1
|
Pesti I, Barczánfalvi G, Dulka K, Kata D, Farkas E, Gulya K. Bafilomycin 1A Affects p62/SQSTM1 Autophagy Marker Protein Level and Autophagosome Puncta Formation Oppositely under Various Inflammatory Conditions in Cultured Rat Microglial Cells. Int J Mol Sci 2024; 25:8265. [PMID: 39125836 PMCID: PMC11311604 DOI: 10.3390/ijms25158265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Regulation of autophagy through the 62 kDa ubiquitin-binding protein/autophagosome cargo protein sequestosome 1 (p62/SQSTM1), whose level is generally inversely proportional to autophagy, is crucial in microglial functions. Since autophagy is involved in inflammatory mechanisms, we investigated the actions of pro-inflammatory lipopolysaccharide (LPS) and anti-inflammatory rosuvastatin (RST) in secondary microglial cultures with or without bafilomycin A1 (BAF) pretreatment, an antibiotic that potently inhibits autophagosome fusion with lysosomes. The levels of the microglia marker protein Iba1 and the autophagosome marker protein p62/SQSTM1 were quantified by Western blots, while the number of p62/SQSTM1 immunoreactive puncta was quantitatively analyzed using fluorescent immunocytochemistry. BAF pretreatment hampered microglial survival and decreased Iba1 protein level under all culturing conditions. Cytoplasmic p62/SQSTM1 level was increased in cultures treated with LPS+RST but reversed markedly when BAF+LPS+RST were applied together. Furthermore, the number of p62/SQSTM1 immunoreactive autophagosome puncta was significantly reduced when RST was used but increased significantly in BAF+RST-treated cultures, indicating a modulation of autophagic flux through reduction in p62/SQSTM1 degradation. These findings collectively indicate that the cytoplasmic level of p62/SQSTM1 protein and autophagocytotic flux are differentially regulated, regardless of pro- or anti-inflammatory state, and provide context for understanding the role of autophagy in microglial function in various inflammatory settings.
Collapse
Affiliation(s)
- István Pesti
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
- HCEMM-USZ Group of Cerebral Blood Flow and Metabolism, University of Szeged, 6720 Szeged, Hungary
| | - Gábor Barczánfalvi
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
| | - Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
| | - Diana Kata
- Department of Laboratory Medicine, University of Szeged, 6725 Szeged, Hungary;
| | - Eszter Farkas
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
- HCEMM-USZ Group of Cerebral Blood Flow and Metabolism, University of Szeged, 6720 Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (I.P.); (G.B.); (K.D.); (E.F.)
| |
Collapse
|
2
|
Dabrowska S, Turano E, Scambi I, Virla F, Nodari A, Pezzini F, Galiè M, Bonetti B, Mariotti R. A Cellular Model of Amyotrophic Lateral Sclerosis to Study the Therapeutic Effects of Extracellular Vesicles from Adipose Mesenchymal Stem Cells on Microglial Activation. Int J Mol Sci 2024; 25:5707. [PMID: 38891895 PMCID: PMC11171908 DOI: 10.3390/ijms25115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons (MNs) in the brain and spinal cord, leading to progressive paralysis and death. Increasing evidence indicates that neuroinflammation plays an important role in ALS's pathogenesis and disease progression. Neuroinflammatory responses, primarily driven by activated microglia and astrocytes, and followed by infiltrating peripheral immune cells, contribute to exacerbate/accelerate MN death. In particular, the role of the microglia in ALS remains unclear, partly due to the lack of experimental models that can fully recapitulate the complexity of ALS's pathology. In this study, we developed and characterized a microglial cell line, SIM-A9-expressing human mutant protein Cu+/Zn+ superoxide dismutase_1 (SIM-A9hSOD1(G93A)), as a suitable model in vitro mimicking the microglia activity in ALS. The expression of hSOD1(G93A) in SIM-A9 cells induced a change in their metabolic activity, causing polarization into a pro-inflammatory phenotype and enhancing reactive oxygen species production, which is known to activate cell death processes and apoptosis. Afterward, we used our microglial model as an experimental set-up to investigate the therapeutic action of extracellular vesicles isolated from adipose mesenchymal stem cells (ASC-EVs). ASC-EVs represent a promising therapeutic treatment for ALS due to their neuroprotective and immunomodulatory properties. Here, we demonstrated that treatment with ASC-EVs is able to modulate activated ALS microglia, reducing their metabolic activity and polarizing their phenotype toward an anti-inflammatory one through a mechanism of reduction of reactive oxygen species.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego Street 5, 02-106 Warsaw, Poland
| | - Ermanna Turano
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Federica Virla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Alice Nodari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology (Child Neurology and Psychiatry), University of Verona, 37134 Verona, Italy;
| | - Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Bruno Bonetti
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| |
Collapse
|
3
|
Pesti I, Légrádi Á, Farkas E. Primary microglia cell cultures in translational research: Strengths and limitations. J Biotechnol 2024; 386:10-18. [PMID: 38519034 DOI: 10.1016/j.jbiotec.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Microglia are the resident macrophages in the central nervous system, accounting for 10-15% of the cell mass in the brain. Next to their physiological role in development, monitoring neuronal function and the maintenance of homeostasis, microglia are crucial in the brain's immune defense. Brain injury and chronic neurological disorders are associated with neuroinflammation, in which microglia activation is a central element. Microglia acquire a wide spectrum of activation states in the diseased or injured brain, some of which are neurotoxic. The investigation of microglia (patho)physiology and therapeutic interventions targeting neuroinflammation is a substantial challenge. In addition to in vivo approaches, the application of in vitro model systems has gained significant ground and is essential to complement in vivo work. Primary microglia cultures have proved to be a useful tool. Microglia cultures have offered the opportunity to explore the mechanistic, molecular elements of microglia activation, the microglia secretome, and the efficacy of therapeutic treatments against neuroinflammation. As all model systems, primary microglia cultures have distinct strengths and limitations to be weighed when experiments are designed and when data are interpreted. Here, we set out to provide a succinct overview of the advantages and pitfalls of the use of microglia cultures, which instructs the refinement and further development of this technique to remain useful in the toolbox of microglia researchers. Since there is no conclusive therapy to combat neurotoxicity linked to neuroinflammation in acute brain injury or neurodegenerative disorders, these research tools remain essential to explore therapeutic opportunities.
Collapse
Affiliation(s)
- István Pesti
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Ádám Légrádi
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged Cerebral Blood Flow and Metabolism Research Group, Somogyi u 4, Szeged 6720, Hungary; Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Somogyi u 4, Szeged 6720, Hungary.
| |
Collapse
|
4
|
Lu C, Huang C, Qu S, Lin H, Zhong HJ, Chong CM. Oxyimperatorin attenuates LPS-induced microglial activation in vitro and in vivo via suppressing NF-κB p65 signaling. Biomed Pharmacother 2024; 173:116379. [PMID: 38452656 DOI: 10.1016/j.biopha.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Microglia-mediated neuroinflammation is an important pathological feature in many neurological diseases; thus, suppressing microglial activation is considered a possible therapeutic strategy for reducing neuronal damage. Oxyimperatorin (OIMP) is a member of furanocoumarin, isolated from the medicinal herb Glehnia littoralis. However, it is unknown whether OIMP can suppress the neuroinflammation. PURPOSE To investigate the neuroprotective activity of oxyimperatorin (OIMP) in LPS-induced neuroinflammation in vitro and in vivo models. METHODS In vitro inflammation-related assays were performed with OIMP in LPS-induced BV-2 microglia. In addition, intraperitoneal injection of LPS-induced microglial activation in the mouse brain was used to validate the anti-neuroinflammatory activity of OIMP. RESULTS OIMP was found to suppress LPS-induced neuroinflammation in vitro and in vivo. OIMP significantly attenuated LPS-induced the production of free radicals, inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines in BV-2 microglia without causing cytotoxicity. In addition, OIMP could reduce the M1 pro-inflammatory transition in LPS-stimulated BV-2 microglia. The mechanistic study revealed that OIMP inhibited LPS-induced NF-κB p65 phosphorylation and nuclear translocation. However, OIMP did not affect LPS-induced IκB phosphorylation and degradation. In addition, OIMP also was able to reduce LPS-induced microglial activation in mice brain. CONCLUSION Our findings suggest that OIMP suppresses microglia activation and attenuates the production of pro-inflammatory mediators and cytokines via inhibition of NF-κB p65 signaling.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao Special Administrative Region of China, China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao Special Administrative Region of China, China
| | - Shuhui Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao Special Administrative Region of China, China
| | - Huiyuan Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao Special Administrative Region of China, China
| | - Hai-Jing Zhong
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao Special Administrative Region of China, China.
| |
Collapse
|
5
|
Palpagama T, Mills AR, Ferguson MW, Vikas Ankeal P, Turner C, Tippett L, van der Werf B, Waldvogel HJ, Faull RLM, Kwakowsky A. Microglial and Astrocytic Responses in the Human Midcingulate Cortex in Huntington's Disease. Ann Neurol 2023; 94:895-910. [PMID: 37528539 DOI: 10.1002/ana.26753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVE Patients with Huntington's disease can present with variable difficulties of motor functioning, mood, and cognition. Neurodegeneration occurs in the anterior cingulate cortex of some patients with Huntington's disease and is linked to the presentation of mood symptomatology. Neuroinflammation, perpetrated by activated microglia and astrocytes, has been reported in Huntington's disease and may contribute to disease progression and presentation. This study sought to quantify the density of mutant huntingtin protein and neuroinflammatory glial changes in the midcingulate cortex of postmortem patients with Huntington's disease and determine if either correlates with the presentation of mood, motor, or mixed symptomatology. METHODS Free-floating immunohistochemistry quantified 1C2 immunolabeling density as an indicative marker of mutant huntingtin protein, and protein and morphological markers of astrocyte (EAAT2, Cx43, and GFAP), and microglial (Iba1 and HLA-DP/DQ/DR) activation. Relationships among the level of microglial activation, mutant huntingtin burden, and case characteristics were explored using correlative analysis. RESULTS We report alterations in activated microglia number and morphology in the midcingulate cortex of Huntington's disease cases with predominant mood symptomatology. An increased proportion of activated microglia was observed in the midcingulate of all Huntington's disease cases and positively correlated with 1C2 burden. Alterations in the astrocytic glutamate transporter EAAT2 were observed in the midcingulate cortex of patients associated with mood symptoms. INTERPRETATION This study presents pathological changes in microglia and astrocytes in the midcingulate cortex in Huntington's disease, which coincide with mood symptom presentation. These findings further the understanding of neuroinflammation in Huntington's disease, a necessary step for developing inflammation-targeted therapeutics. ANN NEUROL 2023;94:895-910.
Collapse
Affiliation(s)
- Thulani Palpagama
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Aimee Rose Mills
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Mackenzie Wendy Ferguson
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | - Clinton Turner
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Lynette Tippett
- Centre for Brain Research and School of Psychology, Faculty of Sciences, University of Auckland, Auckland, New Zealand
| | - Bert van der Werf
- Department of Epidemiology and Biostatistics, Faculty of Medical and Health Sciences, School of Population Health, University of Auckland, Auckland, New Zealand
| | - Henry John Waldvogel
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Lewis Maxwell Faull
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research and Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Kiss T, Mir Y, Stefancsik G, Ganbat G, Askarova A, Monostori E, Dulka K, Szebeni GJ, Nyúl-Tóth Á, Csiszár A, Legradi A. Galectin-1 as a marker for microglia activation in the aging brain. Brain Res 2023; 1818:148517. [PMID: 37557976 DOI: 10.1016/j.brainres.2023.148517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Microglia cells, the immune cells residing in the brain, express immune regulatory molecules that have a central role in the manifestation of age-related brain characteristics. Our hypothesis suggests that galectin-1, an anti-inflammatory member of the beta-galactoside-binding lectin family, regulates microglia and neuroinflammation in the aging brain. Through our in-silico analysis, we discovered a subcluster of microglia in the aged mouse brain that exhibited increased expression of galectin-1 mRNA. In our Western blotting experiments, we observed a decrease in galectin-1 protein content in our rat primary cortical cultures over time. Additionally, we found that the presence of lipopolysaccharide, an immune activator, significantly increased the expression of galectin-1 protein in microglial cells. Utilizing flow cytometry, we determined that a portion of the galectin-1 protein was localized on the surface of the microglial cells. As cultivation time increased, we observed a decrease in the expression of activation-coupled molecules in microglial cells, indicating cellular exhaustion. In our mixed rat primary cortical cell cultures, we noted a transition of amoeboid microglial cells labeled with OX42(CD11b/c) to a ramified, branched phenotype during extended cultivation, accompanied by a complete disappearance of galectin-1 expression. By analyzing the transcriptome of a distinct microglial subpopulation in an animal model of aging, we established a correlation between chronological aging and galectin-1 expression. Furthermore, our in vitro study demonstrated that galectin-1 expression is associated with the functional activation state of microglial cells exhibiting specific amoeboid morphological characteristics. Based on our findings, we identify galectin-1 as a marker for microglia activation in the context of aging.
