1
|
Wang S, Wang L, Bu Q, Wei Q, Jiang L, Dai Y, Zhang N, Kuang W, Zhao Y, Cen X. Methamphetamine exposure drives cell cycle exit and aberrant differentiation in rat hippocampal-derived neurospheres. Front Pharmacol 2023; 14:1242109. [PMID: 37795025 PMCID: PMC10546213 DOI: 10.3389/fphar.2023.1242109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction: Methamphetamine (METH) abuse by pregnant drug addicts causes toxic effects on fetal neurodevelopment; however, the mechanism underlying such effect of METH is poorly understood. Methods: In the present study, we applied three-dimensional (3D) neurospheres derived from the embryonic rat hippocampal tissue to investigate the effect of METH on neurodevelopment. Through the combination of whole genome transcriptional analyses, the involved cell signalings were identified and investigated. Results: We found that METH treatment for 24 h significantly and concentration-dependently reduced the size of neurospheres. Analyses of genome-wide transcriptomic profiles found that those down-regulated differentially expressed genes (DEGs) upon METH exposure were remarkably enriched in the cell cycle progression. By measuring the cell cycle and the expression of cell cycle-related checkpoint proteins, we found that METH exposure significantly elevated the percentage of G0/G1 phase and decreased the levels of the proteins involved in the G1/S transition, indicating G0/G1 cell cycle arrest. Furthermore, during the early neurodevelopment stage of neurospheres, METH caused aberrant cell differentiation both in the neurons and astrocytes, and attenuated migration ability of neurospheres accompanied by increased oxidative stress and apoptosis. Conclusion: Our findings reveal that METH induces an aberrant cell cycle arrest and neuronal differentiation, impairing the coordination of migration and differentiation of neurospheres.
Collapse
Affiliation(s)
- Shaomin Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liang Wang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Bu
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Wei
- Cell and Immunology Laboratory, Chengdu West China Frontier Pharmatech Co., Ltd., Chengdu, China
| | - Linhong Jiang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Dai
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ni Zhang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yinglan Zhao
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaobo Cen
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Tomášková A, Šlamberová R, Černá M. Influence of Prenatal Methamphetamine Abuse on the Brain. EPIGENOMES 2020; 4:14. [PMID: 34968287 PMCID: PMC8594709 DOI: 10.3390/epigenomes4030014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
Abstract
Methamphetamine (MA), a psychostimulant, has become a serious problem in recent years. It is one of the most widely abused psychostimulants in the world. In the Czech Republic, ecstasy is the most commonly used non-cannabis drug, followed by hallucinogenic fungi, LSD, MA, cocaine, and finally heroin. The prevalence of the usage of all addictive substances is highest in the age category of 15-34. Approximately 17.2% of registered drug addicts, both male and female, in the Czech Republic use MA as their first-choice drug. This group consists mostly of women who are unemployed and addicted to MA (85%). Almost half of the addicted women switched to MA from other drugs in the course of pregnancy. Psychostimulants such as amphetamine and its synthetic derivate MA induce feelings of calm and happiness by suppressing anxiety and depression. When MA is abused for longer periods, it mimics symptoms of mania and can lead to the development of psychosis. MA is often abused for its anorectic effect, its simple preparation, and compared to heroin and cocaine, its low price. There are significant differences in the susceptibility of users to the stimulant, with reactions to MA fluctuating from person to person. Molecular mechanisms related to the variable response among users might represent an explanation for increased addiction-associated bipolar disorder and psychosis. Currently, there is limited information regarding genetic mechanisms linked to these disorders and the transmission of drug addiction. As such, animal models of drug addiction represent significant sources of information and assets in the research of these issues. The aim of this review is to summarize the mechanism of action of methamphetamine and its effect on pregnant addicted women and their children, including a detailed description of the anatomical structures involved.
