1
|
Chen Y, Kong C, Yang M, Liu Y, Han Z, Xu L, Zheng X, Ding Y, Yin Z, Zhang X. 2,5-Hexanedione Affects Ovarian Granulosa Cells in Swine by Regulating the CDKN1A Gene: A Transcriptome Analysis. Vet Sci 2023; 10:vetsci10030201. [PMID: 36977240 PMCID: PMC10058995 DOI: 10.3390/vetsci10030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
N-hexane, a common industrial organic solvent, causes multiple organ damage owing to its metabolite, 2,5-hexanedione (2,5-HD). To identify and evaluate the effects of 2,5-HD on sows’ reproductive performance, we used porcine ovarian granulosa cells (pGCs) as a vehicle and carried out cell morphology and transcriptome analyses. 2,5-HD has the potential to inhibit the proliferation of pGCs and induce morphological changes and apoptosis depending on the dose. RNA-seq analyses identified 4817 differentially expressed genes (DEGs), with 2394 down-regulated and 2423 up-regulated following 2,5-HD exposure treatment. The DEG, cyclin-dependent kinase inhibitor 1A (CDKN1A), according to the Kyoto Encyclopedia of Genes and Genomes enrichment analysis, was significantly enriched in the p53 signaling pathway. Thus, we evaluated its function in pGC apoptosis in vitro. Then, we knocked down the CDKN1A gene in the pGCs to identify its effects on pGCs. Its knockdown decreased pGC apoptosis, with significantly fewer cells in the G1 phase (p < 0.05) and very significantly more cells in the S phase (p < 0.01). Herein, we revealed novel candidate genes that influence pGCs apoptosis and cell cycle and provided new insights into the role of CDKN1A in pGCs during apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Yige Chen
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
| | - Chengcheng Kong
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
| | - Min Yang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
- Anhui Province Key Laboratory of Aquaculture & Stock Enhancement, Fishery Institute of Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yangguang Liu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
| | - Zheng Han
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
| | - Liming Xu
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
| | - Xianrui Zheng
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
| | - Yueyun Ding
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
| | - Zongjun Yin
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
- Correspondence: (Z.Y.); (X.Z.); Tel.: +86-13866191465 (Z.Y.); +86-15055138374 (X.Z.); Fax: +86-551-65787303 (Z.Y. & X.Z.)
| | - Xiaodong Zhang
- Anhui Provincial Laboratory of Local Animal Genetic Resource Conservation and Bio-Breeding, College of Animal Science and Technology, Anhui Agricultural University, No. 130, West Changjiang Road, Hefei 230036, China
- Correspondence: (Z.Y.); (X.Z.); Tel.: +86-13866191465 (Z.Y.); +86-15055138374 (X.Z.); Fax: +86-551-65787303 (Z.Y. & X.Z.)
| |
Collapse
|
2
|
Casagrande FV, Amadeo A, Cartelli D, Calogero AM, Modena D, Costa I, Cantele F, Onelli E, Moscatelli A, Ascagni M, Pezzoli G, Cappelletti G. The imbalance between dynamic and stable microtubules underlies neurodegeneration induced by 2,5-hexanedione. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165581. [DOI: 10.1016/j.bbadis.2019.165581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 10/12/2019] [Indexed: 01/10/2023]
|
3
|
Zhang X, Kong Y, Sun Y, Qian Z, Gao C, Shi X, Li S, Piao Y, Piao F. Bone marrow mesenchymal stem cells conditioned medium protects VSC4.1 cells against 2,5-hexanedione-induced autophagy via NGF-PI3K/Akt/mTOR signaling pathway. Brain Res 2018; 1696:1-9. [PMID: 29705604 DOI: 10.1016/j.brainres.2018.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/08/2023]
Abstract
We aimed to investigate the effects of bone marrow mesenchymal stem cell conditioned medium (BMSC-CM) in preventing 2,5-hexanedione (HD)-induced damage to motoneurons, and examined the molecular mechanisms that mediate these effects. VSC4.1 cells were exposed to 25 mM HD for 24 h followed by incubation with DMEM for 24 h. HD-treated cells were incubated with BMSC-CM at varied concentrations. Incubation with BMSC-CM ameliorated the decreased cell viability and reduced LDH release from cells exposed to HD. BMSC-CM suppressed the elevated number of autophagic vacuoles, cells with LC3 puncta, increased LC3-II/LC3-I ratio, and decreased p62 caused by HD exposure. BMSC-CM elevated NGF and p-TrkA expressions in HD-treated cells. Administration of NGF inhibited autophagy, an effect that was similar to that observed after BMSC-CM treatment; this effect was abolished by the addition of NGF-neutralizing antibodies. BMSC-CM or NGF elevated p-protein kinase B (Akt) and p-mammalian target of rapamycin (mTOR) in HD-exposed cells, which was interrupted by TrkA inhibitor, K252a and mTOR inhibitor, rapamycin. BMSC-CM prevented HD-induced autophagic cell damage in VSC4.1 cells. The neuroprotective effect of BMSC-CM appeared to be at least partly associated with its ability to trigger the NGF-phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China; Department of Clinical Nutrition, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian, Liaoning 116044, China
| | - Yijie Sun
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Zhiqiang Qian
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Chenxue Gao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Shuangyue Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Yongjun Piao
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
4
|
An L, Li G, Si J, Zhang C, Han X, Wang S, Jiang L, Xie K. Acrylamide Retards the Slow Axonal Transport of Neurofilaments in Rat Cultured Dorsal Root Ganglia Neurons and the Corresponding Mechanisms. Neurochem Res 2015; 41:1000-9. [PMID: 26721510 DOI: 10.1007/s11064-015-1782-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/02/2015] [Accepted: 11/20/2015] [Indexed: 01/09/2023]
Abstract
Chronic acrylamide (ACR) exposure induces peripheral-central axonopathy in occupational workers and laboratory animals, but the underlying mechanisms remain unclear. In this study, we first investigated the effects of ACR on slow axonal transport of neurofilaments in cultured rat dorsal root ganglia (DRG) neurons through live-cell imaging approach. Then for the underlying mechanisms exploration, the protein level of neurofilament subunits, motor proteins kinesin and dynein, and dynamitin subunit of dynactin in DRG neurons were assessed by western blotting and the concentrations of ATP was detected using ATP Assay Kit. The results showed that ACR treatment results in a dose-dependent decrease of slow axonal transport of neurofilaments. Furthermore, ACR intoxication significantly increases the protein levels of the three neurofilament subunits (NF-L, NF-M, NF-H), kinesin, dynein, and dynamitin subunit of dynactin in DRG neurons. In addition, ATP level decreased significantly in ACR-treated DRG neurons. Our findings indicate that ACR exposure retards slow axonal transport of NF-M, and suggest that the increase of neurofilament cargoes, motor proteins, dynamitin of dynactin, and the inadequate ATP supply contribute to the ACR-induced retardation of slow axonal transport.
Collapse
Affiliation(s)
- Lihong An
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China.,Institute of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Guozhen Li
- Beijing Municipal Institute of Labour Protection, Taoranting Road, Xicheng District, Beijing, 100054, China
| | - Jiliang Si
- Institute of Environment and Health, School of Public Health, Shandong University, Jinan, 250012, China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Xiaoying Han
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shuo Wang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Lulu Jiang
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China
| | - Keqin Xie
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|