Collapse
Affiliation(s)
- Tamas Kiss
- Pediatric Center, Semmelweis University, Budapest, Hungary; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yaqub Mir
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary; Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gergely Stefancsik
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Gantulga Ganbat
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Aruzhan Askarova
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Eva Monostori
- Lymphocyte Signal Transduction Laboratory, Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| | - Gabor J Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, ELKH, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational Medicine, Semmelweis University, Budapest, Hungary; Institute of Biophysics, Biological Research Centre, ELKH, Szeged, Hungary.
| | - Anna Csiszár
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary; Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health and Translational Medicine, Semmelweis University, Budapest, Hungary; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Adam Legradi
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
7
|
Zhang Z, Peng S, Xu T, Liu J, Zhao L, Xu H, Zhang W, Zhu Y, Yang Z. Retinal Microenvironment-Protected Rhein-GFFYE Nanofibers Attenuate Retinal Ischemia-Reperfusion Injury via Inhibiting Oxidative Stress and Regulating Microglial/Macrophage M1/M2 Polarization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302909. [PMID: 37653617 PMCID: PMC10602545 DOI: 10.1002/advs.202302909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Retinal ischemia is involved in the occurrence and development of various eye diseases, including glaucoma, diabetic retinopathy, and central retinal artery occlusion. To the best of our knowledge, few studies have reported self-assembling peptide natural products for the suppression of ocular inflammation and oxidative stress. Herein, a self-assembling peptide GFFYE is designed and synthesized, which can transform the non-hydrophilicity of rhein into an amphiphilic sustained-release therapeutic agent, and rhein-based therapeutic nanofibers (abbreviated as Rh-GFFYE) are constructed for the treatment of retinal ischemia-reperfusion (RIR) injury. Rh-GFFYE significantly ameliorates oxidative stress and inflammation in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia and a rat model of RIR injury. Rh-GFFYE also significantly enhances retinal electrophysiological recovery and exhibits good biocompatibility. Importantly, Rh-GFFYE also promotes the transition of M1-type macrophages to the M2 type, ultimately altering the pro-inflammatory microenvironment. Further investigation of the treatment mechanism indicates that Rh-GFFYE activates the PI3K/AKT/mTOR signaling pathway to reduce oxidative stress and inhibits the NF-κB and STAT3 signaling pathways to affect inflammation and macrophage polarization. In conclusion, the rhein-loaded nanoplatform alleviates RIR injury by modulating the retinal microenvironment. The findings are expected to promote the clinical application of hydrophobic natural products in RIR injury-associated eye diseases.
Collapse
Affiliation(s)
- Zhuhong Zhang
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Shengjun Peng
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Tengyan Xu
- Key Laboratory of Bioactive MaterialsMinistry of EducationState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesCollaborative Innovation Center of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071China
| | - Jia Liu
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Laien Zhao
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Hui Xu
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Wen Zhang
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Yuanying Zhu
- School of PharmacyKey Laboratory of Molecular Pharmacology and Drug EvaluationMinistry of EducationCollaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantai264005China
| | - Zhimou Yang
- Key Laboratory of Bioactive MaterialsMinistry of EducationState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesCollaborative Innovation Center of Chemical Science and Engineeringand National Institute of Functional MaterialsNankai UniversityTianjin300071China
| |
Collapse
|
8
|
Szabo M, Lajkó N, Dulka K, Barczánfalvi G, Lőrinczi B, Szatmári I, Mihály A, Vécsei L, Gulya K. The kynurenic acid analog SZR104 induces cytomorphological changes associated with the anti-inflammatory phenotype in cultured microglia. Sci Rep 2023; 13:11328. [PMID: 37443330 PMCID: PMC10344911 DOI: 10.1038/s41598-023-38107-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
We previously showed the anti-inflammatory effects of kynurenic acid (KYNA) and its brain-penetrable analog N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide (SZR104) both in vivo and in vitro. Here, we identified the cytomorphological effects of KYNA and SZR104 in secondary microglial cultures established from newborn rat forebrains. We quantitatively analyzed selected morphological aspects of microglia in control (unchallenged), lipopolysaccharide (LPS)-treated (challenged), KYNA- or SZR104-treated, and LPS + KYNA or LPS + SZR104-treated cultures. Multicolor immunofluorescence labeling followed by morphometric analysis (area, perimeter, transformation index, lacunarity, density, span ratio, maximum span across the convex hull, hull circularity, hull area, hull perimeter, max/min radii, mean radius, diameter of bounding circle, fractal dimension, roughness, circularity) on binary (digital) silhouettes of the microglia revealed their morphological plasticity under experimental conditions. SZR104 and, to a lesser degree, KYNA inhibited proinflammatory phenotypic changes. For example, SZR104 treatment resulted in hypertrophied microglia characterized by a swollen cell body, enlarged perimeter, increased transformation index/decreased circularity, increased convex hull values (area, perimeter, mean radius, maximum span, diameter of the bounding circle and hull circularity), altered box-counting parameters (such as fractal dimension), and increased roughness/decreased density. Taken together, analysis of cytomorphological features could contribute to the characterization of the anti-inflammatory activity of SZR104 on cultured microglia.
Collapse
Affiliation(s)
- Melinda Szabo
- Department of Cell Biology and Molecular Medicine, University of Szeged, Somogyi utca 4., 6720, Szeged, Hungary
| | - Noémi Lajkó
- Department of Cell Biology and Molecular Medicine, University of Szeged, Somogyi utca 4., 6720, Szeged, Hungary
| | - Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, Somogyi utca 4., 6720, Szeged, Hungary
| | - Gábor Barczánfalvi
- Department of Cell Biology and Molecular Medicine, University of Szeged, Somogyi utca 4., 6720, Szeged, Hungary
| | - Bálint Lőrinczi
- ELKH-SZTE Stereochemistry Research Group, Institute of Pharmaceutical Chemistry, University of Szeged, 6720, Szeged, Hungary
- Institute of Pharmaceutical Chemistry and Interdisciplinary Excellence Center, University of Szeged, 6720, Szeged, Hungary
| | - István Szatmári
- ELKH-SZTE Stereochemistry Research Group, Institute of Pharmaceutical Chemistry, University of Szeged, 6720, Szeged, Hungary
- Institute of Pharmaceutical Chemistry and Interdisciplinary Excellence Center, University of Szeged, 6720, Szeged, Hungary
| | - András Mihály
- Department of Anatomy, University of Szeged, 6724, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, 6725, Szeged, Hungary
- ELKH-SZTE Neuroscience Research Group, Department of Neurology, Interdisciplinary Excellence Center, University of Szeged, 6725, Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Somogyi utca 4., 6720, Szeged, Hungary.
| |
Collapse
|
9
|
Terradillos I, Bonilla-Del Río I, Puente N, Serrano M, Mimenza A, Lekunberri L, Anaut-Lusar I, Reguero L, Gerrikagoitia I, Ruiz de Martín Esteban S, Hillard CJ, Grande MT, Romero J, Elezgarai I, Grandes P. Altered glial expression of the cannabinoid 1 receptor in the subiculum of a mouse model of Alzheimer's disease. Glia 2023; 71:866-879. [PMID: 36437738 DOI: 10.1002/glia.24312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/23/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
The alteration of the endocannabinoid tone usually associates with changes in the expression and/or function of the cannabinoid CB1 receptor. In Alzheimer's disease (AD), amyloid beta (Aβ)-containing aggregates induce a chronic inflammatory response leading to reactivity of both microglia and astrocytes. However, how this glial response impacts on the glial CB1 receptor expression in the subiculum of a mouse model of AD, a brain region particularly affected by large accumulation of plaques and concomitant subcellular changes in microglia and astrocytes, is unknown. The CB1 receptor localization in both glial cells was investigated in the subiculum of male 5xFAD/CB2 EGFP/f/f (AD model) and CB2 EGFP/f/f mice by immuno-electron microscopy. The findings revealed that glial CB1 receptors suffer remarkable changes in the AD mouse. Thus, CB1 receptor expression increases in reactive microglia in 5xFAD/CB2 EGFP/f/f , but remains constant in astrocytes with CB1 receptor labeling rising proportionally to the perimeter of the reactive astrocytes. Not least, the CB1 receptor localization in microglial processes in the subiculum of controls and closely surrounding amyloid plaques and dystrophic neurites of the AD model, supports previous suggestions of the presence of the CB1 receptor in microglia. These findings on the correlation between glial reactivity and the CB1 receptor expression in microglial cells and astrocytes, contribute to the understanding of the role of the endocannabinoid system in the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Itziar Terradillos
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Maitane Serrano
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Amaia Mimenza
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Leire Lekunberri
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Ilazki Anaut-Lusar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | | | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - María T Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
10
|
Martinez A, Hériché JK, Calvo M, Tischer C, Otxoa-de-Amezaga A, Pedragosa J, Bosch A, Planas AM, Petegnief V. Characterization of microglia behaviour in healthy and pathological conditions with image analysis tools. Open Biol 2023; 13:220200. [PMID: 36629019 PMCID: PMC9832574 DOI: 10.1098/rsob.220200] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microglia are very sensitive to changes in the environment and respond through morphological, functional and metabolic adaptations. To depict the modifications microglia undergo under healthy and pathological conditions, we developed free access image analysis scripts to quantify microglia morphologies and phagocytosis. Neuron-glia cultures, in which microglia express the reporter tdTomato, were exposed to excitotoxicity or excitotoxicity + inflammation and analysed 8 h later. Neuronal death was assessed by SYTOX staining of nucleus debris and phagocytosis was measured through the engulfment of SYTOX+ particles in microglia. We identified seven morphologies: round, hypertrophic, fried egg, bipolar and three 'inflamed' morphologies. We generated a classifier able to separate them and assign one of the seven classes to each microglia in sample images. In control cultures, round and hypertrophic morphologies were predominant. Excitotoxicity had a limited effect on the composition of the populations. By contrast, excitotoxicity + inflammation promoted an enrichment in inflamed morphologies and increased the percentage of phagocytosing microglia. Our data suggest that inflammation is critical to promote phenotypical changes in microglia. We also validated our tools for the segmentation of microglia in brain slices and performed morphometry with the obtained mask. Our method is versatile and useful to correlate microglia sub-populations and behaviour with environmental changes.
Collapse
Affiliation(s)
- Aleix Martinez
- Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - Jean-Karim Hériché
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Maria Calvo
- Advanced Optical Microscopy Facility, Scientific and Technological Centers. School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Christian Tischer
- Centre for BioImage Analysis, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Amaia Otxoa-de-Amezaga
- Achucarro Basque Center for Neuroscience and Department of Neuroscience, University of the Basque Country UPV/EHU, Achucarro, 48940 Leioa, Spain
| | - Jordi Pedragosa
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona, Spanish Research Council, 08036 Barcelona, Spain,Institut d'Investigacions Biomèdiques Augustí Pi i Sunyer, 08036 Barcelona, Spain
| | - Anna Bosch
- Advanced Optical Microscopy Facility, Scientific and Technological Centers. School of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Anna M. Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona, Spanish Research Council, 08036 Barcelona, Spain,Institut d'Investigacions Biomèdiques Augustí Pi i Sunyer, 08036 Barcelona, Spain
| | - Valérie Petegnief
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona, Spanish Research Council, 08036 Barcelona, Spain,Institut d'Investigacions Biomèdiques Augustí Pi i Sunyer, 08036 Barcelona, Spain
| |
Collapse
|
11
|
A conserved MTMR lipid phosphatase increasingly suppresses autophagy in brain neurons during aging. Sci Rep 2022; 12:21817. [PMID: 36528685 PMCID: PMC9759524 DOI: 10.1038/s41598-022-24843-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Ageing is driven by the progressive, lifelong accumulation of cellular damage. Autophagy (cellular self-eating) functions as a major cell clearance mechanism to degrade such damages, and its capacity declines with age. Despite its physiological and medical significance, it remains largely unknown why autophagy becomes incapable of effectively eliminating harmful cellular materials in many cells at advanced ages. Here we show that age-associated defects in autophagic degradation occur at both the early and late stages of the process. Furthermore, in the fruit fly Drosophila melanogaster, the myotubularin-related (MTMR) lipid phosphatase egg-derived tyrosine phosphatase (EDTP) known as an autophagy repressor gradually accumulates in brain neurons during the adult lifespan. The age-related increase in EDTP activity is associated with a growing DNA N6-adenine methylation at EDTP locus. MTMR14, the human counterpart of EDTP, also tends to accumulate with age in brain neurons. Thus, EDTP, and presumably MTMR14, promotes brain ageing by increasingly suppressing autophagy throughout adulthood. We propose that EDTP and MTMR14 phosphatases operate as endogenous pro-ageing factors setting the rate at which neurons age largely independently of environmental factors, and that autophagy is influenced by DNA N6-methyladenine levels in insects.