Collapse
Affiliation(s)
- Anežka Tomášková
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| |
Collapse
|
3
|
Brain-wide genetic mapping identifies the indusium griseum as a prenatal target of pharmacologically unrelated psychostimulants. Proc Natl Acad Sci U S A 2019; 116:25958-25967. [PMID: 31796600 DOI: 10.1073/pnas.1904006116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Psychostimulant use is an ever-increasing socioeconomic burden, including a dramatic rise during pregnancy. Nevertheless, brain-wide effects of psychostimulant exposure are incompletely understood. Here, we performed Fos-CreERT2-based activity mapping, correlated for pregnant mouse dams and their fetuses with amphetamine, nicotine, and caffeine applied acutely during midgestation. While light-sheet microscopy-assisted intact tissue imaging revealed drug- and age-specific neuronal activation, the indusium griseum (IG) appeared indiscriminately affected. By using GAD67gfp/+ mice we subdivided the IG into a dorsolateral domain populated by γ-aminobutyric acidergic interneurons and a ventromedial segment containing glutamatergic neurons, many showing drug-induced activation and sequentially expressing Pou3f3/Brn1 and secretagogin (Scgn) during differentiation. We then combined Patch-seq and circuit mapping to show that the ventromedial IG is a quasi-continuum of glutamatergic neurons (IG-Vglut1 +) reminiscent of dentate granule cells in both rodents and humans, whose dendrites emanate perpendicularly toward while their axons course parallel with the superior longitudinal fissure. IG-Vglut1 + neurons receive VGLUT1+ and VGLUT2+ excitatory afferents that topologically segregate along their somatodendritic axis. In turn, their efferents terminate in the olfactory bulb, thus being integral to a multisynaptic circuit that could feed information antiparallel to the olfactory-cortical pathway. In IG-Vglut1 + neurons, prenatal psychostimulant exposure delayed the onset of Scgn expression. Genetic ablation of Scgn was then found to sensitize adult mice toward methamphetamine-induced epilepsy. Overall, our study identifies brain-wide targets of the most common psychostimulants, among which Scgn +/Vglut1 + neurons of the IG link limbic and olfactory circuits.
Collapse
|
4
|
Zoubková H, Tomášková A, Nohejlová K, Černá M, Šlamberová R. Prenatal Exposure to Methamphetamine: Up-Regulation of Brain Receptor Genes. Front Neurosci 2019; 13:771. [PMID: 31417344 PMCID: PMC6686742 DOI: 10.3389/fnins.2019.00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/09/2019] [Indexed: 01/10/2023] Open
Abstract
Methamphetamine (METH) is a widespread illicit drug. If it is taken by pregnant women, it passes through the placenta and just as it affects the mother, it can impair the development of the offspring. The aim of our study was to identify candidates to investigate for changes in the gene expression in the specific regions of the brain associated with addiction to METH in rats. We examined the various areas of the central nervous system (striatum, hippocampus, prefrontal cortex) for signs of impairment in postnatal day 80 in experimental rats, whose mothers had been administered METH (5 mg/kg/day) during the entire gestation period. Changes in the gene expression at the mRNA level were determined by two techniques, microarray and real-time PCR. Results of two microarray trials were evaluated by LIMMA analysis. The first microarray trial detected either up-regulated or down-regulated expression of 2189 genes in the striatum; the second microarray trial detected either up-regulated or down-regulated expression of 1344 genes in the hippocampus of prenatally METH-exposed rats. We examined the expression of 10 genes using the real-time PCR technique. Differences in the gene expression were counted by the Mann–Whitney U-test. Significant changes were observed in the cocaine- and amphetamine-regulated transcript prepropeptide, tachykinin receptor 3, dopamine receptor D3 gene expression in the striatum regions, in the glucocorticoid nuclear receptor Nr3c1 gene expression in the prefrontal cortex and in the carboxylesterase 2 gene expression in the hippocampus of prenatally METH-exposed rats. The microarray technique also detected up-regulated expression of trace amine-associated receptor 7 h gene in the hippocampus of prenatally METH-exposed rats. We have identified susceptible genes; candidates for the study of an impairment related to methamphetamine addiction in the specific regions of the brain.
