1
|
Kozak A, Ninghetto M, Wieteska M, Fiedorowicz M, Wełniak-Kamińska M, Kossowski B, Eysel UT, Arckens L, Burnat K. Visual training after central retinal loss limits structural white matter degradation: an MRI study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:13. [PMID: 38789988 PMCID: PMC11127408 DOI: 10.1186/s12993-024-00239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Macular degeneration of the eye is a common cause of blindness and affects 8% of the worldwide human population. In adult cats with bilateral lesions of the central retina, we explored the possibility that motion perception training can limit the associated degradation of the visual system. We evaluated how visual training affects behavioral performance and white matter structure. Recently, we proposed (Kozak et al. in Transl Vis Sci Technol 10:9, 2021) a new motion-acuity test for low vision patients, enabling full visual field functional assessment through simultaneous perception of shape and motion. Here, we integrated this test as the last step of a 10-week motion-perception training. RESULTS Cats were divided into three groups: retinal-lesioned only and two trained groups, retinal-lesioned trained and control trained. The behavioral data revealed that trained cats with retinal lesions were superior in motion tasks, even when the difficulty relied only on acuity. 7 T-MRI scanning was done before and after lesioning at 5 different timepoints, followed by Fixel-Based and Fractional Anisotropy Analysis. In cats with retinal lesions, training resulted in a more localized and reduced percentage decrease in Fixel-Based Analysis metrics in the dLGN, caudate nucleus and hippocampus compared to untrained cats. In motion-sensitive area V5/PMLS, the significant decreases in fiber density were equally strong in retinal-lesioned untrained and trained cats, up to 40% in both groups. The only cortical area with Fractional Anisotropy values not affected by central retinal loss was area V5/PMLS. In other visual ROIs, the Fractional Anisotropy values increased over time in the untrained retinal lesioned group, whereas they decreased in the retinal lesioned trained group and remained at a similar level as in trained controls. CONCLUSIONS Overall, our MRI results showed a stabilizing effect of motion training applied soon after central retinal loss induction on white matter structure. We propose that introducing early motion-acuity training for low vision patients, aimed at the intact and active retinal peripheries, may facilitate brain plasticity processes toward better vision.
Collapse
Affiliation(s)
- Anna Kozak
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marco Ninghetto
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Wieteska
- Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michał Fiedorowicz
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Marlena Wełniak-Kamińska
- Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ulf T Eysel
- Department of Neurophysiology, Ruhr University, Bochum, Germany
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, Louvain, Belgium
- KU Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Kalina Burnat
- Laboratory of Brain Imaging, Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Dai W, Wang T, Li Y, Yang Y, Zhang Y, Kang J, Wu Y, Yu H, Xing D. Dynamic Recruitment of the Feedforward and Recurrent Mechanism for Black-White Asymmetry in the Primary Visual Cortex. J Neurosci 2023; 43:5668-5684. [PMID: 37487737 PMCID: PMC10401654 DOI: 10.1523/jneurosci.0168-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Black and white information is asymmetrically distributed in natural scenes, evokes asymmetric neuronal responses, and causes asymmetric perceptions. Recognizing the universality and essentiality of black-white asymmetry in visual information processing, the neural substrates for black-white asymmetry remain unclear. To disentangle the role of the feedforward and recurrent mechanisms in the generation of cortical black-white asymmetry, we recorded the V1 laminar responses and LGN responses of anesthetized cats of both sexes. In a cortical column, we found that black-white asymmetry starts at the input layer and becomes more pronounced in the output layer. We also found distinct dynamics of black-white asymmetry between the output layer and the input layer. Specifically, black responses dominate in all layers after stimulus onset. After stimulus offset, black and white responses are balanced in the input layer, but black responses still dominate in the output layer. Compared with that in the input layer, the rebound response in the output layer is significantly suppressed. The relative suppression strength evoked by white stimuli is notably stronger and depends on the location within the ON-OFF cortical map. A model with delayed and polarity-selective cortical suppression explains black-white asymmetry in the output layer, within which prominent recurrent connections are identified by Granger causality analysis. In addition to black-white asymmetry in response strength, the interlaminar differences in spatial receptive field varied dynamically. Our findings suggest that the feedforward and recurrent mechanisms are dynamically recruited for the generation of black-white asymmetry in V1.SIGNIFICANCE STATEMENT Black-white asymmetry is universal and essential in visual information processing, yet the neural substrates for cortical black-white asymmetry remain unknown. Leveraging V1 laminar recordings, we provided the first laminar pattern of black-white asymmetry in cat V1 and found distinct dynamics of black-white asymmetry between the output layer and the input layer. Comparing black-white asymmetry across three visual hierarchies, the LGN, V1 input layer, and V1 output layer, we demonstrated that the feedforward and recurrent mechanisms are dynamically recruited for the generation of cortical black-white asymmetry. Our findings not only enhance our understanding of laminar processing within a cortical column but also elucidate how feedforward connections and recurrent connections interact to shape neuronal response properties.
