1
|
Ríos C, Aguirre-Aranda I, Avendaño-Estrada A, Ángel Ávila-Rodríguez M, Manjarrez-Marmolejo J, Franco-Pérez J, Islas-Cortez M, Ruiz-Diaz A, Méndez-Armenta M, Diaz-Ruiz A. Characterization of the anticonvulsant effect of dapsone on metabolic activity assessed by [ 18F]FDG -PET after kainic acid-induced status epilepticus in rats. Brain Res 2023; 1803:148227. [PMID: 36592802 DOI: 10.1016/j.brainres.2022.148227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Development of effective drugs for epilepsy are needed, as nearly 30 % of epileptic patients, are resistant to current treatments. This study is aimed to characterize the anticonvulsant effect of dapsone (DDS), in the kainic acid (KA)-induced Status Epilepticus (SE) by recording the brain metabolic activity with an [18F]FDG-PET analysis. METHODS Wistar rats received KA (10 mg/kg, i.p., single dose) to produce sustained seizures. [18F]FDG-PET and electroencephalographic (EEG) studies were then performed. DDS or vehicle were administered 30 min before KA. [18F]FDG uptake and EEG were evaluated at baseline, 2 and 25 h after KA injection. Likewise, caspase-8, 3 hippocampal activities and Fluoro-Jade B neuronal degeneration and Hematoxylin-eosin staining were measured 25 h after KA. RESULTS PET data evaluated at 2 h showed hyper-uptake of [18F]FDG in the control group, which was decreased by DDS. At 25 h, hypo-uptake was observed in the control group and higher values due to DDS effect. EEG spectral power was increased 2 h after KA administration in the control group during the generalized tonic-clonic seizures, which was reversed by DDS, correlated with [18F]FDG-PET uptake changes. The values of caspases-8 activity decreased 48 and 43 % vs control group in the groups treated with DDS (12.5 y 25 mg/kg respectively), likewise; caspase-3 activity diminished by 57 and 53 %. Fewer degenerated neurons were observed due to DDS treatments. CONCLUSIONS This study pinpoints the anticonvulsant therapeutic potential of DDS. Given its safety and effectiveness, DDS may be a viable alternative for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Camilo Ríos
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico; Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana Xochimilco,04960 Ciudad de México, Mexico
| | - Iñigo Aguirre-Aranda
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico
| | - Arturo Avendaño-Estrada
- Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Miguel Ángel Ávila-Rodríguez
- Unidad Radiofarmacia-Ciclotrón, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Joaquín Manjarrez-Marmolejo
- Laboratorio de Fisiología de la Formación Reticular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Ciudad de México. Mexico
| | - Javier Franco-Pérez
- Laboratorio de Fisiología de la Formación Reticular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269 Ciudad de México. Mexico
| | - Marcela Islas-Cortez
- Doctorado en Ciencias Químico Biológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Amairani Ruiz-Diaz
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico
| | - Marisela Méndez-Armenta
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico
| | - Araceli Diaz-Ruiz
- Departamento de Neuroquímica Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez,14269 Ciudad de México, Mexico.
| |
Collapse
|
2
|
Gernert M, MacKeigan D, Deking L, Kaczmarek E, Feja M. Acute and chronic convection-enhanced muscimol delivery into the rat subthalamic nucleus induces antiseizure effects associated with high responder rates. Epilepsy Res 2023; 190:107097. [PMID: 36736200 DOI: 10.1016/j.eplepsyres.2023.107097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Intracerebral drug delivery is an emerging treatment strategy aiming to manage seizures in patients with systemic drug-resistant epilepsies. In rat seizure and epilepsy models, the GABAA receptor agonist muscimol has shown powerful antiseizure potential when injected acutely into the subthalamic nucleus (STN), known for its capacity to provide remote control of different seizure types. However, chronic intrasubthalamic muscimol delivery required for long-term seizure suppression has not yet been investigated. We tested the hypothesis that chronic convection-enhanced delivery (CED) of muscimol into the STN produces long-lasting antiseizure effects in the intravenous pentylenetetrazole seizure threshold test in female rats. Acute microinjection was included to verify efficacy of intrasubthalamic muscimol delivery in this seizure model and caused significant antiseizure effects at 30 and 60 ng per hemisphere with a dose-dependent increase of responders and efficacy and only mild adverse effects compared to controls. For the chronic study, muscimol was bilaterally infused into the STN over three weeks at daily doses of 60, 300, or 600 ng per hemisphere using an implantable pump and cannula system. Chronic intrasubthalamic CED of muscimol caused significant long-lasting antiseizure effects for up to three weeks at 300 and 600 ng daily. Drug responder rate increased dose-dependently, as did drug tolerance rates. Transient ataxia and body weight loss were the main adverse effects. Drug distribution was comparable (about 2-3 mm) between acute and chronic delivery. This is the first study providing proof-of-concept that not only acute, but also chronic, continuous CED of muscimol into the STN raises seizure thresholds.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| | - Devlin MacKeigan
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany
| | - Lillian Deking
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Edith Kaczmarek
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany; Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.