Collapse
Affiliation(s)
- Hana Zoubková
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Anežka Tomášková
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateryna Nohejlová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
5
|
Ruda-Kucerova J, Pistovcakova J, Amchova P, Sulcova A, Machalova A. Prenatal exposure to modafinil alters behavioural response to methamphetamine in adult male mice. Int J Dev Neurosci 2018; 67:37-45. [PMID: 29571720 DOI: 10.1016/j.ijdevneu.2018.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/09/2018] [Accepted: 03/11/2018] [Indexed: 01/14/2023] Open
Abstract
Modafinil is a psychostimulant drug prescribed for treatment of narcolepsy. However, it is used as a "smart drug" especially by young adults to increase wakefulness, concentration and mental performance. Therefore, it can also be used by women with childbearing potential and its developmental effects can become a concern. The aim of this study was to assess behavioural and immune effects of prenatal modafinil exposure in mice and to evaluate the reaction to methamphetamine exposure on these animals in adult age. Pregnant female mice were given either saline or modafinil (50 mg/kg orally) from gestation day (GD) 3 to GD 10 and then a challenge dose on GD 17. The male offspring were treated analogously at the age of 10 weeks with methamphetamine (2.5 mg/kg orally). Changes in the spontaneous locomotor/exploratory behaviour and anxiogenic profile in the open field test were assessed in naïve animals, after an acute and 8th modafinil dose and the challenge dose following a 7-day wash-out period. One month after completion of the behavioural study, the leukocyte phagocytosis was examined by zymosan induced and luminol-aided chemiluminiscence assay in vitro. The modafinil prenatally exposed mice showed basal hypolocomotion, increased anxiety, lower locomotor effect of acute methamphetamine and increased vulnerability to behavioural sensitization. The leukocyte activity did not show significant differences. Prenatal modafinil exposure alters basal behavioural profile, decreases acute effect of methamphetamine and enhances vulnerability to development of behavioural sensitization at adulthood. This may lead to higher vulnerability to development of addiction.
Collapse
Affiliation(s)
- Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Jana Pistovcakova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Amchova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandra Sulcova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alena Machalova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
6
|
Hrebíčková I, Ševčíková M, Nohejlová K, Šlamberová R. Does effect from developmental methamphetamine exposure on spatial learning and memory depend on stage of neuroontogeny? Physiol Res 2017; 65:S577-S589. [PMID: 28006940 DOI: 10.33549/physiolres.933534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Psychostimulants, including methamphetamine (MA), have neurotoxic effect, especially, if they are targeting CNS during its critical periods of development. The present study was aimed to examine cognitive changes after prenatal and neonatal MA treatment in combination with chronic MA exposure in adulthood of male rats. Eight groups of male rats were tested in adulthood: males whose mothers were exposed to MA (5 mg/kg) or saline (SA, 1 ml/kg) during the first half of gestation period (GD 1-11), the second half of gestation period (GD 12-22) and neonatal period (PD 1-11). In addition, we compared indirect neonatal application via the breast milk with the group of rat pups that received MA or SA directly by injection (PD 1-11). Males were tested in adulthood for cognitive changes in the Morris Water Maze (MWM). MWM experiment lasted for 12 days: Learning (Day 1-6), Probe test (Day 8) and Retrieval Memory test (Day 12). Each day of the MWM animals were injected with MA (1 mg/kg) or SA (1 ml/kg). Prenatal MA exposure did not induce changes in learning abilities of male rats, but neonatal exposure to MA leads to an increase search errors and latencies to find the hidden platform. Prenatal and also neonatal MA exposure impaired cognitive ability to remember the position of the platform in Retrieval Memory test in adulthood. Animals exposed to the prenatal treatment within the second half of gestation (ED 12-22) swam longer, slower and spent more time to find the hidden platform in Retrieval Memory test than animals exposed throughout other periods. The present study demonstrated that stage of development is crucial for determination the cognitive deficits induced by prenatal or neonatal MA exposure.