Collapse
Affiliation(s)
- Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jian Kang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200438, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Plasticity Beyond V1: Reinforcement of Motion Perception upon Binocular Central Retinal Lesions in Adulthood. J Neurosci 2017; 37:8989-8999. [PMID: 28821647 DOI: 10.1523/jneurosci.1231-17.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 11/21/2022] Open
Abstract
Induction of a central retinal lesion in both eyes of adult mammals is a model for macular degeneration and leads to retinotopic map reorganization in the primary visual cortex (V1). Here we characterized the spatiotemporal dynamics of molecular activity levels in the central and peripheral representation of five higher-order visual areas, V2/18, V3/19, V4/21a,V5/PMLS, area 7, and V1/17, in adult cats with central 10° retinal lesions (both sexes), by means of real-time PCR for the neuronal activity reporter gene zif268. The lesions elicited a similar, permanent reduction in activity in the center of the lesion projection zone of area V1/17, V2/18, V3/19, and V4/21a, but not in the motion-driven V5/PMLS, which instead displayed an increase in molecular activity at 3 months postlesion, independent of visual field coordinates. Also area 7 only displayed decreased activity in its LPZ in the first weeks postlesion and increased activities in its periphery from 1 month onward. Therefore we examined the impact of central vision loss on motion perception using random dot kinematograms to test the capacity for form from motion detection based on direction and velocity cues. We revealed that the central retinal lesions either do not impair motion detection or even result in better performance, specifically when motion discrimination was based on velocity discrimination. In conclusion, we propose that central retinal damage leads to enhanced peripheral vision by sensitizing the visual system for motion processing relying on feedback from V5/PMLS and area 7.SIGNIFICANCE STATEMENT Central retinal lesions, a model for macular degeneration, result in functional reorganization of the primary visual cortex. Examining the level of cortical reactivation with the molecular activity marker zif268 revealed reorganization in visual areas outside V1. Retinotopic lesion projection zones typically display an initial depression in zif268 expression, followed by partial recovery with postlesion time. Only the motion-sensitive area V5/PMLS shows no decrease, and even a significant activity increase at 3 months post-retinal lesion. Behavioral tests of motion perception found no impairment and even better sensitivity to higher random dot stimulus velocities. We demonstrate that the loss of central vision induces functional mobilization of motion-sensitive visual cortex, resulting in enhanced perception of moving stimuli.
Collapse
|
4
|
Zhao C, Hata R, Okamura JY, Wang G. Differences in spatial and temporal frequency interactions between central and peripheral parts of the feline area 18. Eur J Neurosci 2016; 44:2635-2645. [PMID: 27529598 DOI: 10.1111/ejn.13372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/14/2016] [Accepted: 08/05/2016] [Indexed: 12/01/2022]
Abstract
The visual system demonstrates significant differences in information processing abilities between the central and peripheral parts of the visual field. Optical imaging based on intrinsic signals was used to investigate the difference in stimulus spatial and temporal frequency interactions related to receptive field eccentricity in the cat area 18. Changing either the spatial or the temporal frequency of grating stimuli had a significant impact on responses in the cortical areas corresponding to the centre of the visual field and more peripheral parts at 10 degrees eccentricity. The cortical region corresponding to the centre of the gaze was tuned to 0.4 cycles per degree (c/deg) for spatial frequency and 2 Hz for temporal frequency. In contrast, the cortical region corresponding to the periphery of the visual field was tuned to a lower spatial frequency of 0.15 c/deg and a higher temporal frequency of 4 Hz. Interestingly, when we simultaneously changed both the spatial frequency and the temporal frequency of the grating stimuli, the responses were significantly different from those estimated with an assumption of independence between the spatial and temporal frequency in the cortical region corresponding to the periphery of the visual field. However, in the cortical area corresponding to the centre of the gaze, spatial frequency showed significant independence from temporal frequency. These properties support the notion of relative specialization of visual information processing for peripheral representations in cortical areas.