Collapse
|
12
|
Liu J, Sato Y, Falcone-Juengert J, Kurisu K, Shi J, Yenari MA. Sexual dimorphism in immune cell responses following stroke. Neurobiol Dis 2022; 172:105836. [PMID: 35932990 DOI: 10.1016/j.nbd.2022.105836] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 11/22/2022] Open
Abstract
Recent bodies of work in regard to stroke have revealed significant sex differences in terms of risk and outcome. While differences in sex hormones have been the focus of earlier research, the reasons for these differences are much more complex and require further identification. This review covers differences in sex related immune responses with a focus on differences in immune cell composition and function. While females are more susceptible to immune related diseases, they seem to have better outcomes from stroke at the experimental level with reduced pro-inflammatory responses. However, at the clinical level, the picture is much more complex with worse neurological outcomes from stroke. While the use of exogenous sex steroids can replicate some of these findings, it is apparent that many other factors are involved in the modulation of immune responses. As a result, more research is needed to better understand these differences and identify appropriate interventions and risk modification.
Collapse
Affiliation(s)
- Jialing Liu
- Dept Neurosurgery, UCSF and SF VAMC, San Francisco, CA, USA
| | - Yoshimichi Sato
- Dept Neurosurgery, UCSF and SF VAMC, San Francisco, CA, USA; Dept Neurosurgery, Tohoku University, Sendai, Japan
| | | | - Kota Kurisu
- Dept Neurosurgery, Hokkaido University, Sapporo, Japan
| | - Jian Shi
- Dept Neurology, UCSF and SF VAMC, San Francisco, CA, USA
| | | |
Collapse
|
13
|
Huang K, Lin Z, Ge Y, Chen X, Pan Y, Lv Z, Sun X, Yu H, Chen J, Yao Q. Immunomodulation of MiRNA-223-based nanoplatform for targeted therapy in retinopathy of prematurity. J Control Release 2022; 350:789-802. [PMID: 35961472 DOI: 10.1016/j.jconrel.2022.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022]
Abstract
Retinopathy of prematurity (ROP) is characterized by pathological angiogenesis and associated inflammation in the retina and is the leading cause of childhood blindness. MiRNA-223 (miR-223) drives microglial polarization toward the anti-inflammatory phenotype and offers a therapeutic approach to suppress inflammation and consequently pathological neovascularization. However, miRNA-based therapy is hindered by the low stability and non-specific cell-targeting ability of delivery systems. In the present study, we developed folic acid-chitosan (FA-CS)-modified mesoporous silica nanoparticles (PMSN) loaded with miR-223 to regulate retinal microglial polarization. The FA-CS/PMSN/miR-223 nanoparticles exhibited high stability and loading efficiency, achieved targeted delivery, and successfully escaped from lysosomes. In cultured microglial cells, treatment with FA-CS/PMSN/miR-223 nanoparticles upregulated the anti-inflammatory gene YM1/2 and IL-4RA, and downregulated the proinflammatory genes iNOS, IL-1β, and IL-6. Notably, in a mouse oxygen-induced retinopathy model of ROP, intravitreally injected FA-CS/PMSN/miR-223 nanoparticles (1 μg) decreased the retinal neovascular area by 52.6%. This protective effect was associated with the reduced and increased levels of pro-inflammatory (M1) and anti-inflammatory (M2) cytokines, respectively. Collectively, these findings demonstrate that FA-CS/PMSN/miR-223 nanoparticles provide an effective therapeutic strategy for the treatment of ROP by modulating the miR-223-mediated microglial polarization to the M2 phenotype.
Collapse
Affiliation(s)
- Keke Huang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Zhiqing Lin
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yuanyuan Ge
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Xuhao Chen
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Yining Pan
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Ziru Lv
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Xiaoting Sun
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Hao Yu
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China
| | - Jiangfan Chen
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China.
| | - Qingqing Yao
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, PR China.
| |
Collapse
|
14
|
Li C, Ren J, Zhang M, Wang H, Yi F, Wu J, Tang Y. The heterogeneity of microglial activation and its epigenetic and non-coding RNA regulations in the immunopathogenesis of neurodegenerative diseases. Cell Mol Life Sci 2022; 79:511. [PMID: 36066650 PMCID: PMC11803019 DOI: 10.1007/s00018-022-04536-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Microglia are resident immune cells in the brain and play a central role in the development and surveillance of the nervous system. Extensive gliosis is a common pathological feature of several neurodegenerative diseases, such as Alzheimer's disease (AD), the most common cause of dementia. Microglia can respond to multiple inflammatory insults and later transform into different phenotypes, such as pro- and anti-inflammatory phenotypes, thereby exerting different functions. In recent years, an increasing number of studies based on both traditional bulk sequencing and novel single-cell/nuclear sequencing and multi-omics analysis, have shown that microglial phenotypes are highly heterogeneous and dynamic, depending on the severity and stage of the disease as well as the particular inflammatory milieu. Thus, redirecting microglial activation to beneficial and neuroprotective phenotypes promises to halt the progression of neurodegenerative diseases. To this end, an increasing number of studies have focused on unraveling heterogeneous microglial phenotypes and their underlying molecular mechanisms, including those due to epigenetic and non-coding RNA modulations. In this review, we summarize the epigenetic mechanisms in the form of DNA and histone modifications, as well as the general non-coding RNA regulations that modulate microglial activation during immunopathogenesis of neurodegenerative diseases and discuss promising research approaches in the microglial era.
Collapse
Affiliation(s)
- Chaoyi Li
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Ren
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mengfei Zhang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huakun Wang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fang Yi
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yu Tang
- Aging Research Center, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, Hunan, China.
- The Biobank of Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
15
|
Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains. Int J Mol Sci 2022; 23:ijms23031079. [PMID: 35163002 PMCID: PMC8835130 DOI: 10.3390/ijms23031079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide), on the intracellular distribution and methylation patterns of histone H3 in immunochallenged microglia cultures. Microglia-enriched secondary cultures made from newborn rat forebrains were immunochallenged with lipopolysaccharide (LPS). The protein levels of selected inflammatory markers C–X–C motif chemokine ligand 10 (CXCL10) and C–C motif chemokine receptor 1 (CCR1), histone H3, and posttranslational modifications of histone H3 lys methylation sites (H3K9me3 and H3K36me2, marks typically associated with opposite effects on gene expression) were analyzed using quantitative fluorescent immunocytochemistry and western blots in control or LPS-treated cultures with or without KYNA or SZR104. KYNA and SZR104 reduced levels of the inflammatory marker proteins CXCL10 and CCR1 after LPS-treatment. Moreover, KYNA and SZR104 favorably affected histone methylation patterns as H3K9me3 and H3K36me2 immunoreactivities, and histone H3 protein levels returned toward control values after LPS treatment. The cytoplasmic translocation of H3K9me3 from the nucleus indicated inflammatory distress, a process that could be inhibited by KYNA and SZR104. Thus, KYNA signaling and metabolism, and especially brain-penetrable KYNA analogs such as SZR104, could be key targets in the pathway that connects chromatin structure and epigenetic mechanisms with functional consequences that affect neuroinflammation and perhaps neurodegeneration.
Collapse
|
16
|
Zhong H, Yu H, Sun J, Chen J, Huang S, Huang P, Liu X, Zhong Y. Isolation of microglia from retinas of chronic ocular hypertensive rats. Open Life Sci 2021; 16:992-1001. [PMID: 34604533 PMCID: PMC8445004 DOI: 10.1515/biol-2021-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Microglia are the principal glial cells involved in the processes of immune inflammation within both retina and optic nerve, especially under the context of glaucomatous neuropathy. Considering the distinguishing role of retinal microglia in glaucoma and the lack of established protocol for microglia isolation from animal glaucoma model, the present study aimed to develop and validate a method with characteristics of both simplicity and efficiency for retinal microglia isolation from chronic ocular hypertensive (COH) rats. A Percoll gradient of various concentrations was used to separate microglia from whole retinal cells of the COH rats and control group. The finally isolated microglia were identified by CD11b and Iba-1 immunofluorescence staining, and the cell viability was determined by trypan blue staining. Additionally, the proportion of microglia in the whole retina cells was identified by flow cytometry. Results showed that the survival rates of isolated retinal microglia with the Percoll gradient method were 67.2 ± 4% and 67.6 ± 3% in control and COH groups, respectively. The proportion of the microglia population in the whole retinal cells was about 0.4–0.93%. To conclude, the present study confirmed that the application of Percoll gradient could effectively separate microglia from retinas of COH rats, which will probably enrich the tool kit for basic researchers of glaucoma specialty and help with scientific investigations.
Collapse
Affiliation(s)
- Huimin Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital (Shanghai First People s Hospital), National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025, Shanghai, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025, Shanghai, China
| | - Ping Huang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, People's Republic of China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin Er Road, 200025, Shanghai, China
| |
Collapse
|
17
|
Microglial metabolism is a pivotal factor in sexual dimorphism in Alzheimer's disease. Commun Biol 2021; 4:711. [PMID: 34112929 PMCID: PMC8192523 DOI: 10.1038/s42003-021-02259-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022] Open
Abstract
Age and sex are major risk factors in Alzheimer's disease (AD) with a higher incidence of the disease in females. Neuroinflammation, which is a hallmark of AD, contributes to disease pathogenesis and is inexorably linked with inappropriate microglial activation and neurodegeneration. We investigated sex-related differences in microglia in APP/PS1 mice and in post-mortem tissue from AD patients. Changes in genes that are indicative of microglial activation were preferentially increased in cells from female APP/PS1 mice and cells from males and females were morphological, metabolically and functionally distinct. Microglia from female APP/PS1 mice were glycolytic and less phagocytic and associated with increased amyloidosis whereas microglia from males were amoeboid and this was also the case in post-mortem tissue from male AD patients, where plaque load was reduced. We propose that the sex-related differences in microglia are likely to explain, at least in part, the sexual dimorphism in AD.
Collapse
|
18
|
Extracellular CIRP Activates the IL-6Rα/STAT3/Cdk5 Pathway in Neurons. Mol Neurobiol 2021; 58:3628-3640. [PMID: 33783711 PMCID: PMC10404139 DOI: 10.1007/s12035-021-02368-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Extracellular cold-inducible RNA-binding protein (eCIRP) stimulates microglial inflammation causing neuronal damage during ischemic stroke and is a critical mediator of alcohol-induced cognitive impairment. However, the precise role of eCIRP in mediating neuroinflammation remains unknown. In this study, we report that eCIRP activates neurotoxic cyclin-dependent kinase-5 (Cdk5)/p25 through the induction of IL-6Rα/STAT3 pathway in neurons. Amyloid β (Aβ)-mediated neuronal stress, which is associated with Alzheimer's disease, increased the levels of eCIRP released from BV2 microglial cells. The released eCIRP levels from BV2 cells increased 3.2-fold upon stimulation with conditioned medium from Neuro-2a (N2a) cells containing Aβ compared to control N2a supernatant in a time-dependent manner. Stimulation of N2a cells and primary neurons with eCIRP upregulated the neuronal Cdk5 activator p25 expression in a dose- and time-dependent manner. eCIRP directly induced neuronal STAT3 phosphorylation and p25 increase via its novel receptor IL-6Rα. Next, we showed using surface plasmon resonance that eCIRP-derived peptide C23 inhibited the binding of eCIRP to IL-6Rα at 25 μM, with a 40-fold increase in equilibrium dissociation constant (Kd) value (from 8.08 × 10-8 M to 3.43 × 10-6 M), and completely abrogated the binding at 50 μM. Finally, C23 reversed the eCIRP-induced increase in neuronal STAT3 phosphorylation and p25 levels. In conclusion, the current study demonstrates that the upregulation of neuronal IL-6Rα/STAT3/Cdk5 pathway is a key mechanism of eCIRP's role in neuroinflammation and that C23 as a potent inhibitor of this pathway has translational potential in neurodegenerative pathologies controlled by eCIRP.
