforce the antidepressant property of creatine and highlight the role of these molecular targets in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Mauricio P Cunha
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil.
| | - Francis L Pazini
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil
| | - Vicente Lieberknecht
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil
| | - Ana Lúcia S Rodrigues
- Universidade Federal de Santa Catarina, Department of Biochemistry, Florianópolis, Brazil
| |
Collapse
|
17
|
Calabrese V, Santoro A, Trovato Salinaro A, Modafferi S, Scuto M, Albouchi F, Monti D, Giordano J, Zappia M, Franceschi C, Calabrese EJ. Hormetic approaches to the treatment of Parkinson's disease: Perspectives and possibilities. J Neurosci Res 2018; 96:1641-1662. [PMID: 30098077 DOI: 10.1002/jnr.24244] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 01/17/2023]
Abstract
Age-related changes in the brain reflect a dynamic interaction of genetic, epigenetic, phenotypic, and environmental factors that can be temporally restricted or more longitudinally present throughout the lifespan. Fundamental to these mechanisms is the capacity for physiological adaptation through modulation of diverse molecular and biochemical signaling occurring from the intracellular to the network-systemic level throughout the brain. A number of agents that affect the onset and progression of Parkinson's disease (PD)-like effects in experimental models exhibit temporal features, and mechanisms of hormetic dose responses. These findings have particular significance since the hormetic dose response describes the amplitude and range of potential therapeutic effects, thereby affecting the design and conduct of studies of interventions against PD (and other neurodegenerative diseases), and may also be important to a broader consideration of hormetic processes in resilient adaptive responses that might afford protection against the onset and/or progression of PD and related disorders.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania.,IBREGENS, Nutraceuticals and Functional Food Biotechnologies Research Associated, University of Catania, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Ferdaous Albouchi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania
| | - Daniela Monti
- Department of Experimental, Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - James Giordano
- Departments of Neurology and Biochemistry, and Neuroethics Studies Program, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Mario Zappia
- Department of Medical Sciences, Surgical and Advanced Technologies G.F. Ingrassia, Section of Neurosciences, University of Catania, Italy
| | | | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
18
|
Fortalezas S, Marques-da-Silva D, Gutierrez-Merino C. Creatine Protects Against Cytosolic Calcium Dysregulation, Mitochondrial Depolarization and Increase of Reactive Oxygen Species Production in Rotenone-Induced Cell Death of Cerebellar Granule Neurons. Neurotox Res 2018; 34:717-732. [PMID: 30094708 DOI: 10.1007/s12640-018-9940-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/09/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
Abstract
Rotenone is a neurotoxin that is an active component of many pesticides which has been shown to induce Parkinsonism in animal models. We show that the cytotoxicity of exposure to nanomolar concentrations of rotenone in cultures of mature cerebellar granule neurons (CGN) in serum-free medium is not due to phagocytosis by glial contamination. A concentration as low as 5.65 ± 0.51 nM of rotenone was enough to trigger 50% cell death of mature CGN in culture after 12 h. The addition of serum proteins to the culture medium attenuated rotenone neurotoxicity, and this can account at least in part for the requirement of higher rotenone concentrations to elicit neuronal cytotoxicity reported in previous works. Creatine partial protection against CGN death promoted by 5 nM rotenone correlated with creatine protection against rotenone-induced mitochondrial depolarization and oxidative stress. Furthermore, creatine largely attenuated the early dysregulation of cytosolic Ca2+ concentration after acute rotenone treatment. Noteworthy, our results also revealed that the sustained alteration of Ca2+ homeostasis induced by rotenone takes place at the onset of the enhancement of intracellular oxidative stress and before mitochondrial depolarization, pointing out that cytosolic Ca2+ dysregulation is a very early event in the rotenone toxicity to CGN.