| |
Collapse
|
3
|
Characterization of metabolic activity induced by kainic acid in adult rat whole brain at the early stage: A 18FDG-PET study. Brain Res 2021; 1769:147621. [PMID: 34403661 DOI: 10.1016/j.brainres.2021.147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Brain metabolic processes are not fully characterized in the kainic acid (KA)-induced Status Epilepticus (KASE). Thus, we evaluated the usefulness of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as an experimental strategy to evaluate in vivo, in a non-invasive way, the glucose consumption in several brain regions, in a semi-quantitative study to compare and to correlate with data from electroencephalography and histology studies. METHODS Sixteen male Wistar rats underwent FDG-PET scans at basal state and after KA injection. FDG-PET images were normalized to an MRI-based atlas and segmented to locate regions. Standardized uptake values (SUV) were obtained at several time points. EEGs and cell viability by histological analysis, were also evaluated. RESULTS FDG-PET data showed changes in regions such as: amygdala, hippocampus, accumbens, entorhinal cortex, motor cortex and hypothalamus. Remarkably, hippocampal hypermetabolism was found (mean SUV = 2.66 ± 0.057) 2 h after KA administration, while hypometabolism at 24 h (mean SUV = 1.83 ± 0.056) vs basal values (mean SUV = 2.19 ± 0.057). EEG showed increased spectral power values 2 h post-KA administration. Hippocampal viable-cell counting 24 h after KA was decreased, while Fluoro-Jade B-positive cells were increased, as compared to control rats, coinciding with the hypometabolism detected in the same region by semi-quantitative FDG-PET at 24 h after KASE. CONCLUSIONS PET is suitable to measure metabolic brain changes in the rat model of status epilepticus induced by KA (KASE) at the first 24 h, compared to that of EEG; PET data may also be sensitive to cell viability.
Collapse
|
4
|
Wang P, Zhang Y, Wang Z, Yang A, Li Y, Zhang Q. miR-128 regulates epilepsy sensitivity in mice by suppressing SNAP-25 and SYT1 expression in the hippocampus. Biochem Biophys Res Commun 2021; 545:195-202. [PMID: 33571908 DOI: 10.1016/j.bbrc.2021.01.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 01/23/2021] [Indexed: 10/22/2022]
Abstract
Epilepsy is accompanied by abnormal neurotransmission, and microRNAs, as versatile players in the modulation of gene expression, are important in epilepsy pathology. Here, we found that miR-128 expression was elevated in the acute seizure phase and decreased during the recurrent seizure phase after status epilepticus in mice. Both SNAP-25 and SYT1 are regulated by miR-128 in vitro and in vivo. Overexpressing miR-128 in cultured neurons decreased neurotransmitter released by suppressing SNAP-25 and SYT1 expression. Anti-miR-128 injection before kainic acid (KA) injection increased the sensitivity of mice to KA-induced seizures, while overexpressing miR-128 at the latent and recurrent phases had a neuroprotective effect in KA-induced seizures. Our study shows for the first time that miR-128, a key regulator of neurotransmission, plays an important role in epilepsy pathology and that miR-128 might be a potential candidate molecular target for epilepsy therapy.