Collapse
|
19
|
Dulka K, Szabo M, Lajkó N, Belecz I, Hoyk Z, Gulya K. Epigenetic Consequences of in Utero Exposure to Rosuvastatin: Alteration of Histone Methylation Patterns in Newborn Rat Brains. Int J Mol Sci 2021; 22:ijms22073412. [PMID: 33810299 PMCID: PMC8059142 DOI: 10.3390/ijms22073412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022] Open
Abstract
Rosuvastatin (RST) is primarily used to treat high cholesterol levels. As it has potentially harmful but not well-documented effects on embryos, RST is contraindicated during pregnancy. To demonstrate whether RST could induce molecular epigenetic events in the brains of newborn rats, pregnant mothers were treated daily with oral RST from the 11th day of pregnancy for 10 days (or until delivery). On postnatal day 1, the brains of the control and RST-treated rats were removed for Western blot or immunohistochemical analyses. Several antibodies that recognize different methylation sites for H2A, H2B, H3, and H4 histones were quantified. Analyses of cell-type-specific markers in the newborn brains demonstrated that prenatal RST administration did not affect the composition and cell type ratios as compared to the controls. Prenatal RST administration did, however, induce a general, nonsignificant increase in H2AK118me1, H2BK5me1, H3, H3K9me3, H3K27me3, H3K36me2, H4, H4K20me2, and H4K20me3 levels, compared to the controls. Moreover, significant changes were detected in the number of H3K4me1 and H3K4me3 sites (134.3% ± 19.2% and 127.8% ± 8.5% of the controls, respectively), which are generally recognized as transcriptional activators. Fluorescent/confocal immunohistochemistry for cell-type-specific markers and histone methylation marks on tissue sections indicated that most of the increase at these sites belonged to neuronal cell nuclei. Thus, prenatal RST treatment induces epigenetic changes that could affect neuronal differentiation and development.
Collapse
Affiliation(s)
- Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
| | - Melinda Szabo
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
| | - Noémi Lajkó
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
| | - István Belecz
- Department of Medical Biology, University of Szeged, 6720 Szeged, Hungary;
| | - Zsófia Hoyk
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Center, Eötvös Loránd Research Network, 6726 Szeged, Hungary;
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, 6720 Szeged, Hungary; (K.D.); (M.S.); (N.L.)
- Correspondence:
| |
Collapse
|
20
|
Okazaki Y, Furumatsu T, Kamatsuki Y, Nishida K, Nasu Y, Nakahara R, Saito T, Ozaki T. Differences between the root and horn cells of the human medial meniscus from the osteoarthritic knee in cellular characteristics and responses to mechanical stress. J Orthop Sci 2021; 26:230-236. [PMID: 32223991 DOI: 10.1016/j.jos.2020.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Many histological, mechanical, and clinical studies have been performed on the medial meniscus posterior root attachment, as it often tears in patients with osteoarthritic knee. Medial meniscal root repair is recommended in clinical situations; however, to date, no studies have examined the differences between meniscal root and horn cells. The aim of this study was, therefore, to investigate the morphology, reaction to cyclic tensile strain, and gene expression levels of medial meniscal root and horn cells. METHODS Meniscal samples were obtained from the medial knee compartments of 10 patients with osteoarthritis who underwent total knee arthroplasty. Root and horn cells were cultured in Dulbecco's modified Eagle's medium without enzymes. The morphology, distribution, and proliferation of medial meniscal root and horn cells, as well as the gene and protein expression levels of Sry-type HMG box 9 and type II collagen, were determined after cyclic tensile strain treatment. RESULTS Horn cells had a triangular morphology, whereas root cells were fibroblast-like. The number of horn cells positive for Sry-type HMG box 9 and type II collagen was considerably higher than that of root cells. Although root and horn cells showed similar levels of proliferation after 48, 72, or 96 h of culture, more horn cells than root cells were lost following a 2-h treatment with 5% and 10% cyclic tensile. Sry-type HMG box 9 and α1(II) collagen mRNA expression levels were significantly enhanced in both cells after 2- and 4-h cyclic tensile strain (5%) treatment. CONCLUSIONS Medial meniscal root and horn cells have distinct morphologies, reactions to mechanical stress, and cellular phenotypes. Our results suggest that physiological tensile strain is important to activate extracellular matrix production in horn cells.
Collapse
Affiliation(s)
- Yuki Okazaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Takayuki Furumatsu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan.
| | - Yusuke Kamatsuki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Keiichiro Nishida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Yoshihisa Nasu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Ryuichi Nakahara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Taichi Saito
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikatacho, Kitaku, Okayama, 700-8558, Japan
| |
Collapse
|
21
|
Dulka K, Nacsa K, Lajkó N, Gulya K. Quantitative morphometric and cell-type-specific population analysis of microglia-enriched cultures subcloned to high purity from newborn rat brains. IBRO Neurosci Rep 2021; 10:119-129. [PMID: 33842918 PMCID: PMC8019997 DOI: 10.1016/j.ibneur.2021.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/30/2021] [Indexed: 12/27/2022] Open
Abstract
Morphological and functional characterizations of cultured microglia are essential for the improved understanding of their roles in neuronal health and disease. Although some studies (phenotype analysis, phagocytosis) can be carried out in mixed or microglia-enriched cultures, in others (gene expression) pure microglia must be used. If the use of genetically modified microglial cells is not feasible, isolation of resident microglia from nervous tissue must be carried out. In this study, mixed primary cultures were established from the forebrains of newborn rats. Secondary microglia-enriched cultures were then prepared by shaking off these cells from the primary cultures, which were subsequently used to establish tertiary cultures by further shaking off the easily detachable microglia. The composition of these cultures was quantitatively analyzed by immunocytochemistry of microglia-, astrocyte-, oligodendrocyte- and neuron-specific markers to determine yield and purity. Microglia were quantitatively characterized regarding morphological and proliferation aspects. Secondary and tertiary cultures typically exhibited 73.3% ± 17.8% and 93.1% ± 6.0% purity for microglia, respectively, although the total number of microglia in the latter was much smaller. One in seven attempts of culturing the tertiary cultures had ~99% purity for microglia. The overall yield from the number of cells plated at DIV0 to the Iba1-positive microglia in tertiary cultures was ~1%. Astrocytic and neuronal contamination progressively decreased during subcloning, while oligodendrocytes were found sporadically throughout culturing. Although the tertiary microglia cultures had a low yield, they produced consistently high purity for microglia; after validation, such cultures are suitable for purity-sensitive functional screenings (gene/protein expression).
Collapse
Key Words
- ANOVA, One-way analysis of variance
- CNPase, 2′,3′-Cyclic nucleotide 3′-phosphodiesterase
- CNS, Central nervous system
- Cell yield
- DIV, Day(s) in vitro
- DMEM, Dulbecco’s Modified Eagle’s Medium
- Differential adherence
- FBS, Fetal bovine serum
- FITC, Fluorescein isothiocyanate
- GFAP, Glial fibrillary acidic protein
- Iba1, Ionized calcium-binding adapter molecule 1
- Immunocytochemistry
- Ki67, Proliferation marker antigen identified by the monoclonal antibody Ki67
- PBS, Phosphate buffered saline
- PI, Proliferation index
- PVP, Polyvinylpyrrolidone
- Proliferation
- Purity of culture
- RT, Room temperature
- Rpm, Revolutions per minute
- S.D., Standard deviation
- S1, S2, Secondary subcultures
- Secondary/tertiary culture
- T1, T2, Tertiary subcultures
- TI, Transformation index
- subDIV, Subcloned day(s) in vitro
Collapse
Affiliation(s)
- Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Kálmán Nacsa
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Noémi Lajkó
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
22
|
Li J, Yu S, Lu X, Cui K, Tang X, Xu Y, Liang X. The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflamm Res 2021; 70:183-192. [PMID: 33386422 DOI: 10.1007/s00011-020-01427-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 10/27/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Microglia/macrophage activation is previously reported to be involved in various ocular diseases. However, the separate role of M1/M2 phenotype microglia/macrophage in the pathological process of oxygen-induced retinopathy (OIR) remains unknown. In this research, we explored the role and regulatory mechanism of M1/M2 microglia/macrophage in OIR in C57BL/6J mice. Furthermore, we demonstrated the time phase of M1/M2 shifting of microglia/macrophage during the natural process of OIR, which is very essential for further investigations. MATERIALS AND METHODS C57BL/6j pups were exposed to hyperoxia environment from postnatal 7(P7) to P12 then returned to normoxia. The mice were then euthanized, and the eyes were harvested at a series of time points for further investigation. The M1/M2 phenotype microglia/macrophage activity was presented by immunofluorescent staining and real-time quantitative polymerase chain reaction (qPCR). The NF-κb-STAT3 signaling and IL-4-STAT6-PPAR-γ signaling pathway activity was examined by western blot analysis. RESULTS The microglia/macrophage were activated when the OIR model was set up after P12. The M1 microglia/macrophage activation was found in neovascularization (NV) tufts in both central and peripheral retina, which started from P12 when the mice were returned to normoxia environment and peaked at P17. During this period of time, the NF-κb-STAT3 signaling pathway was activated, resulting in the upregulated M1 phenotype microglia/macrophage polarization, along with the enhanced inflammatory cytokine expression including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Consequently, the NV tufts were observed from P12 and the volume continued to increase until P17. However, the M2 phenotype microglia/macrophage activity took over during the late phase of OIR started from P17. The IL-4-STAT6-PPAR-γ signaling activity was upregulated from P17 and peaked at P20, inducing M2 phenotype microglia polarization, which consequently led to the inhibition of inflammatory cytokines and spontaneous regression of NV tufts. CONCLUSIONS Microglia/macrophage participate actively in the natural process of OIR in mice, and two phenotypes exert different functions. Treatment modulating microglia/macrophage polarize toward M2 phenotype might be a novel and promising method for ocular neovascular diseases such as retinopathy of prematurity (ROP), wet age-related macular degeneration (wAMD), and diabetic retinopathy (DR).
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China.
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510030, Guangdong, China.
| |
Collapse
|
23
|
Sensitivity of Rodent Microglia to Kynurenines in Models of Epilepsy and Inflammation In Vivo and In Vitro: Microglia Activation is Inhibited by Kynurenic Acid and the Synthetic Analogue SZR104. Int J Mol Sci 2020; 21:ijms21239333. [PMID: 33297593 PMCID: PMC7731372 DOI: 10.3390/ijms21239333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022] Open
Abstract
Kynurenic acid is an endogenous modulator of ionotropic glutamate receptors and a suppressor of the immune system. Since glutamate and microglia are important in the pathogenesis of epilepsy, we investigated the possible action of the synthetic kynurenic acid analogue, SZR104, in epileptic mice and the action of kynurenic acid and SZR104 on the phagocytotic activity of cultured microglia cells. Pilocarpine epilepsy was used to test the effects of SZR104 on morphological microglia transformation, as evaluated through ionized calcium-binding adaptor molecule 1 (Iba1) immunohistochemistry. Microglia-enriched rat secondary cultures were used to investigate phagocytosis of fluorescent microbeads and Iba1 protein synthesis in control and lipopolysaccharide-challenged cultures. SZR104 inhibited microglia transformation following status epilepticus. Kynurenic acid and SZR104 inhibited lipopolysaccharide-stimulated phagocytotic activity of microglia cells. Although kynurenic acid and its analogues proved to be glutamate receptor antagonists, their immunosuppressive action was dominant in epilepsy. The inhibition of phagocytosis in vitro raised the possibility of the inhibition of genes encoding inflammatory cytokines in microglial cells.
Collapse
|
24
|
Orofacial skin inflammation increases the number of macrophages in the maxillary subregion of the rat trigeminal ganglion in a corticosteroid-reversible manner. Cell Tissue Res 2020; 382:551-561. [PMID: 32696216 PMCID: PMC7683439 DOI: 10.1007/s00441-020-03244-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 06/15/2020] [Indexed: 10/25/2022]
Abstract
Inflammation of the cutaneous orofacial tissue can lead to a prolonged alteration of neuronal and nonneuronal cellular functions in trigeminal nociceptive pathways. In this study, we investigated the effects of experimentally induced skin inflammation by dithranol (anthralin) on macrophage activation in the rat trigeminal ganglion. Tissue localization and protein expression levels of ionized calcium-binding adaptor molecule 1 (Iba1), a macrophage/microglia-specific marker, and proliferation/mitotic marker antigen identified by the monoclonal antibody Ki67 (Ki67), were quantitatively analyzed using immunohistochemistry and western blots in control, dithranol-treated, dithranol- and corticosteroid-treated, and corticosteroid-treated trigeminal ganglia. Chronic orofacial dithranol treatment elicited a strong pro-inflammatory effect in the ipsilateral trigeminal ganglion. Indeed, daily dithranol treatment of the orofacial skin for 3-5 days increased the number of macrophages and Iba1 protein expression in the maxillary subregion of the ipsilateral ganglion. In the affected ganglia, none of the Iba1-positive cells expressed Ki67. This absence of mitotically active cells suggested that the accumulation of macrophages in the ganglion was not the result of resident microglia proliferation but rather the extravasation of hematogenous monocytes from the periphery. Subsequently, when a 5-day-long anti-inflammatory corticosteroid therapy was employed on the previously dithranol-treated orofacial skin, Iba1 immunoreactivity was substantially reduced in the ipsilateral ganglion. Collectively, our findings indicate that both peripheral inflammation and subsequent anti-inflammatory therapy affect macrophage activity and thus interfere with the functioning of the affected sensory ganglion neurons.