Collapse
Affiliation(s)
- I Hrebíčková
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
7
|
Abstract
Intrauterine methamphetamine exposure adversely affects the neurofunctional profile of exposed children, leading to a variety of higher order cognitive deficits, such as decreased attention, reduced working-memory capability, behavioral dysregulation, and spatial memory impairments (Kiblawi et al. in J Dev Behav Pediatr 34:31-37, 2013; Piper et al. in Pharmacol Biochem Behav 98:432-439 2011; Roussotte et al. in Neuroimage 54:3067-3075, 2011; Twomey et al. in Am J Orthopsychiatry 83:64-72, 2013). In animal models of developmental methamphetamine, both neuroanatomical and behavioral outcomes critically depend on the timing of methamphetamine administration. Methamphetamine exposure during the third trimester human equivalent period of brain development results in well-defined and persistent wayfinding and spatial navigation deficits in rodents (Vorhees et al. in Neurotoxicol Teratol 27:117-134, 2005, Vorhees et al. in Int J Dev Neurosci 26:599-610, 2008; Vorhees et al. in Int J Dev Neurosci 27:289-298, 2009; Williams et al. in Psychopharmacology (Berl) 168:329-338, 2003b), whereas drug delivery during the first and second trimester equivalents produces no such effect (Acuff-Smith et al. in Neurotoxicol Teratol 18:199-215, 1996; Schutova et al. in Physiol Res 58:741-750, 2009a; Slamberova et al. in Naunyn Schmiedebergs Arch Pharmacol 380:109-114, 2009, Slamberova et al. in Physiol Res 63:S547-S558, 2014b). In this review, we examine the impact of developmental methamphetamine on emerging neural circuitry, neurotransmission, receptor changes, and behavioral outcomes in animal models. The review is organized by type of effects and timing of drug exposure (prenatal only, pre- and neonatal, and neonatal only). The findings elucidate functional patterns of interconnected brain structures (e.g., frontal cortex and striatum) and neurotransmitters (e.g., dopamine and serotonin) involved in methamphetamine-induced developmental neurotoxicity.
Collapse
|
8
|
Šlamberová R, Macúchová E, Nohejlová K, Štofková A, Jurčovičová J. Effect of Amphetamine on Adult Male and Female Rats Prenatally Exposed to Methamphetamine. Prague Med Rep 2014; 115:43-59. [DOI: 10.14712/23362936.2014.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The aim of the present study was to examine the cross-sensitization induced by prenatal methamphetamine (MA) exposure to adult amphetamine (AMP) treatment in male and female rats. Rat mothers received a daily injection of MA (5 mg/kg) or saline throughout the gestation period. Adult male and female offspring (prenatally MA- or saline-exposed) were administered with AMP (5 mg/kg) or saline (1 ml/kg) in adulthood. Behaviour in unknown environment was examined in open field test (Laboras), active drug-seeking behaviour in conditioned place preference test (CPP), spatial memory in the Morris water maze (MWM), and levels of corticosterone (CORT) were analyzed by enzyme immunoassay (EIA). Our data demonstrate that in Laboras test, AMP treatment in adulthood increased general locomotion (time and distance travelled) regardless of the prenatal exposure and sex, while AMP increased exploratory activity (rearing) only in prenatally MA-exposed animals. AMP induced sensitization only in male rats, but not in females when tested drug-seeking behaviour in the CPP test. In the spatial memory MWM test, AMP worsened the performance only in females, but not in males. On the other hand, males swam faster after chronic AMP treatment regardless of the prenatal drug exposure. EIA analysis of CORT levels demonstrated higher level in females in all measurement settings. In males, prenatal MA exposure and chronic adult AMP treatment decreased CORT levels. Thus, our data demonstrated that adult AMP treatment affects behaviour of adult rats, their spatial memory and stress response in sex-specific manner. The effect is also influenced by prenatal drug exposure.
Collapse
|
9
|
Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|