Collapse
Affiliation(s)
- Chunzhen Zhao
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan.,Laboratory for Cognitive Neuroscience, Weifang Medical University, Weifang, China
| | - Ryosuke Hata
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| | - Jun-Ya Okamura
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan
| | - Gang Wang
- Department of Information Science and Biomedical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065, Japan. .,Laboratory for Cognitive Neuroscience, Weifang Medical University, Weifang, China.
| |
Collapse
|
5
|
Piché M, Thomas S, Casanova C. Spatiotemporal profiles of receptive fields of neurons in the lateral posterior nucleus of the cat LP-pulvinar complex. J Neurophysiol 2015; 114:2390-403. [PMID: 26289469 DOI: 10.1152/jn.00649.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/16/2015] [Indexed: 11/22/2022] Open
Abstract
The pulvinar is the largest extrageniculate thalamic visual nucleus in mammals. It establishes reciprocal connections with virtually all visual cortexes and likely plays a role in transthalamic cortico-cortical communication. In cats, the lateral posterior nucleus (LP) of the LP-pulvinar complex can be subdivided in two subregions, the lateral (LPl) and medial (LPm) parts, which receive a predominant input from the striate cortex and the superior colliculus, respectively. Here, we revisit the receptive field structure of LPl and LPm cells in anesthetized cats by determining their first-order spatiotemporal profiles through reverse correlation analysis following sparse noise stimulation. Our data reveal the existence of previously unidentified receptive field profiles in the LP nucleus both in space and time domains. While some cells responded to only one stimulus polarity, the majority of neurons had receptive fields comprised of bright and dark responsive subfields. For these neurons, dark subfields' size was larger than that of bright subfields. A variety of receptive field spatial organization types were identified, ranging from totally overlapped to segregated bright and dark subfields. In the time domain, a large spectrum of activity overlap was found, from cells with temporally coinciding subfield activity to neurons with distinct, time-dissociated subfield peak activity windows. We also found LP neurons with space-time inseparable receptive fields and neurons with multiple activity periods. Finally, a substantial degree of homology was found between LPl and LPm first-order receptive field spatiotemporal profiles, suggesting a high integration of cortical and subcortical inputs within the LP-pulvinar complex.
Collapse
Affiliation(s)
- Marilyse Piché
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Thomas
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montréal, Québec, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Tohmi M, Meguro R, Tsukano H, Hishida R, Shibuki K. The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. Curr Biol 2014; 24:587-97. [PMID: 24583013 DOI: 10.1016/j.cub.2014.01.061] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 11/29/2013] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Visual information conveyed through the extrageniculate visual pathway, which runs from the retina via the superior colliculus (SC) and the lateral posterior nucleus (LPN) of the thalamus to the higher visual cortex, plays a critical role in the visual capabilities of many mammalian species. However, its functional role in the higher visual cortex remains unclear. Here, we observed visual cortical area activity in anesthetized mice to evaluate the role of the extrageniculate pathway on their specialized visual properties. RESULTS The preferred stimulus velocities of neurons in the higher visual areas (lateromedial [LM], anterolateral [AL], anteromedial [AM], and rostrolateral [RL] areas) were measured using flavoprotein fluorescence imaging and two-photon calcium imaging and were higher than those in the primary visual cortex (V1). Further, the velocity-tuning properties of the higher visual areas were different from each other. The response activities in these areas decreased after V1 ablation; however, the visual properties' differences were preserved. After SC destruction, these preferences for high velocities disappeared, and their tuning profiles became similar to that of the V1, whereas the tuning profile of the V1 remained relatively normal. Neural tracer experiments revealed that each of these higher visual areas connected with specific subregions of the LPN. CONCLUSIONS The preservation of visual property differences among the higher visual areas following V1 lesions and their loss following SC lesions indicate that pathways from the SC through the thalamus to higher cortical areas are sufficient to support these differences.
Collapse
Affiliation(s)
- Manavu Tohmi
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan.
| | - Reiko Meguro
- Department of Neurobiology and Anatomy, Niigata University School of Medicine, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8510, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, 1-757 Asahi-machi, Chuo-ku, Niigata 951-8585, Japan
| |
Collapse
|