Collapse
Affiliation(s)
- Sofia Fortalezas
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, and Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain
| | - Dorinda Marques-da-Silva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, and Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, and Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
19
|
Wu HC, Hu QL, Zhang SJ, Wang YM, Jin ZK, Lv LF, Zhang S, Liu ZL, Wu HL, Cheng OM. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural Regen Res 2018; 13:1375-1383. [PMID: 30106049 PMCID: PMC6108222 DOI: 10.4103/1673-5374.235250] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2018] [Indexed: 12/25/2022] Open
Abstract
Genistein, a potent antioxidant compound, protects dopaminergic neurons in a mouse model of Parkinson's disease. However, the mechanism underlying this action remains unknown. This study investigated human SH-SY5Y cells overexpressing the A53T mutant of α-synuclein. Four groups of cells were assayed: a control group (without any treatment), a genistein group (incubated with 20 μM genistein), a rotenone group (treated with 50 μM rotenone), and a rotenone + genistein group (incubated with 20 μM genistein and then treated with 50 μM rotenone). A lactate dehydrogenase release test confirmed the protective effect of genistein, and genistein remarkably reversed mitochondrial oxidative injury caused by rotenone. Western blot assays showed that BCL-2 and Beclin 1 levels were markedly higher in the genistein group than in the rotenone group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling revealed that genistein inhibited rotenone-induced apoptosis in SH-SY5Y cells. Compared with the control group, the expression of NFE2L2 and HMOX1 was significantly increased in the genistein + rotenone group. However, after treatment with estrogen receptor and NFE2L2 channel blockers (ICI-182780 and ML385, respectively), genistein could not elevate NFE2L2 and HMOX1 expression. ICI-182780 effectively prevented genistein-mediated phosphorylation of NFE2L2 and remarkably suppressed phosphorylation of AKT, a protein downstream of the estrogen receptor. These findings confirm that genistein has neuroprotective effects in a cell model of Parkinson's disease. Genistein can reduce oxidative stress damage and cell apoptosis by activating estrogen receptors and NFE2L2 channels.
Collapse
Affiliation(s)
- Huan-Cheng Wu
- Graduate School, Tianjin Medical University, Tianjin, China
- Tianjin Beichen Hospital, Tianjin, China
| | | | | | | | | | - Ling-Fu Lv
- Tianjin Beichen Hospital, Tianjin, China
| | - Sai Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Zhen-Lin Liu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Center for Neurology and Neurosurgery of Affiliated Hospital, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| | - Hong-Lian Wu
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Ou-Mei Cheng
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Silva J, Alves C, Pinteus S, Mendes S, Pedrosa R. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:58. [PMID: 29444677 PMCID: PMC5813419 DOI: 10.1186/s12906-018-2103-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder of the central nervous system. Although the causes of PD pathogenesis remain incomplete, some evidences has suggested that oxidative stress is an important mediator in its pathogenesis. The aim of this study was to evaluate the protective effects of seaweeds with high antioxidant activity on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in the human neuroblastoma cell line SH-SY5Y, as well as the associated intracellular signaling pathways. METHODS Cell viability studies were assessed by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium (MTT) bromide assay and the intracellular signaling pathways analyzed were: hydrogen peroxide (H2O2) production, changes in the mitochondrial membrane potential and Caspase-3 activity. RESULTS Exposure of SH-SY5Y cells to 6-OHDA (10-1000 μM) reduced cell's viability in a concentration and time-dependent manner. The data suggest that the cell death induced by 6-OHDA was mediated by an increase of H2O2 production, the depolarization of mitochondrial membrane potential and the increase of Caspase-3 activity. Extracts from S. polyshides, P. pavonica, S. muticum, C. tomentosum and U. compressa revealed to efficiently protect cell's viability in the presence of 6-OHDA (100 μM; 24 h). These effects appear to be associated with the reduction of H2O2 cell's production, the protection of mitochondrial membrane's potential and the reduction of Caspase-3 activity. CONCLUSIONS These results suggest that seaweeds can be a promising source of new compounds with neuroprotective potential.