Collapse
Affiliation(s)
- Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100069, PR China
| | - Yanchufei Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Institute for Brain Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Zihui Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Institute for Brain Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Anyong Yang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Institute for Brain Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Yuting Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Institute for Brain Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China
| | - Qipeng Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, Institute for Brain Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210046, China.
| |
Collapse
|
5
|
Gernert M, Feja M. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies. Pharmaceutics 2020; 12:pharmaceutics12121134. [PMID: 33255396 PMCID: PMC7760299 DOI: 10.3390/pharmaceutics12121134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsies are common chronic neurological diseases characterized by recurrent unprovoked seizures of central origin. The mainstay of treatment involves symptomatic suppression of seizures with systemically applied antiseizure drugs (ASDs). Systemic pharmacotherapies for epilepsies are facing two main challenges. First, adverse effects from (often life-long) systemic drug treatment are common, and second, about one-third of patients with epilepsy have seizures refractory to systemic pharmacotherapy. Especially the drug resistance in epilepsies remains an unmet clinical need despite the recent introduction of new ASDs. Apart from other hypotheses, epilepsy-induced alterations of the blood-brain barrier (BBB) are thought to prevent ASDs from entering the brain parenchyma in necessary amounts, thereby being involved in causing drug-resistant epilepsy. Although an invasive procedure, bypassing the BBB by targeted intracranial drug delivery is an attractive approach to circumvent BBB-associated drug resistance mechanisms and to lower the risk of systemic and neurologic adverse effects. Additionally, it offers the possibility of reaching higher local drug concentrations in appropriate target regions while minimizing them in other brain or peripheral areas, as well as using otherwise toxic drugs not suitable for systemic administration. In our review, we give an overview of experimental and clinical studies conducted on direct intracranial drug delivery in epilepsies. We also discuss challenges associated with intracranial pharmacotherapy for epilepsies.
Collapse
Affiliation(s)
- Manuela Gernert
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
- Correspondence: ; Tel.: +49-(0)511-953-8527
| | - Malte Feja
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany;
- Center for Systems Neuroscience, D-30559 Hannover, Germany
| |
Collapse
|
6
|
Ríos C, Farfán-Briseño AC, Manjarrez-Marmolejo J, Franco-Pérez J, Méndez-Armenta M, Nava-Ruiz C, Caballero-Chacón S, Ruiz-Diaz A, Baron-Flores V, Díaz-Ruiz A. Efficacy of dapsone administered alone or in combination with diazepam to inhibit status epilepticus in rats. Brain Res 2019; 1708:181-187. [DOI: 10.1016/j.brainres.2018.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
|
7
|
Calcium Channel Subunit α2δ4 Is Regulated by Early Growth Response 1 and Facilitates Epileptogenesis. J Neurosci 2019; 39:3175-3187. [PMID: 30792272 DOI: 10.1523/jneurosci.1731-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/03/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Transient brain insults, including status epilepticus (SE), can trigger a period of epileptogenesis during which functional and structural reorganization of neuronal networks occurs resulting in the onset of focal epileptic seizures. In recent years, mechanisms that regulate the dynamic transcription of individual genes during epileptogenesis and thereby contribute to the development of a hyperexcitable neuronal network have been elucidated. Our own results have shown early growth response 1 (Egr1) to transiently increase expression of the T-type voltage-dependent Ca2+ channel (VDCC) subunit CaV3.2, a key proepileptogenic protein. However, epileptogenesis involves complex and dynamic transcriptomic alterations; and so far, our understanding of the transcriptional control mechanism of gene regulatory networks that act in the same processes is limited. Here, we have analyzed whether Egr1 acts as a key transcriptional regulator for genes contributing to the development of hyperexcitability during epileptogenesis. We found Egr1 to drive the expression of the VDCC subunit α2δ4, which was augmented early and persistently after pilocarpine-induced SE. Furthermore, we show that increasing levels of α2δ4 in the CA1 region of the hippocampus elevate seizure susceptibility of mice by slightly decreasing local network activity. Interestingly, we also detected increased expression levels of Egr1 and α2δ4 in human hippocampal biopsies obtained from epilepsy surgery. In conclusion, Egr1 controls the abundance of the VDCC subunits CaV3.2 and α2δ4, which act synergistically in epileptogenesis, and thereby contributes to a seizure-induced "transcriptional Ca2+ channelopathy."SIGNIFICANCE STATEMENT The onset of focal recurrent seizures often occurs after an epileptogenic process induced by transient insults to the brain. Recently, transcriptional control mechanisms for individual genes involved in converting neurons hyperexcitable have been identified, including early growth response 1 (Egr1), which activates transcription of the T-type Ca2+ channel subunit CaV3.2. Here, we find Egr1 to regulate also the expression of the voltage-dependent Ca2+ channel subunit α2δ4, which was augmented after pilocarpine- and kainic acid-induced status epilepticus. In addition, we observed that α2δ4 affected spontaneous network activity and the susceptibility for seizure induction. Furthermore, we detected corresponding dynamics in human biopsies from epilepsy patients. In conclusion, Egr1 orchestrates a seizure-induced "transcriptional Ca2+ channelopathy" consisting of CaV3.2 and α2δ4, which act synergistically in epileptogenesis.