Collapse
|
25
|
Yang L, Wang J, Wang D, Hu G, Liu Z, Yan D, Serikuly N, Alpyshov ET, Demin KA, Strekalova T, de Abreu MS, Song C, Kalueff AV. Delayed behavioral and genomic responses to acute combined stress in zebrafish, potentially relevant to PTSD and other stress-related disorders: Focus on neuroglia, neuroinflammation, apoptosis and epigenetic modulation. Behav Brain Res 2020; 389:112644. [PMID: 32344037 DOI: 10.1016/j.bbr.2020.112644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/22/2020] [Accepted: 04/05/2020] [Indexed: 12/30/2022]
Abstract
Stress is a common trigger of stress-related illnesses, such as anxiety, phobias, depression and post-traumatic stress disorder (PTSD). Various animal models successfully reproduce core behaviors of these clinical conditions. Here, we develop a novel zebrafish model of stress (potentially relevant to human stress-related disorders), based on delayed persistent behavioral, endocrine and genomic responses to an acute severe 'combined' stressor. Specifically, one week after adult zebrafish were exposed to a complex combined 90-min stress, we assessed their behaviors in the novel tank and the light-dark box tests, as well as whole-body cortisol and brain gene expression, focusing on genomic biomarkers of microglia, astrocytes, neuroinflammation, apoptosis and epigenetic modulation. Overall, stressed fish displayed persistent anxiety-like behavior, elevated whole-body cortisol, as well as upregulated brain mRNA expression of genes encoding the glucocorticoid receptor, neurotrophin BDNF and its receptors (TrkB and P75), CD11b (a general microglial biomarker), COX-2 (an M1-microglial biomarker), CD206 (an M2-microglial biomarker), GFAP (a general astrocytal biomarker), C3 (an A1-astrocytal biomarker), S100α10 (an A2-astrocytal biomarker), as well as pro-inflammatory cytokines IL-6, IL-1β, IFN-γ and TNF-α. Stress exposure also persistently upregulated the brain expression of several key apoptotic (Bax, Caspase-3, Bcl-2) and epigenetic genes (DNMT3a, DNMT3b, HAT1, HDAC4) in these fish. Collectively, the present model not only successfully recapitulates lasting behavioral and endocrine symptoms of clinical stress-related disorders, but also implicates changes in neuroglia, neuroinflammation, apoptosis and epigenetic modulation in long-term effects of stress pathogenesis in vivo.
Collapse
Affiliation(s)
- LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | - Erik T Alpyshov
- School of Pharmacy, Southwest University, Chongqing, China; Granov Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov Medical Research Center, Ministy of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Tatyana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Zhanjiang, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
26
|
Wang D, Yang L, Wang J, Hu G, Liu Z, Yan D, Serikuly N, Alpyshov ET, Demin KA, Galstyan DS, Strekalova T, de Abreu MS, Amstislavskaya TG, Kalueff AV. Behavioral and physiological effects of acute and chronic kava exposure in adult zebrafish. Neurotoxicol Teratol 2020; 79:106881. [PMID: 32240749 DOI: 10.1016/j.ntt.2020.106881] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Kava kava (Piper methysticum) is a medicinal plant containing kavalactones that exert potent sedative, analgesic and anti-stress action. However, their pharmacological effects and molecular targets remain poorly understood. The zebrafish (Danio rerio) has recently emerged as a powerful new model organism for neuroscience research and drug discovery. Here, we evaluate the effects of acute and chronic exposure to kava and kavalactones on adult zebrafish anxiety, aggression and sociality, as well as on their neurochemical, neuroendocrine and genomic responses. Supporting evolutionarily conserved molecular targets, acute kava and kavalactones evoked dose-dependent behavioral inhibition, upregulated brain expression of early protooncogenes c-fos and c-jun, elevated brain monoamines and lowered whole-body cortisol. Chronic 7-day kava exposure evoked similar behavioral effects, did not alter cortisol levels, and failed to evoke withdrawal-like states upon discontinuation. However, chronic kava upregulated several microglial (iNOS, Egr-2, CD11b), astrocytal (C3, C4B, S100a), epigenetic (ncoa-1) and pro-inflammatory (IL-1β, IL-6, TNFa) biomarker genes, downregulated CD206 and IL-4, and did not affect major apoptotic genes in the brain. Collectively, this study supports robust, evolutionarily conserved behavioral and physiological effects of kava and kavalactones in zebrafish, implicates brain monoamines in their acute effects, and provides novel important insights into potential role of neuroglial and epigenetic mechanisms in long-term kava use.
Collapse
Affiliation(s)
- Dongmei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - LongEn Yang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Jingtao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - Guojun Hu
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZiYuan Liu
- School of Pharmacy, Southwest University, Chongqing, China
| | - Dongni Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; St. Petersburg State University, St. Petersburg, Russia
| | - David S Galstyan
- St. Petersburg State University, St. Petersburg, Russia; Russian National Research Centre of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Tatiana Strekalova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Maastricht University, Maastricht, the Netherlands; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo, Passo Fundo, Brazil
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
27
|
Jin X, Liu MY, Zhang DF, Zhong X, Du K, Qian P, Gao H, Wei MJ. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol Res 2019; 145:104253. [PMID: 31059788 DOI: 10.1016/j.phrs.2019.104253] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the progressive loss of structure and function of neurons most common in elderly population, mainly including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). Neuroinflammation caused by microglia as the resident macrophages of the central nervous system (CNS) plays a contributory role in the onset and progression of NDs. Activated microglia, as in macrophages, to be heterogeneous, can polarize into M1 (pro-inflammatory) and M2 (anti-inflammatory) functional phenotypes. The former elaborate pro-inflammatory mediators promoting neuroinflammation and neuronal damage. In contrast, the latter generate anti-inflammatory mediators and neurotrophins that inhibit neuroinflammation and promote neuronal healing. Consistently, the regulation of microglial polarization from M1 to M2 phenotype appears as an outstanding therapeutic and preventive approach for NDs treatment. Although non-steroidal anti-inflammatory drugs (NSAIDs) currently used to alleviate M1 microglia-associated neuroinflammation responsible for the development of NDs, these drugs have different degrees of adverse effects and limited efficacy. As the advantages of novel structure, multi-target, high efficiency and low toxicity, natural products as the modulators of microglial polarization have attracted considerable concerns in the therapeutic areas of NDs. In this review, we mainly summarized the therapeutic potential of natural products and their various molecular mechanisms for NDs treatment through modulating microglial polarization. The aim of the current review is expected to be useful to develop innovative modulators of microglial polarization from natural products for the amelioration and treatment of NDs.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Ping Qian
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Min-Jie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China.
| |
Collapse
|
28
|
Dyer M, Phipps AJ, Mitew S, Taberlay PC, Woodhouse A. Age, but Not Amyloidosis, Induced Changes in Global Levels of Histone Modifications in Susceptible and Disease-Resistant Neurons in Alzheimer's Disease Model Mice. Front Aging Neurosci 2019; 11:68. [PMID: 31001106 PMCID: PMC6456813 DOI: 10.3389/fnagi.2019.00068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/11/2019] [Indexed: 12/23/2022] Open
Abstract
There is increasing interest in the role of epigenetic alterations in Alzheimer’s disease (AD). The epigenome of every cell type is distinct, yet data regarding epigenetic change in specific cell types in aging and AD is limited. We investigated histone tail modifications in neuronal subtypes in wild-type and APP/PS1 mice at 3 (pre-pathology), 6 (pathology-onset) and 12 (pathology-rich) months of age. In neurofilament (NF)-positive pyramidal neurons (vulnerable to AD pathology), and in calretinin-labeled interneurons (resistant to AD pathology) there were no global alterations in histone 3 lysine 4 trimethylation (H3K4me3), histone 3 lysine 27 acetylation (H3K27ac) or histone 3 lysine 27 trimethylation (H3K27me3) in APP/PS1 compared to wild-type mice at any age. Interestingly, age-related changes in the presence of H3K27ac and H3K27me3 were detected in NF-labeled pyramidal neurons and calretinin-positive interneurons, respectively. These data suggest that the global levels of histone modifications change with age, whilst amyloid plaque deposition and its sequelae do not result in global alterations of H3K4me3, H3K27ac and H3K27me3 in NF-positive pyramidal neurons or calretinin-labeled interneurons.
Collapse
Affiliation(s)
- Marcus Dyer
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.,Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Andrew J Phipps
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Stanislaw Mitew
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Phillippa C Taberlay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
29
|
Ahmed HA, Ishrat T, Pillai B, Fouda AY, Sayed MA, Eldahshan W, Waller JL, Ergul A, Fagan SC. RAS modulation prevents progressive cognitive impairment after experimental stroke: a randomized, blinded preclinical trial. J Neuroinflammation 2018; 15:229. [PMID: 30103772 PMCID: PMC6090822 DOI: 10.1186/s12974-018-1262-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/29/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND With the aging population, the prevalence and incidence of cerebrovascular disease will continue to rise, as well as the number of individuals with vascular cognitive impairment/dementia (VCID). No specific FDA-approved treatments for VCID exist. Although clinical evidence supports that angiotensin receptor blockers (ARBs) prevent cognitive decline in older adults, whether ARBs have a similar effect on VCID after stroke is unknown. Moreover, these agents reduce BP, which is undesirable in the acute stroke period, so we believe that giving C21 in this acute phase or delaying ARB administration would enable us to achieve the neurovascular benefits without the risk of unintended and potentially dangerous, acute BP lowering. METHODS The aim of our study was to determine the impact of candesartan (ARB) or compound-21 (an angiotensin type 2 receptor--AT2R--agonist) on long-term cognitive function post-stroke, in spontaneously hypertensive rats (SHRs). We hypothesized that AT2R stimulation, either directly with C21, or indirectly by blocking the angiotensin type 1 receptor (AT1R) with candesartan, initiated after stroke, would reduce cognitive impairment. Animals were subjected to a 60-min transient middle cerebral artery occlusion and randomly assigned to either saline/C21 monotherapy, for the full study duration (30 days), or given sequential therapy starting with saline/C21 (7 days) followed by candesartan for the remainder of the study (21 days). Outcome measures included sensorimotor/cognitive-function, amyloid-β determination, and histopathologic analyses. RESULTS Treatment with RAS modulators effectively preserved cognitive function, reduced cytotoxicity, and prevented chronic-reactive microgliosis in SHRs, post-stroke. These protective effects were apparent even when treatment was delayed up to 7 days post-stroke and were independent of blood pressure and β-amyloid accumulation. CONCLUSION Collectively, our findings demonstrate that RAS modulators effectively prevent cognitive impairment after stroke, even when treatment is delayed.
Collapse
Affiliation(s)
- Heba A. Ahmed
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN USA
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Abdelrahman Y. Fouda
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Mohammed A. Sayed
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
| | - Jennifer L. Waller
- Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA USA
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
- Department of Physiology, Augusta University, Augusta, GA USA
| | - Susan C. Fagan
- Program in Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center and University of Georgia College of Pharmacy, HM Bldg., 1120 15th St, Augusta, GA 30912 USA
- Department of Neurology, Augusta University, Augusta, GA USA
| |
Collapse
|
30
|
The phenotypic and functional properties of mouse yolk-sac-derived embryonic macrophages. Dev Biol 2018; 442:138-154. [PMID: 30016639 DOI: 10.1016/j.ydbio.2018.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 01/14/2023]
Abstract
Macrophages are well characterized as immune cells. However, in recent years, a multitude of non-immune functions have emerged many of which play essential roles in a variety of developmental processes (Wynn et al., 2013; DeFalco et al., 2014). In adult animals, macrophages are derived from circulating monocytes originating in the bone marrow, but much of the tissue-resident population arise from erythro-myeloid progenitors (EMPs) in the extra-embryonic yolk sac, appearing around the same time as primitive erythroblasts (Schulz et al., 2012; Kierdorf et al., 2013; McGrath et al., 2015; Gomez Perdiguero et al., 2015; Mass et al., 2016). Of particular interest to our group, macrophages have been shown to act as pro-angiogenic regulators during development (Wynn et al., 2013; DeFalco et al., 2014; Hsu et al., 2015), but there is still much to learn about these early cells. The goal of the present study was to isolate and expand progenitors of yolk-sac-derived Embryonic Macrophages (EMs) in vitro to generate a new platform for mechanistic studies of EM differentiation. To accomplish this goal, we isolated pure (>98%) EGFP+ populations by flow cytometry from embryonic day 9.5 (E9.5) Csf1r-EGFP+/tg mice, then evaluated the angiogenic potential of EMs relative to Bone Marrow-Derived Macrophages (BMDMs). We found that EMs expressed more pro-angiogenic and less pro-inflammatory macrophage markers than BMDMs. EMs also promoted more endothelial cell (EC) cord formation in vitro, as compared to BMDMs in a manner that required direct cell-to-cell contact. Importantly, EMs preferentially matured into microglia when co-cultured with mouse Neural Stem/Progenitor Cells (NSPCs). In conclusion, we have established a protocol to isolate and propagate EMs in vitro, have further defined specialized properties of yolk-sac-derived macrophages, and have identified EM-EC and EM-NSPC interactions as key inducers of EC tube formation and microglial cell maturation, respectively.