Collapse
Affiliation(s)
- Joana Silva
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
- Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Celso Alves
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - Susete Pinteus
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - Susana Mendes
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - Rui Pedrosa
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
21
|
Romero A, Parada E, González‐Lafuente L, Farré‐Alins V, Ramos E, Cacabelos R, Egea J. Neuroprotective effects of E-PodoFavalin-15999 (Atremorine®). CNS Neurosci Ther 2017; 23:450-452. [PMID: 28371323 PMCID: PMC6492656 DOI: 10.1111/cns.12693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 01/14/2023] Open
Affiliation(s)
- Alejandro Romero
- Departamento de Toxicología y FarmacologíaFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - Esther Parada
- Molecular Neuroinflammation Research LaboratoryInstituto de Investigación Sanitaria‐Hospital Universitario de la PrincesaMadridSpain
- Departamento de Farmacología y TerapéuticaFacultad de MedicinaInstituto Teófilo HernandoUAMMadridSpain
| | - Laura González‐Lafuente
- Molecular Neuroinflammation Research LaboratoryInstituto de Investigación Sanitaria‐Hospital Universitario de la PrincesaMadridSpain
- Departamento de Farmacología y TerapéuticaFacultad de MedicinaInstituto Teófilo HernandoUAMMadridSpain
| | - Victor Farré‐Alins
- Molecular Neuroinflammation Research LaboratoryInstituto de Investigación Sanitaria‐Hospital Universitario de la PrincesaMadridSpain
- Departamento de Farmacología y TerapéuticaFacultad de MedicinaInstituto Teófilo HernandoUAMMadridSpain
| | - Eva Ramos
- Departamento de Toxicología y FarmacologíaFacultad de VeterinariaUniversidad Complutense de MadridMadridSpain
| | - Ramón Cacabelos
- EuroEspes Biomedical Research CenterInstitute of Medical Science and Genomic MedicineCorunnaSpain
| | - Javier Egea
- Molecular Neuroinflammation Research LaboratoryInstituto de Investigación Sanitaria‐Hospital Universitario de la PrincesaMadridSpain
- Departamento de Farmacología y TerapéuticaFacultad de MedicinaInstituto Teófilo HernandoUAMMadridSpain
| |
Collapse
|
22
|
Chamberlain KA, Chapey KS, Nanescu SE, Huang JK. Creatine Enhances Mitochondrial-Mediated Oligodendrocyte Survival After Demyelinating Injury. J Neurosci 2017; 37:1479-1492. [PMID: 28069926 PMCID: PMC5299567 DOI: 10.1523/jneurosci.1941-16.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/03/2016] [Accepted: 12/28/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological compounds that promote oligodendrocyte survival could be beneficial for neuroprotection in MS. Here, we investigated the role of creatine, an organic acid involved in adenosine triphosphate (ATP) buffering, in oligodendrocyte function. We found that creatine increased mitochondrial ATP production directly in oligodendrocyte lineage cell cultures and exerted robust protection on oligodendrocytes by preventing cell death in both naive and lipopolysaccharide-treated mixed glia. Moreover, lysolecithin-mediated demyelination in mice deficient in the creatine-synthesizing enzyme guanidinoacetate-methyltransferase (Gamt) did not affect oligodendrocyte precursor cell recruitment, but resulted in exacerbated apoptosis of regenerated oligodendrocytes in central nervous system (CNS) lesions. Remarkably, creatine administration into Gamt-deficient and wild-type mice with demyelinating injury reduced oligodendrocyte apoptosis, thereby increasing oligodendrocyte density and myelin basic protein staining in CNS lesions. We found that creatine did not affect the recruitment of macrophages/microglia into lesions, suggesting that creatine affects oligodendrocyte survival independently of inflammation. Together, our results demonstrate a novel function for creatine in promoting oligodendrocyte viability during CNS remyelination.SIGNIFICANCE STATEMENT We report that creatine enhances oligodendrocyte mitochondrial function and protects against caspase-dependent oligodendrocyte apoptosis during CNS remyelination. This work has important implications for the development of therapeutic targets for diseases characterized by oligodendrocyte death, including multiple sclerosis.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Department of Biology and
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia 20057
| | | | | | - Jeffrey K Huang
- Department of Biology and
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia 20057
| |
Collapse
|
23
|
Cunha MP, Lieberknecht V, Ramos-Hryb AB, Olescowicz G, Ludka FK, Tasca CI, Gabilan NH, Rodrigues ALS. Creatine affords protection against glutamate-induced nitrosative and oxidative stress. Neurochem Int 2016; 95:4-14. [PMID: 26804444 DOI: 10.1016/j.neuint.2016.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 12/11/2022]
Abstract
Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments.
Collapse
Affiliation(s)
- Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil.