Collapse
|
8
|
Anjum SMM, Käufer C, Hopfengärtner R, Waltl I, Bröer S, Löscher W. Automated quantification of EEG spikes and spike clusters as a new read out in Theiler's virus mouse model of encephalitis-induced epilepsy. Epilepsy Behav 2018; 88:189-204. [PMID: 30292054 DOI: 10.1016/j.yebeh.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/13/2018] [Accepted: 09/16/2018] [Indexed: 12/17/2022]
Abstract
Intracerebral infection of C57BL/6 mice with Theiler's murine encephalomyelitis virus (TMEV) replicates many features of viral encephalitis-induced epilepsy in humans, including neuroinflammation, early (insult-associated) and late (spontaneous) seizures, neurodegeneration in the hippocampus, and cognitive and behavioral alterations. Thus, this model may be ideally suited to study mechanisms involved in encephalitis-induced epilepsy as potential targets for epilepsy prevention. However, spontaneous recurrent seizures (SRS) occur too infrequently to be useful as a biomarker of epilepsy, e.g., for drug studies. This prompted us to evaluate whether epileptiform spikes or spike clusters in the cortical electroencephalogram (EEG) may be a useful surrogate of epilepsy in this model. For this purpose, we developed an algorithm that allows efficient and large-scale EEG analysis of early and late seizures, spikes, and spike clusters in the EEG. While 77% of the infected mice exhibited early seizures, late seizures were only observed in 33% of the animals. The clinical characteristics of early and late seizures did not differ except that late generalized convulsive (stage 5) seizures were significantly longer than early stage 5 seizures. Furthermore, the frequency of SRS was much lower than the frequency of early seizures. Continuous (24/7) video-EEG monitoring over several months following infection indicated that the latent period to onset of SRS was 61 (range 16-91) days. Spike and spike clusters were significantly more frequent in infected mice with late seizures than in infected mice without seizures or in mock-infected sham controls. Based on the results of this study, increases in EEG spikes and spike clusters in groups of infected mice may be used as a new readout for studies on antiepileptogenic or disease-modifying drug effects in this model, because the significant increase in average spike counts in mice with late seizures obviously indicates a proepileptogenic alteration.
Collapse
Affiliation(s)
- Syed Muhammad Muneeb Anjum
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | | | - Inken Waltl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
9
|
Mehrabi S, Janahamdi M, Joghataie MT, Barati M, Marzban M, Hadjighassem M, Farahmandfar M. Blockade of p75 Neurotrophin Receptor Reverses Irritability and Anxiety-Related Behaviors in a Rat Model of Status Epilepticus. IRANIAN BIOMEDICAL JOURNAL 2018; 22:264-74. [PMID: 29108398 PMCID: PMC5949129 DOI: 10.22034/ibj.22.4.264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 11/28/2022]
Abstract
Background Many recent epidemiological studies have shown that epileptic patients are more likely suffer from depression, anxiety, and irritability. However, the cellular mechanisms of epilepsy-induced psychotic behaviors are not fully elucidated. Neurotrophin receptors have been suggested to be involved in epilepsy and also in psychiatric disorders. Up-regulation of p75NTR expression and activation of p75NTR signalling cascades after the seizure have been shown, but the role of the p75 receptor in epilepsy-induced psychotic behaviors has not been documented so far. Therefore, the present work aimed to investigate the effect of p75 receptor blockade on seizure activity, irritability, and anxiety-like behaviors in a rat model of status epilepticus. Methods Rats were injected with pilocarpine (350 mg/ kg, i.p.) to induce status epilepticus. Then various behavioral tests were performed after the blockade of p75NTR alone or in combination with p75 antagonist and phenobarbital. Molecular analysis by PCR was performed to investigate the expression of p75 and pro-NGF. Results Molecular findings indicated a high level of mRNA expression for both p75 receptors and pro-NGF in the epileptic model group. Results also showed that the administration of p75 antagonist alone or in combination with phenobarbital was able to significantly influence the behavioral responses. Furthermore, 20-hours video monitoring showed a decrease in the frequency and duration of seizures in the rat group receiving p75 antagonist. Conclusion Taken together, the present study suggests that the blockade of the p75 receptor may affect the irritability and anxiety-related behavior in a rat model of status epilepticus.