Collapse
|
31
|
Fiorito S, Russier J, Salemme A, Soligo M, Manni L, Krasnowska E, Bonnamy S, Flahaut E, Serafino A, Togna GI, Marlier LN, Togna AR. Switching on microglia with electro-conductive multi walled carbon nanotubes. CARBON 2018; 129:572-584. [DOI: 10.1016/j.carbon.2017.12.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
32
|
Roqué PJ, Costa LG. Co-Culture of Neurons and Microglia. CURRENT PROTOCOLS IN TOXICOLOGY 2017; 74:11.24.1-11.24.17. [PMID: 29117434 PMCID: PMC5774987 DOI: 10.1002/cptx.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microglia, the resident immune cells of the brain, have been implicated in numerous neurodegenerative and neurodevelopmental diseases. Activation of microglia by a variety of stimuli induces the release of factors, including pro- and anti-inflammatory cytokines and reactive oxygen species, that contribute to modulating neuro-inflammation and oxidative stress, two crucial processes linked to disorders of the central nervous system. The in vitro techniques described here will provide a set of protocols for the isolation and plating of primary cerebellar granule neurons, primary cortical microglia from a mixed glia culture, and methods for co-culturing both cell types. These methods allow the study of how microglia and the factors they release in this shared environment mediate the effects of toxicants on neuronal function and survival. The protocols presented here allow for flexibility in experimental design, the study of numerous toxicological endpoints, and the opportunity to explore neuroprotective strategies. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Lucio G. Costa
- University of Washington, Seattle, WA
- University of Parma, Parma, Italy
| |
Collapse
|
33
|
Billes V, Kovács T, Hotzi B, Manzéger A, Tagscherer K, Komlós M, Tarnóci A, Pádár Z, Erdős A, Bjelik A, Legradi A, Gulya K, Gulyás B, Vellai T. AUTEN-67 (Autophagy Enhancer-67) Hampers the Progression of Neurodegenerative Symptoms in a Drosophila model of Huntington's Disease. J Huntingtons Dis 2017; 5:133-47. [PMID: 27163946 DOI: 10.3233/jhd-150180] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Autophagy, a lysosome-mediated self-degradation process of eukaryotic cells, serves as a main route for the elimination of cellular damage [1-3]. Such damages include aggregated, oxidized or misfolded proteins whose accumulation can cause various neurodegenerative pathologies, including Huntington's disease (HD). OBJECTIVE Here we examined whether enhanced autophagic activity can alleviate neurophatological features in a Drosophila model of HD (the transgenic animals express a human mutant Huntingtin protein with a long polyglutamine repeat, 128Q). METHODS We have recently identified an autophagy-enhancing small molecule, AUTEN-67 (autophagy enhancer 67), with potent neuroprotective effects [4]. AUTEN-67 was applied to induce autophagic activity in the HD model used in this study. RESULTS We showed that AUTEN-67 treatment interferes with the progressive accumulation of ubiquitinated proteins in the brain of Drosophila transgenic for the pathological 128Q form of human Huntingtin protein. The compound significantly improved the climbing ability and moderately extended the mean life span of these flies. Furthermore, brain tissue samples from human patients diagnosed for HD displayed increased levels of the autophagy substrate SQSTM1/p62 protein, as compared with controls. CONCLUSIONS These results imply that AUTEN-67 impedes the progression of neurodegenerative symptoms characterizing HD, and that autophagy is a promising therapeutic target for treating this pathology. In humans, AUTEN-67 may have the potential to delay the onset and decrease the severity of HD.
Collapse
Affiliation(s)
- Viktor Billes
- Velgene Biotechnology Research Ltd., Szeged, Hungary
| | - Tibor Kovács
- Velgene Biotechnology Research Ltd., Szeged, Hungary.,Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Bernadette Hotzi
- Velgene Biotechnology Research Ltd., Szeged, Hungary.,Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Anna Manzéger
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Kinga Tagscherer
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | | | - Anna Tarnóci
- Velgene Biotechnology Research Ltd., Szeged, Hungary
| | - Zsolt Pádár
- Velgene Biotechnology Research Ltd., Szeged, Hungary
| | - Attila Erdős
- Velgene Biotechnology Research Ltd., Szeged, Hungary
| | - Annamaria Bjelik
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Adam Legradi
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Károly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Balázs Gulyás
- Karolinska Institute, Department of Clinical Neuroscience, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Imperial College London, Department of Medicine, Division of Brain Sciences, London, UK
| | - Tibor Vellai
- Velgene Biotechnology Research Ltd., Szeged, Hungary.,Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
34
|
Akhtar F, Rouse CA, Catano G, Montalvo M, Ullevig SL, Asmis R, Kharbanda K, Maffi SK. Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress. J Neuroinflammation 2017; 14:195. [PMID: 28962577 PMCID: PMC5622443 DOI: 10.1186/s12974-017-0965-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Abstract
Background Maternal exposure to environmental stressors poses a risk to fetal development. Oxidative stress (OS), microglia activation, and inflammation are three tightly linked mechanisms that emerge as a causal factor of neurodevelopmental anomalies associated with prenatal ethanol exposure. Antioxidants such as glutathione (GSH) and CuZnSOD are perturbed, and their manipulation provides evidence for neuroprotection. However, the cellular and molecular effects of GSH alteration in utero on fetal microglia activation and inflammation remain elusive. Methods Ethanol (EtOH) (2.5 g/kg) was administered to pregnant mice at gestational days 16–17. One hour prior to ethanol treatment, N-acetylcysteine (NAC) and L-buthionine sulfoximine (BSO) were administered to modulate glutathione (GSH) content in fetal and maternal brain. Twenty-four hours following ethanol exposure, GSH content and OS in brain tissues were analyzed. Cytokines and chemokines were selected based on their association with distinctive microglia phenotype M1-like (IL-1β, IFN γ, IL-6, CCL3, CCL4, CCL-7, CCL9,) or M2-like (TGF-β, IL-4, IL-10, CCL2, CCL22, CXCL10, Arg1, Chi1, CCR2 and CXCR2) and measured in the brain by qRT-PCR and ELISA. In addition, Western blot and confocal microscopy techniques in conjunction with EOC13.31 cells exposed to similar ethanol-induced oxidative stress and redox conditions were used to determine the underlying mechanism of microglia activation associated with the observed phenotypic changes. Results We show that a single episode of mild to moderate OS in the last trimester of gestation causes GSH depletion, increased protein and lipid peroxidation and inflammatory responses inclined towards a M1-like microglial phenotype (IL-1β, IFN-γ) in fetal brain tissue observed at 6–24 h post exposure. Maternal brain is resistant to many of these marked changes. Using EOC 13.31 cells, we show that GSH homeostasis in microglia is crucial to restore its anti-inflammatory state and modulate inflammation. Microglia under oxidative stress maintain a predominantly M1 activation state. Additionally, GSH depletion prevents the appearance of the M2-like phenotype, while enhancing morphological changes associated with a M1-like phenotype. This observation is also validated by an increased expression of inflammatory signatures (IL-1β, IFN-γ, IL-6, CCL9, CXCR2). In contrast, conserving intracellular GSH concentrations eliminates OS which precludes the nuclear translocation and more importantly the phosphorylation of the NFkB p105 subunit. These cells show significantly more pronounced elongations, ramifications, and the enhanced expression of M2-like microglial phenotype markers (IL-10, IL-4, TGF-β, CXCL10, CCL22, Chi, Arg, and CCR2). Conclusions Taken together, our data show that maintaining GSH homeostasis is not only important for quenching OS in the developing fetal brain, but equally critical to enhance M2 like microglia phenotype, thus suppressing inflammatory responses elicited by environmental stressors. Electronic supplementary material The online version of this article (10.1186/s12974-017-0965-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feroz Akhtar
- School of Medicine, Department of Biomedical Sciences, Regional Academic Health Center, University of Texas Rio Grande Valley, 1204 W. Schunior, Edinburg, 78241, TX, USA
| | - Christopher A Rouse
- Department of Pediatrics, Uniformed Services University of Health Sciences & Walter Reed National Military Medical Center, Jones Bridge Rd, Bethesda, MD, USA
| | - Gabriel Catano
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Marcus Montalvo
- School of Medicine, Department of Biomedical Sciences, Regional Academic Health Center, University of Texas Rio Grande Valley, 1204 W. Schunior, Edinburg, 78241, TX, USA
| | - Sarah L Ullevig
- Department of Kinesiology, Health, and Nutrition, University of Texas at San Antonio, San Antonio, TX, USA
| | - Reto Asmis
- Department of Clinical Lab Sciences, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Kusum Kharbanda
- Department of Internal Medicine, University of Nebraska Health Science Center, Omaha, NE, USA
| | - Shivani K Maffi
- School of Medicine, Department of Biomedical Sciences, Regional Academic Health Center, University of Texas Rio Grande Valley, 1204 W. Schunior, Edinburg, 78241, TX, USA.
| |
Collapse
|
35
|
Peña-Altamira E, Petralla S, Massenzio F, Virgili M, Bolognesi ML, Monti B. Nutritional and Pharmacological Strategies to Regulate Microglial Polarization in Cognitive Aging and Alzheimer's Disease. Front Aging Neurosci 2017. [PMID: 28638339 PMCID: PMC5461295 DOI: 10.3389/fnagi.2017.00175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The study of microglia, the immune cells of the brain, has experienced a renaissance after the discovery of microglia polarization. In fact, the concept that activated microglia can shift into the M1 pro-inflammatory or M2 neuroprotective phenotypes, depending on brain microenvironment, has completely changed the understanding of microglia in brain aging and neurodegenerative diseases. Microglia polarization is particularly important in aging since an increased inflammatory status of body compartments, including the brain, has been reported in elderly people. In addition, inflammatory markers, mainly derived from activated microglia, are widely present in neurodegenerative diseases. Microglial inflammatory dysfunction, also linked to microglial senescence, has been extensively demonstrated and associated with cognitive impairment in neuropathological conditions related to aging. In fact, microglia polarization is known to influence cognitive function and has therefore become a main player in neurodegenerative diseases leading to dementia. As the life span of human beings increases, so does the prevalence of cognitive dysfunction. Thus, therapeutic strategies aimed to modify microglia polarization are currently being developed. Pharmacological approaches able to shift microglia from M1 pro-inflammatory to M2 neuroprotective phenotype are actually being studied, by acting on many different molecular targets, such as glycogen synthase kinase-3 (GSK3) β, AMP-activated protein kinase (AMPK), histone deacetylases (HDACs), etc. Furthermore, nutritional approaches can also modify microglia polarization and, consequently, impact cognitive function. Several bioactive compounds normally present in foods, such as polyphenols, can have anti-inflammatory effects on microglia. Both pharmacological and nutritional approaches seem to be promising, but still need further development. Here we review recent data on these approaches and propose that their combination could have a synergistic effect to counteract cognitive aging impairment and Alzheimer's disease (AD) through immunomodulation of microglia polarization, i.e., by driving the shift of activated microglia from the pro-inflammatory M1 to the neuroprotective M2 phenotype.
Collapse
Affiliation(s)
| | - Sabrina Petralla
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Marco Virgili
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Maria L Bolognesi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| |
Collapse
|
36
|
Kata D, Földesi I, Feher LZ, Hackler L, Puskas LG, Gulya K. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells. Brain Res Bull 2017; 132:61-74. [PMID: 28528204 DOI: 10.1016/j.brainresbull.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain.
Collapse
Affiliation(s)
- Diana Kata
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| | - Imre Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary.
| | | | | | | | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
37
|
Au NPB, Ma CHE. Recent Advances in the Study of Bipolar/Rod-Shaped Microglia and their Roles in Neurodegeneration. Front Aging Neurosci 2017; 9:128. [PMID: 28522972 PMCID: PMC5415568 DOI: 10.3389/fnagi.2017.00128] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and they contribute to primary inflammatory responses following CNS injuries. The morphology of microglia is closely associated with their functional activities. Most previous research efforts have attempted to delineate the role of ramified and amoeboid microglia in the pathogenesis of neurodegenerative diseases. In addition to ramified and amoeboid microglia, bipolar/rod-shaped microglia were first described by Franz Nissl in 1899 and their presence in the brain was closely associated with the pathology of infectious diseases and sleeping disorders. However, studies relating to bipolar/rod-shaped microglia are very limited, largely due to the lack of appropriate in vitro and in vivo experimental models. Recent studies have reported the formation of bipolar/rod-shaped microglia trains in in vivo models of CNS injury, including diffuse brain injury, focal transient ischemia, optic nerve transection and laser-induced ocular hypertension (OHT). These bipolar/rod-shaped microglia formed end-to-end alignments in close proximity to the adjacent injured axons, but they showed no interactions with blood vessels or other types of glial cell. Recent studies have also reported on a highly reproducible in vitro culture model system to enrich bipolar/rod-shaped microglia that acts as a powerful tool with which to characterize this form of microglia. The molecular aspects of bipolar/rod-shaped microglia are of great interest in the field of CNS repair. This review article focuses on studies relating to the morphology and transformation of microglia into the bipolar/rod-shaped form, along with the differential gene expression and spatial distribution of bipolar/rod-shaped microglia in normal and pathological CNSs. The spatial arrangement of bipolar/rod-shaped microglia is crucial in the reorganization and remodeling of neuronal and synaptic circuitry following CNS injuries. Finally, we discuss the potential neuroprotective roles of bipolar/rod-shaped microglia, and the possibility of transforming ramified/amoeboid microglia into bipolar/rod-shaped microglia. This will be of considerable clinical benefit in the development of novel therapeutic strategies for treating various neurodegenerative diseases and promoting CNS repair after injury.