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Ana Belén Ramos-Hryb
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Fabiana K Ludka
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Carla I Tasca
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Nelson H Gabilan
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88040-900, Florianópolis, SC, Brazil
| |
Collapse
|
24
|
New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation. Amino Acids 2016; 48:1897-911. [DOI: 10.1007/s00726-015-2161-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022]
|
25
|
Pazini FL, Cunha MP, Rosa JM, Colla ARS, Lieberknecht V, Oliveira Á, Rodrigues ALS. Creatine, Similar to Ketamine, Counteracts Depressive-Like Behavior Induced by Corticosterone via PI3K/Akt/mTOR Pathway. Mol Neurobiol 2015; 53:6818-6834. [PMID: 26660117 DOI: 10.1007/s12035-015-9580-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022]
Abstract
Ketamine has emerged as a novel strategy to treat refractory depression, producing rapid remission, but elicits some side effects that limit its use. In an attempt to investigate a safer compound that may afford an antidepressant effect similar to ketamine, this study examined the effects of the ergogenic compound creatine in a model of depression, and the involvement of phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in its effect. In order to induce a depressive-like behavior, mice were administered with corticosterone (20 mg/kg, per os (p.o.)) for 21 days. This treatment increased immobility time in the tail suspension test (TST), an effect abolished by a single administration of creatine (10 mg/kg, p.o.) or ketamine (1 mg/kg, i.p.), but not by fluoxetine (10 mg/kg, p.o., conventional antidepressant). Treatment of mice with wortmannin (PI3K inhibitor, 0.1 μg/site, intracerebroventricular (i.c.v.)) or rapamycin (mTOR inhibitor, 0.2 nmol/site, i.c.v.) abolished the anti-immobility effect of creatine and ketamine. None of the treatments affected locomotor activity of mice. The immunocontents of p-mTOR, p-p70S6 kinase (p70S6K), and postsynaptic density-95 protein (PSD95) were increased by creatine and ketamine in corticosterone or vehicle-treated mice. Moreover, corticosterone-treated mice presented a decreased hippocampal brain-derived neurotrophic factor (BDNF) level, an effect abolished by creatine or ketamine. Altogether, the results indicate that creatine shares with ketamine the ability to acutely reverse the corticosterone-induced depressive-like behavior by a mechanism dependent on PI3K/AKT/mTOR pathway, and modulation of the synaptic protein PSD95 as well as BDNF in the hippocampus, indicating the relevance of targeting these proteins for the management of depressive disorders. Moreover, we suggest that creatine should be further investigated as a possible fast-acting antidepressant.
Collapse
Affiliation(s)
- Francis L Pazini
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Julia M Rosa
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - André R S Colla
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Vicente Lieberknecht
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ágatha Oliveira
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
26
|
Involvement of PI3K/Akt Signaling Pathway and Its Downstream Intracellular Targets in the Antidepressant-Like Effect of Creatine. Mol Neurobiol 2015; 53:2954-2968. [PMID: 25943184 DOI: 10.1007/s12035-015-9192-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/22/2015] [Indexed: 12/22/2022]
Abstract
Creatine has been proposed to exert beneficial effects in the management of depression, but the cell signaling pathways implicated in its antidepressant effects are not well established. This study investigated the involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. The acute treatment of mice with creatine (1 mg/kg, po) increased the Akt and P70S6K phosphorylation, and HO-1, GPx and PSD95 immunocontents. The pretreatment of mice with LY294002 (10 nmol/mouse, icv, PI3K inhibitor), wortmannin (0.1 μg/mouse, icv, PI3K inhibitor), ZnPP (10 μg/mouse, icv, HO-1 inhibitor), or rapamycin (0.2 nmol/mouse, icv, mTOR inhibitor) prevented the antidepressant-like effect of creatine (1 mg/kg, po) in the TST. In addition, the administration of subeffective dose of either the selective GSK3 inhibitor AR-A014418 (0.01 μg/mouse, icv), the nonselective GSK3 inhibitor lithium chloride (10 mg/kg, po), or the HO-1 inductor CoPP (0.01 μg/mouse, icv), in combination with a subeffective dose of creatine (0.01 mg/kg, po) reduced the immobility time in the TST as compared with either drug alone. No treatment caused significant changes in the locomotor activity of mice. These results indicate that the antidepressant-like effect of creatine in the TST depends on the activation of Akt, Nrf2/HO-1, GPx, and mTOR, and GSK3 inhibition.
Collapse
|
27
|
Chavarria D, Silva T, Martins D, Bravo J, Summavielle T, Garrido J, Borges F. Exploring cinnamic acid scaffold: development of promising neuroprotective lipophilic antioxidants. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00018a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
New lipophilic hydroxycinnamic acid based derivatives were designed and synthesized and their antioxidant and neuroprotective activities evaluated.