Collapse
Affiliation(s)
- Soraya Mehrabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahamdi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataie
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of pharmaceutical biotechnology, School of pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Marzban
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Bröer S, Löscher W. Novel combinations of phenotypic biomarkers predict development of epilepsy in the lithium-pilocarpine model of temporal lobe epilepsy in rats. Epilepsy Behav 2015; 53:98-107. [PMID: 26539702 DOI: 10.1016/j.yebeh.2015.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
The discovery and validation of biomarkers in neurological and neurodegenerative diseases is an important challenge for early diagnosis of disease and for the development of therapeutics. Epilepsy is often a consequence of brain insults such as traumatic brain injury or stroke, but as yet no biomarker exists to predict the development of epilepsy in patients at risk. Given the complexity of epilepsy, it is unlikely that a single biomarker is sufficient for this purpose, but a combinatorial approach may be needed to overcome the challenge of individual variability and disease heterogeneity. The goal of the present prospective study in the lithium-pilocarpine model of epilepsy in rats was to determine the discriminative utility of combinations of phenotypic biomarkers by examining their ability to predict epilepsy. For this purpose, we used a recent model refinement that allows comparing rats that will or will not develop spontaneous recurrent seizures (SRS) after pilocarpine-induced status epilepticus (SE). Potential biomarkers included in our study were seizure threshold and seizure severity in response to timed i.v. infusion of pentylenetetrazole (PTZ) and behavioral alterations determined by a battery of tests during the three weeks following SE. Three months after SE, video/EEG monitoring was used to determine which rats had developed SRS. To determine whether a biomarker or combination of biomarkers performed better than chance at predicting epilepsy after SE, derived data underwent receiver operating characteristic (ROC) curve analyses. When comparing rats with and without SRS and sham controls, the best intergroup discrimination was obtained by combining all measurements, resulting in a ROC area under curve (AUC) of 0.9592 (P<0.01), indicating an almost perfect discrimination or accuracy to predict development of SRS. These data indicate that a combinatorial biomarker approach may overcome the challenge of individual variability in the prediction of epilepsy.
Collapse
Affiliation(s)
- Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
12
|
Beske PH, Scheeler SM, Adler M, McNutt PM. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing. Front Cell Neurosci 2015; 9:159. [PMID: 25954159 PMCID: PMC4407583 DOI: 10.3389/fncel.2015.00159] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/08/2015] [Indexed: 11/13/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well-understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs) are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ pre-synaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT.