Collapse
Affiliation(s)
- Ngan Pan Bennett Au
- Department of Biomedical Sciences, City University of Hong KongKowloon Tong, Hong Kong
| | - Chi Him Eddie Ma
- Department of Biomedical Sciences, City University of Hong KongKowloon Tong, Hong Kong.,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong KongKowloon Tong, Hong Kong.,State Key Laboratory in Marine Pollution, City University of Hong KongKowloon Tong, Hong Kong
| |
Collapse
|
38
|
Huang C, Dong D, Jiao Q, Pan H, Ma L, Wang R. Sarsasapogenin-AA13 ameliorates Aβ-induced cognitive deficits via improving neuroglial capacity on Aβ clearance and antiinflammation. CNS Neurosci Ther 2017; 23:498-509. [PMID: 28466999 DOI: 10.1111/cns.12697] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 01/14/2023] Open
Abstract
AIMS Sarsasapogenin has been reported to improve dementia symptoms somehow, probably through modulating the function of cholinergic system, suppressing neurofibrillary tangles, and inhibiting inflammation. However, the role of sarsasapogenin in response to beta-amyloid (Aβ) remains to be delineated. This study aimed to determine the therapeutic effect of sarsasapogenin-13 (AA13, a sarsasapogenin derivative) on learning and memory impairments in Aβ-injected mice, as well as the role of AA13 in neuroglia-mediated antiinflammation and Aβ clearance. METHODS Focusing on the role of AA13 in regulating glial responses to Aβ, we conducted behavioral, morphological, and protein expression studies to explore the effects of AA13 on Aβ clearance and inflammatory regulation. RESULTS The results indicated that oral administration of AA13 attenuated the memory deficits of intracerebroventricular (i.c.v.) Aβ-injected mice; also, AA13 protected neuroglial cells against Aβ-induced cytotoxicity. The further mechanical studies demonstrated that AA13 reversed the upregulation of proinflammatory M1 markers and increased the expression of antiinflammatory M2 markers in Aβ-treated cells. Furthermore, AA13 facilitated Aβ clearance through promoting Aβ phagocytosis and degradation. AA13 modulated the expression of fatty acid translocase (CD36), insulin-degrading enzyme (IDE), neprilysin (NEP), and endothelin-converting enzyme (ECE) in neuroglia. CONCLUSION The present study indicated that the neuroprotective effect of AA13 might relate to its modulatory effects on microglia activation state, phagocytic ability, and expression of Aβ-degrading enzymes, which makes it a promising therapeutic agent in the early stage of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Cui Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dong Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qian Jiao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hui Pan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
39
|
Hendrickx DAE, van Eden CG, Schuurman KG, Hamann J, Huitinga I. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology. J Neuroimmunol 2017; 309:12-22. [PMID: 28601280 DOI: 10.1016/j.jneuroim.2017.04.007] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
HLA-DR, Iba1 and CD68 are widely used microglia markers in human tissue. However, due to differences in gene regulation, they may identify different activation stages of microglia. Here, we directly compared the expression of HLA-DR, Iba1 and CD68 in microglia with different phenotypes, ranging from ramified to amoeboid, to foamy phagocytizing macrophages, in adjacent sections immunocytochemically double stained for two of the markers. Material was used from patients diagnosed with multiple sclerosis (MS) and Alzheimer's disease (AD) patients and control subjects because together they contain all the microglia activation stages in an acute and a chronic inflammatory setting. We found a similar, yet not identical, overall expression pattern. All three markers were expressed by ramified/amoeboid microglia around chronic active MS lesions, but overlap between HLA-DR and Iba1 was limited. Foamy macrophages in the demyelinating rims of active MS lesions of MS expressed more HLA-DR and CD68 than Iba1. All markers were expressed by small microglia accumulations (nodules) in MS NAWM. Dense core AD plaques in the hippocampus were mostly associated with microglia expressing HLA-DR. Diffuse AD plaques were not specifically associated with microglia at all. These results indicate that microglia markers have different potential for neuropathological analysis, with HLA-DR and CD68 reflecting immune activation and response to tissue damage, and Iba1 providing a marker more suited for structural studies in the absence of pathology.
Collapse
Affiliation(s)
- Debbie A E Hendrickx
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Corbert G van Eden
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Karianne G Schuurman
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Experimental Immunology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
40
|
The association between laminin and microglial morphology in vitro. Sci Rep 2016; 6:28580. [PMID: 27334934 PMCID: PMC4917827 DOI: 10.1038/srep28580] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/07/2016] [Indexed: 12/22/2022] Open
Abstract
Microglia are immune cells in the central nervous system (CNS) that contribute to primary innate immune responses. The morphology of microglia is closely associated with their functional activities. The majority of microglial studies have focused on the ramified or amoeboid morphology; however, bipolar/rod-shaped microglia have recently received much attention. Bipolar/rod-shaped microglia form trains with end-to-end alignment in injured brains and retinae, which is proposed as an important mechanism in CNS repair. We previously established a cell culture model system to enrich bipolar/rod-shaped microglia simply by growing primary microglia on scratched poly-D-lysine (PDL)/laminin-coated surfaces. Here, we investigated the role of laminin in morphological changes of microglia. Bipolar/rod-shaped microglia trains were transiently formed on scratched surfaces without PDL/laminin coating, but the microglia alignment disappeared after 3 days in culture. Amoeboid microglia digested the surrounding laminin, and the gene and protein expression of laminin-cleaving genes Adam9 and Ctss was up-regulated. Interestingly, lipopolysaccharide (LPS)-induced transformation from bipolar/rod-shaped into amoeboid microglia increased the expression of Adam9 and Ctss, and the expression of these genes in LPS-treated amoeboid-enriched cultures remained unchanged. These results indicate a strong association between laminin and morphological transformation of microglia, shedding new light on the role of bipolar/rod-shaped microglia in CNS repair.
Collapse
|
41
|
Koss K, Churchward M, Nguyen A, Yager J, Todd K, Unsworth L. Brain biocompatibility and microglia response towards engineered self-assembling (RADA)4 nanoscaffolds. Acta Biomater 2016; 35:127-37. [PMID: 26850147 DOI: 10.1016/j.actbio.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
(RADA)4-based nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. There is a dearth in the literature on their biocompatibility in brain tissues; where the glia response is key to regulating the local host response. Herein, nanoscaffolds composed of (RADA)4 and (RADA)4-IKVAV mixtures were evaluated in terms of their effect on primary microglia in culture and general tissue (in vivo) biocompatibility (astrocyte and migroglia). Laminin-derived IKVAV peptide was chosen to promote beneficial cell interaction and attenuate deleterious glial responses. Microglia remained ramified when cultured with these nanoscaffolds, as observed using TNF-α and IL-1β, NO, and proliferation assays. Evidence suggests that cultured microglia phagocytise the matrix whilst remaining ramified and viable, as shown visually and metabolically (MTT). Nanoscaffold intracerebral injection did not lead to microglia migration or proliferation, nor were glial scarring and axonal injury observed over the course of this study. IKVAV had no affect on microglia activation and astrogliosis. (RADA)4 should be advantageous for localized injection as a tuneable-platform device, which may be readily cleared without deleterious effects on tissue-resident microglia. STATEMENT OF SIGNIFICANCE Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. A dearth of literature exists on their biocompatibility in brain tissues; where the glia response is key to regulating the local host response. Herein, nanoscaffolds composed of the peptides (RADA)4 and (RADA)4-IKVAV mixtures were evaluated in terms of their effect on microglia cells in culture and general tissue (in vivo) biocompatibility (astrocyte and migroglia). Laminin-derived IKVAV peptide was chosen to promote beneficial cell interaction and attenuate deleterious glial responses. (RADA)4 nanoscaffolds showed no adverse effect from these cell types and should be advantageous for localized injection as a tuneable-platform device.
Collapse
|
42
|
Delcambre GH, Liu J, Herrington JM, Vallario K, Long MT. Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue. PeerJ 2016; 4:e1601. [PMID: 26855862 PMCID: PMC4741088 DOI: 10.7717/peerj.1601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/23/2015] [Indexed: 02/02/2023] Open
Abstract
Phenotypic characterization of cellular responses in equine infectious encephalitides has had limited description of both peripheral and resident cell populations in central nervous system (CNS) tissues due to limited species-specific reagents that react with formalin-fixed, paraffin embedded tissue (FFPE). This study identified a set of antibodies for investigating the immunopathology of infectious CNS diseases in horses. Multiple commercially available staining reagents and antibodies derived from antigens of various species for manual immunohistochemistry (IHC) were screened. Several techniques and reagents for heat-induced antigen retrieval, non-specific protein blocking, endogenous peroxidase blocking, and visualization-detection systems were tested during IHC protocol development. Boiling of slides in a low pH, citrate-based buffer solution in a double-boiler system was most consistent for epitope retrieval. Pressure-cooking, microwaving, high pH buffers, and proteinase K solutions often resulted in tissue disruption or no reactivity. Optimal blocking reagents and concentrations of each working antibody were determined. Ultimately, a set of monoclonal (mAb) and polyclonal antibodies (pAb) were identified for CD3+ (pAb A0452, Dako) T-lymphocytes, CD79αcy+ B-lymphocytes (mAb HM57, Dako), macrophages (mAb MAC387, Leica), NF-H+ neurons (mAb NAP4, EnCor Biotechnology), microglia/macrophage (pAb Iba-1, Wako), and GFAP+ astrocytes (mAb 5C10, EnCor Biotechnology). In paraffin embedded tissues, mAbs and pAbs derived from human and swine antigens were very successful at binding equine tissue targets. Individual, optimized protocols are provided for each positively reactive antibody for analyzing equine neuroinflammatory disease histopathology.
Collapse
Affiliation(s)
- Gretchen H Delcambre
- Department of Biomedical Sciencess/College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Junjie Liu
- Department of Infectious Diseases and Pathology/College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jenna M Herrington
- Department of Infectious Diseases and Pathology/College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kelsey Vallario
- Department of Infectious Diseases and Pathology/College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Maureen T Long
- Department of Infectious Diseases and Pathology/College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
43
|
Kata D, Földesi I, Feher LZ, Hackler L, Puskas LG, Gulya K. Rosuvastatin enhances anti-inflammatory and inhibits pro-inflammatory functions in cultured microglial cells. Neuroscience 2015; 314:47-63. [PMID: 26633263 DOI: 10.1016/j.neuroscience.2015.11.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
Abstract
Microglial activation results in profound morphological, functional and gene expression changes that affect the pro- and anti-inflammatory mechanisms of these cells. Although statins have beneficial effects on inflammation, they have not been thoroughly investigated for their ability to affect microglial functions. Therefore the effects of rosuvastatin, one of the most commonly prescribed drugs in cardiovascular therapy, either alone or in combination with bacterial lipopolysaccharide (LPS), were profiled in pure microglial cultures derived from the forebrains of 18-day-old rat embryos. To reveal the effects of rosuvastatin on a number of pro- and anti-inflammatory mechanisms, we performed morphometric, functional and gene expression studies relating to cell adhesion and proliferation, phagocytosis, pro- and anti-inflammatory cytokine (IL-1β, tumor necrosis factor α (TNF-α) and IL-10, respectively) production, and the expression of various inflammation-related genes, including those related to the above morphological parameters and cellular functions. We found that microglia could be an important therapeutic target of rosuvastatin. In unchallenged (control) microglia, rosuvastatin inhibited proliferation and cell adhesion, but promoted microspike formation and elevated the expression of certain anti-inflammatory genes (Cxcl1, Ccl5, Mbl2), while phagocytosis or pro- and anti-inflammatory cytokine production were unaffected. Moreover, rosuvastatin markedly inhibited microglial activation in LPS-challenged cells by affecting both their morphology and functions as it inhibited LPS-elicited phagocytosis and inhibited pro-inflammatory cytokine (IL-1β, TNF-α) production, concomitantly increasing the level of IL-10, an anti-inflammatory cytokine. Finally, rosuvastatin beneficially and differentially affected the expression of a number of inflammation-related genes in LPS-challenged cells by inhibiting numerous pro-inflammatory and stimulating several anti-inflammatory genes. Since the microglia could elicit pro-inflammatory responses leading to neurodegeneration, it is important to attenuate such mechanisms and promote anti-inflammatory properties, and develop prophylactic therapies. By beneficially regulating both pro- and anti-inflammatory microglial functions, rosuvastatin may be considered as a prophylactic agent in the prevention of inflammation-related neurological disorders.