Collapse
Affiliation(s)
- Daniel Chavarria
- CIQ/Department of Chemistry Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Tiago Silva
- CIQ/Department of Chemistry Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Daniel Martins
- CIQ/Department of Chemistry Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| | - Joana Bravo
- Addiction Biology Group
- Institute for Molecular and Cell Biology
- University of Porto
- Porto
- Portugal
| | - Teresa Summavielle
- Addiction Biology Group
- Institute for Molecular and Cell Biology
- University of Porto
- Porto
- Portugal
| | - Jorge Garrido
- Department of Chemical Engineering
- School of Engineering (ISEP)
- Polytechnic of Porto
- 4200-072 Porto
- Portugal
| | - Fernanda Borges
- CIQ/Department of Chemistry Biochemistry
- Faculty of Sciences
- University of Porto
- 4169-007 Porto
- Portugal
| |
Collapse
|
28
|
Cunha MP, Martín-de-Saavedra MD, Romero A, Egea J, Ludka FK, Tasca CI, Farina M, Rodrigues ALS, López MG. Both creatine and its product phosphocreatine reduce oxidative stress and afford neuroprotection in an in vitro Parkinson's model. ASN Neuro 2014; 6:1759091414554945. [PMID: 25424428 PMCID: PMC4357608 DOI: 10.1177/1759091414554945] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson's model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK3β) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine(473)) and GSK3β (Serine(9)). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons.
Collapse
Affiliation(s)
- Mauricio Peña Cunha
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain Departamento de Bioquímica, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Maria D Martín-de-Saavedra
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Alejandro Romero
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | - Javier Egea
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain Instituto de Investigación Sanitaria Hospital de la Princesa, Madrid, Spain
| | - Fabiana K Ludka
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Florianópolis, SC, Brazil Department of Pharmacy, Universidade do Contestado, Canoinhas, SC, Brazil
| | - Carla I Tasca
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain
| | - Marcelo Farina
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Florianópolis, SC, Brazil
| | - Manuela G López
- Facultad de Medicina, Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Spain Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
29
|
Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells. Neurochem Int 2014; 74:53-64. [DOI: 10.1016/j.neuint.2014.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/14/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
|
30
|
Qu L, Wang Y, Zhang HT, Li N, Wang Q, Yang Q, Gao GD, Wang XL. 6-OHDA induced calcium influx through N-type calcium channel alters membrane properties via PKA pathway in substantia nigra pars compacta dopaminergic neurons. Neurosci Lett 2014; 575:1-6. [DOI: 10.1016/j.neulet.2014.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/26/2014] [Accepted: 05/13/2014] [Indexed: 12/21/2022]
|
31
|
Chen S, An FM, Yin L, Liu AR, Yin DK, Yao WB, Gao XD. Glucagon-like peptide-1 protects hippocampal neurons against advanced glycation end product-induced tau hyperphosphorylation. Neuroscience 2014; 256:137-46. [DOI: 10.1016/j.neuroscience.2013.10.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/13/2013] [Accepted: 10/20/2013] [Indexed: 01/16/2023]
|
32
|
Meng XB, Sun GB, Wang M, Sun J, Qin M, Sun XB. P90RSK and Nrf2 Activation via MEK1/2-ERK1/2 Pathways Mediated by Notoginsenoside R2 to Prevent 6-Hydroxydopamine-Induced Apoptotic Death in SH-SY5Y Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:971712. [PMID: 24159358 PMCID: PMC3789498 DOI: 10.1155/2013/971712] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/27/2013] [Accepted: 08/12/2013] [Indexed: 01/13/2023]
Abstract
6-Hydroxydopamine (6-OHDA) is known to contribute to neuronal death in Parkinson's disease. In this study, we found that the preincubation of SH-SY5Y cells for 24 h with 20 μ M notoginsenoside R2 (NGR2), which is a newly isolated notoginsenoside from Panax notoginseng, showed neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis. NGR2 incubation successively resulted in the activation of P90RSK, inactivation of BAD, and inhibition of 6-OHDA-induced mitochondrial membrane depolarization, thus preventing the mitochondrial apoptosis pathway. NGR2 incubation also led to the activation of Nrf2 and subsequent activity enhancement of phase II detoxifying enzymes, thus suppressing 6-OHDA-induced oxidative stress, and these effects could be removed by Nrf2 siRNA. We also found that the upstream activators of P90RSK and Nrf2 were the MEK1/2-ERK1/2 pathways but not the JNK, P38, or PI3K/Akt pathways. Interestingly, NGR2 incubation could also activate MEK1/2 and ERK1/2. Most importantly, NGR2-mediated P90RSK and Nrf2 activation, respective downstream target activation, and neuroprotection were reversed by the genetic silencing of MEK1/2 and ERK1/2 by using siRNA and PD98059 application. These results suggested that the neuroprotection elicited by NGR2 against 6-OHDA-induced neurotoxicity was associated with NGR2-mediated P90RSK and Nrf2 activation through MEK1/2-ERK1/2 pathways.
Collapse
Affiliation(s)
- Xiang-Bao Meng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Gui-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Jing Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meng Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiao-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|