Collapse
Affiliation(s)
- Phillip H Beske
- Cellular and Molecular Biology Branch, Research Division, United States Army Medical Research Institute of Chemical Defense Aberdeen Proving Ground, MD, USA
| | - Stephen M Scheeler
- Cellular and Molecular Biology Branch, Research Division, United States Army Medical Research Institute of Chemical Defense Aberdeen Proving Ground, MD, USA
| | - Michael Adler
- Cellular and Molecular Biology Branch, Research Division, United States Army Medical Research Institute of Chemical Defense Aberdeen Proving Ground, MD, USA
| | - Patrick M McNutt
- Cellular and Molecular Biology Branch, Research Division, United States Army Medical Research Institute of Chemical Defense Aberdeen Proving Ground, MD, USA
| |
Collapse
|
13
|
Franco-Pérez J, Ballesteros-Zebadúa P, Manjarrez-Marmolejo J. Anticonvulsant effects of mefloquine on generalized tonic-clonic seizures induced by two acute models in rats. BMC Neurosci 2015; 16:7. [PMID: 25886955 PMCID: PMC4411716 DOI: 10.1186/s12868-015-0145-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/17/2015] [Indexed: 11/19/2022] Open
Abstract
Background Mefloquine can cross the blood–brain barrier and block the gap junction intercellular communication in the brain. Enhanced electrical coupling mediated by gap junctions is an underlying mechanism involved in the generation and maintenance of seizures. For this reason, the aim of this study was to analyze the effects of the systemic administration of mefloquine on tonic-clonic seizures induced by two acute models such as pentylenetetrazole and maximal electroshock. Results All the control rats presented generalized tonic-clonic seizures after the administration of pentylenetetrazole. However, the incidence of seizures induced by pentylenetetrazole significantly decreased in the groups administered systematically with 40 and 80 mg/kg of mefloquine. In the control group, none of the rats survived after the generalized tonic-clonic seizures induced by pentylenetetrazole, but survival was improved by mefloquine. Besides, mefloquine significantly modified the total spectral power as well as the duration, amplitude and frequency of the epileptiform activity induced by pentylenetetrazole. For the maximal electroshock model, mefloquine did not change the occurrence of tonic hindlimb extension. However, this gap junction blocker significantly decreased the duration of the tonic hindlimb extension induced by the acute electroshock. Conclusions These data suggest that mefloquine at low doses might be eliciting some anticonvulsant effects when is systemically administered to rats.
Collapse
Affiliation(s)
- Javier Franco-Pérez
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, M.V.S, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Mexico, DF, Mexico.
| | - Paola Ballesteros-Zebadúa
- Laboratory of Medical Physics, National Institute of Neurology and Neurosurgery, M.V.S, Mexico, DF, Mexico.
| | - Joaquín Manjarrez-Marmolejo
- Laboratory of Physiology of Reticular Formation, National Institute of Neurology and Neurosurgery, M.V.S, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Mexico, DF, Mexico.
| |
Collapse
|
14
|
Brandt C, Töllner K, Klee R, Bröer S, Löscher W. Effective termination of status epilepticus by rational polypharmacy in the lithium-pilocarpine model in rats: Window of opportunity to prevent epilepsy and prediction of epilepsy by biomarkers. Neurobiol Dis 2014; 75:78-90. [PMID: 25549873 DOI: 10.1016/j.nbd.2014.12.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 11/30/2022] Open
Abstract
The pilocarpine rat model, in which status epilepticus (SE) leads to epilepsy with spontaneous recurrent seizures (SRS), is widely used to study the mechanisms of epileptogenesis and develop strategies for epilepsy prevention. SE is commonly interrupted after 30-90min by high-dose diazepam or other anticonvulsants to reduce mortality. It is widely believed that SE duration of 30-60min is sufficient to induce hippocampal damage and epilepsy. However, resistance to diazepam develops during SE, so that an SE that is longer than 30min is difficult to terminate, and SE typically recurs several hours after diazepam, thus forming a bias for studies on epileptogenesis or antiepileptogenesis. We developed a drug cocktail, consisting of diazepam, phenobarbital, and scopolamine that allows complete and persistent SE termination in the lithium-pilocarpine model. A number of novel findings were obtained with this cocktail. (a) In contrast to previous reports with incomplete SE suppression, a SE of 60min duration did not induce epilepsy, whereas epilepsy with SRS developed after 90 or 120min SE; (b) by comparing groups of rats with 60 and 90min of SE, development of epilepsy could be predicted by behavioral hyperexcitability and decrease in seizure threshold, indicating that these read-outs are suited as biomarkers of epileptogenesis; (c) CA1 damage was prevented by the cocktail, but rats exhibited cell loss in the dentate hilus, which was related to development of epilepsy. These data demonstrate that the duration of SE needed for induction of epileptogenesis in this model is longer than previously thought.
Collapse
Affiliation(s)
- Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|