Collapse
Affiliation(s)
- D Kata
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - I Földesi
- Department of Laboratory Medicine, University of Szeged, Szeged, Hungary
| | | | | | | | - K Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
44
|
Szabo M, Dulka K, Gulya K. Calmodulin inhibition regulates morphological and functional changes related to the actin cytoskeleton in pure microglial cells. Brain Res Bull 2015; 120:41-57. [PMID: 26551061 DOI: 10.1016/j.brainresbull.2015.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 01/24/2023]
Abstract
The roles of calmodulin (CaM), a multifunctional intracellular calcium receptor protein, as concerns selected morphological and functional characteristics of pure microglial cells derived from mixed primary cultures from embryonal forebrains of rats, were investigated through use of the CaM antagonists calmidazolium (CALMID) and trifluoperazine (TFP). The intracellular localization of the CaM protein relative to phalloidin, a bicyclic heptapeptide that binds only to filamentous actin, and the ionized calcium-binding adaptor molecule 1 (Iba1), a microglia-specific actin-binding protein, was determined by immunocytochemistry, with quantitative analysis by immunoblotting. In unchallenged and untreated (control) microglia, high concentrations of CaM protein were found mainly perinuclearly in ameboid microglia, while the cell cortex had a smaller CaM content that diminished progressively deeper into the branches in the ramified microglia. The amounts and intracellular distributions of both Iba1 and CaM proteins were altered after lipopolysaccharide (LPS) challenge in activated microglia. CALMID and TFP exerted different, sometimes opposing, effects on many morphological, cytoskeletal and functional characteristics of the microglial cells. They affected the CaM and Iba1 protein expressions and their intracellular localizations differently, inhibited cell proliferation, viability and fluid-phase phagocytosis to different degrees both in unchallenged and in LPS-treated (immunologically challenged) cells, and differentially affected the reorganization of the actin cytoskeleton in the microglial cell cortex, influencing lamellipodia, filopodia and podosome formation. In summary, these CaM antagonists altered different aspects of filamentous actin-based cell morphology and related functions with variable efficacy, which could be important in deciphering the roles of CaM in regulating microglial functions in health and disease.
Collapse
Affiliation(s)
- Melinda Szabo
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Karolina Dulka
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Karoly Gulya
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
45
|
Pires LR, Rocha DN, Ambrosio L, Pêgo AP. The role of the surface on microglia function: implications for central nervous system tissue engineering. J R Soc Interface 2015; 12:rsif.2014.1224. [PMID: 25540243 DOI: 10.1098/rsif.2014.1224] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In tissue engineering, it is well accepted that a scaffold surface has a decisive impact on cell behaviour. Here we focused on microglia-the resident immune cells of the central nervous system (CNS)-and on their response to poly(trimethylene carbonate-co-ε-caprolactone) (P(TMC-CL)) fibrous and flat surfaces obtained by electrospinning and solvent cast, respectively. This study aims to provide cues for the design of instructive surfaces that can contribute to the challenging process of CNS regeneration. Cell morphology was evidently affected by the substrate, mirroring the surface main features. Cells cultured on flat substrates presented a round shape, while cells with elongated processes were observed on the electrospun fibres. A higher concentration of the pro-inflammatory cytokine tumour necrosis factor-α was detected in culture media from microglia on fibres. Still, astrogliosis is not exacerbated when astrocytes are cultured in the presence of microglia-conditioned media obtained from cultures in contact with either substrate. Furthermore, a significant percentage of microglia was found to participate in the process of myelin phagocytosis, with the formation of multinucleated giant cells being observed only on films. Altogether, the results presented suggest that microglia in contact with the tested substrates may contribute to the regeneration process, putting forward P(TMC-CL) substrates as supporting matrices for nerve regeneration.
Collapse
Affiliation(s)
- Liliana R Pires
- INEB-Instituto de Engenharia Biomédica, Porto, Portugal Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Daniela N Rocha
- INEB-Instituto de Engenharia Biomédica, Porto, Portugal Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Luigi Ambrosio
- Department of Chemical Sciences and Materials Technology, National Research Council of Italy, Rome, Italy
| | - Ana Paula Pêgo
- INEB-Instituto de Engenharia Biomédica, Porto, Portugal Faculdade de Engenharia, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
46
|
Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes. Sci Rep 2014; 4:7279. [PMID: 25452009 PMCID: PMC4250916 DOI: 10.1038/srep07279] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/12/2014] [Indexed: 01/01/2023] Open
Abstract
Microglia are generally considered the resident immune cells in the central nervous system (CNS) that regulate the primary events of neuroinflammatory responses. Microglia also play key roles in repair and neurodegeneration of the CNS after injury. Recent studies showed that trains of bipolar/rod-shaped microglia align end-to-end along the CNS injury site during the initial recovery phase. However, the cellular characteristics of bipolar/rod-shaped microglia remain largely unknown. Here, we established a highly reproducible in vitro culture model system to enrich and characterize bipolar/rod-shaped microglia by simply generating multiple scratches on a poly-d-lysine/laminin-coated culture dish. Trains of bipolar/rod-shaped microglia formed and aligned along the scratches in a manner that morphologically resembled microglial trains observed in injured brain. These bipolar/rod-shaped microglia were highly proliferative and expressed various M1/M2 markers. Further analysis revealed that these bipolar/rod-shaped microglia quickly transformed into amoeboid microglia within 30 minutes of lipopolysaccharide treatment, leading to the upregulation of pro-inflammatory cytokine gene expression and the activation of Jak/Stat. In summary, our culture system provides a model to further characterize this highly dynamic cell type. We suggest that bipolar/rod-shaped microglia are crucial for repairing the damaged CNS and that the molecular mechanisms underlying their morphological changes may serve as therapeutic biomarkers.
Collapse
|
47
|
Solga AC, Pong WW, Walker J, Wylie T, Magrini V, Apicelli AJ, Griffith M, Griffith OL, Kohsaka S, Wu GF, Brody DL, Mardis ER, Gutmann DH. RNA-sequencing reveals oligodendrocyte and neuronal transcripts in microglia relevant to central nervous system disease. Glia 2014; 63:531-548. [PMID: 25258010 DOI: 10.1002/glia.22754] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/19/2014] [Accepted: 09/09/2014] [Indexed: 01/03/2023]
Abstract
Expression profiling of distinct central nervous system (CNS) cell populations has been employed to facilitate disease classification and to provide insights into the molecular basis of brain pathology. One important cell type implicated in a wide variety of CNS disease states is the resident brain macrophage (microglia). In these studies, microglia are often isolated from dissociated brain tissue by flow sorting procedures [fluorescence-activated cell sorting (FACS)] or from postnatal glial cultures by mechanic isolation. Given the highly dynamic and state-dependent functions of these cells, the use of FACS or short-term culture methods may not accurately capture the biology of brain microglia. In the current study, we performed RNA-sequencing using Cx3cr1(+/GFP) labeled microglia isolated from the brainstem of 6-week-old mice to compare the transcriptomes of FACS-sorted versus laser capture microdissection (LCM). While both isolation techniques resulted in a large number of shared (common) transcripts, we identified transcripts unique to FACS-isolated and LCM-captured microglia. In particular, ∼50% of these LCM-isolated microglial transcripts represented genes typically associated with neurons and glia. While these transcripts clearly localized to microglia using complementary methods, they were not translated into protein. Following the induction of murine experimental autoimmune encephalomyelitis, increased oligodendrocyte and neuronal transcripts were detected in microglia, while only the myelin basic protein oligodendrocyte transcript was increased in microglia after traumatic brain injury. Collectively, these findings have implications for the design and interpretation of microglia transcriptome-based investigations.
Collapse
Affiliation(s)
- Anne C Solga
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | - Winnie W Pong
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | - Jason Walker
- The Genome Institute, Washington University School of Medicine
| | - Todd Wylie
- The Genome Institute, Washington University School of Medicine
| | - Vincent Magrini
- The Genome Institute, Washington University School of Medicine
| | - Anthony J Apicelli
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | | | - Obi L Griffith
- The Genome Institute, Washington University School of Medicine
| | - Shinichi Kohsaka
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | - Gregory F Wu
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | - David L Brody
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| | - Elaine R Mardis
- The Genome Institute, Washington University School of Medicine
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis MO
| |
Collapse
|
48
|
Caldeira C, Oliveira AF, Cunha C, Vaz AR, Falcão AS, Fernandes A, Brites D. Microglia change from a reactive to an age-like phenotype with the time in culture. Front Cell Neurosci 2014; 8:152. [PMID: 24917789 PMCID: PMC4040822 DOI: 10.3389/fncel.2014.00152] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/13/2014] [Indexed: 01/25/2023] Open
Abstract
Age-related neurodegenerative diseases have been associated with chronic neuroinflammation and microglia activation. However, cumulative evidence supports that inflammation only occurs at an early stage once microglia change the endogenous characteristics with aging and switch to irresponsive/senescent and dystrophic phenotypes with disease progression. Thus, it will be important to have the means to assess the role of reactive and aged microglia when studying advanced brain neurodegeneration processes and age-associated related disorders. Yet, most studies are done with microglia from neonates since there are no adequate means to isolate degenerating microglia for experimentation. Indeed, only a few studies report microglia isolation from aged animals, using either short-term cultures or high concentrations of mitogens in the medium, which trigger microglia reactivity. The purpose of this study was to develop an experimental process to naturally age microglia after isolation from neonatal mice and to characterize the cultured cells at 2 days in vitro (DIV), 10 DIV, and 16 DIV. We found that 2 DIV (young) microglia had predominant amoeboid morphology and markers of stressed/reactive phenotype. In contrast, 16 DIV (aged) microglia evidenced ramified morphology and increased matrix metalloproteinase (MMP)-2 activation, as well as reduced MMP-9, glutamate release and nuclear factor kappa-B activation, in parallel with decreased expression of Toll-like receptor (TLR)-2 and TLR-4, capacity to migrate and phagocytose. These findings together with the reduced expression of microRNA (miR)-124, and miR-155, decreased autophagy, enhanced senescence associated beta-galactosidase activity and elevated miR-146a expression, are suggestive that 16 DIV cells mainly correspond to irresponsive/senescent microglia. Data indicate that the model represent an opportunity to understand and control microglial aging, as well as to explore strategies to recover microglia surveillance function.
Collapse
Affiliation(s)
- Cláudia Caldeira
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Centro de Investigação Interdisciplinar Egas Moniz, Egas Moniz - Cooperativa de Ensino Superior, CRL, Campus Universitário Monte de Caparica, Portugal
| | - Ana F Oliveira
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Carolina Cunha
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Ana R Vaz
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Ana S Falcão
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| | - Dora Brites
- Research Institute for Medicines - iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal ; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa Lisboa, Portugal
| |
Collapse
|
49
|
Mazzone GL, Mladinic M, Nistri A. Excitotoxic cell death induces delayed proliferation of endogenous neuroprogenitor cells in organotypic slice cultures of the rat spinal cord. Cell Death Dis 2013; 4:e902. [PMID: 24176860 PMCID: PMC3920932 DOI: 10.1038/cddis.2013.431] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
Abstract
The aim of the present report was to investigate whether, in the mammalian spinal cord, cell death induced by transient excitotoxic stress could trigger activation and proliferation of endogenous neuroprogenitor cells as a potential source of a lesion repair process and the underlying time course. Because it is difficult to address these issues in vivo, we used a validated model of spinal injury based on rat organotypic slice cultures that retain the fundamental tissue cytoarchitecture and replicate the main characteristics of experimental damage to the whole spinal cord. Excitotoxicity evoked by 1 h kainate application produced delayed neuronal death (40%) peaking after 1 day without further losses or destruction of white matter cells for up to 2 weeks. After 10 days, cultures released a significantly larger concentration of endogenous glutamate, suggesting functional network plasticity. Indeed, after 1 week the total number of cells had returned to untreated control level, indicating substantial cell proliferation. Activation of progenitor cells started early as they spread outside the central area, and persisted for 2 weeks. Although expression of the neuronal progenitor phenotype was observed at day 3, peaked at 1 week and tapered off at 2 weeks, very few cells matured to neurons. Astroglia precursors started proliferating later and matured at 2 weeks. These data show insult-related proliferation of endogenous spinal neuroprogenitors over a relatively brief time course, and delineate a narrow temporal window for future experimental attempts to drive neuronal maturation and for identifying the factors regulating this process.
Collapse
Affiliation(s)
- G L Mazzone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | |
Collapse
|