1
|
Bernard C, Frauscher B, Gelinas J, Timofeev I. Sleep, oscillations, and epilepsy. Epilepsia 2023; 64 Suppl 3:S3-S12. [PMID: 37226640 PMCID: PMC10674035 DOI: 10.1111/epi.17664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 05/26/2023]
Abstract
Sleep and wake are defined through physiological and behavioral criteria and can be typically separated into non-rapid eye movement (NREM) sleep stages N1, N2, and N3, rapid eye movement (REM) sleep, and wake. Sleep and wake states are not homogenous in time. Their properties vary during the night and day cycle. Given that brain activity changes as a function of NREM, REM, and wake during the night and day cycle, are seizures more likely to occur during NREM, REM, or wake at a specific time? More generally, what is the relationship between sleep-wake cycles and epilepsy? We will review specific examples from clinical data and results from experimental models, focusing on the diversity and heterogeneity of these relationships. We will use a top-down approach, starting with the general architecture of sleep, followed by oscillatory activities, and ending with ionic correlates selected for illustrative purposes, with respect to seizures and interictal spikes. The picture that emerges is that of complexity; sleep disruption and pathological epileptic activities emerge from reorganized circuits. That different circuit alterations can occur across patients and models may explain why sleep alterations and the timing of seizures during the sleep-wake cycle are patient-specific.
Collapse
Affiliation(s)
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jennifer Gelinas
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Igor Timofeev
- Faculté de Médecine, Département de Psychiatrie et de Neurosciences, Centre de Recherche CERVO, Université Laval, Québec, QC G1J2G3, Canada
| |
Collapse
|
2
|
Zhao X, Wang Y, Cai A, Mei S, Liu N, Kong X. A novel NAPB splicing mutation identified by Trio-based exome sequencing is associated with early-onset epileptic encephalopathy. Eur J Med Genet 2020; 64:104101. [PMID: 33189936 DOI: 10.1016/j.ejmg.2020.104101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/25/2022]
Abstract
N-ethylmaleimide-sensitive factor attachment proteins (NAP: NAPA and NAPB) play a role in Soluble N-ethylmaleimide-sensitive accessory protein receptor (SNARE) complex dissociation and recycling, associated with neuronal regulation and brain development and various severe early-onset epilepsies. Here, we report two patients from a Chinese family presenting with unexplained early-onset epileptic encephalopathies (EOEE) syndrome characterized by multifocal seizures, profound intellectual disability and global developmental delay. We identified the homozygous c.433-1G > A variant of the NAPB as the causative by trio-based exome sequencing. The novel splicing mutation in NAPB was third variant reported associated with EOEE syndrome. Our results gave further hints on the associations of variants in NAPB with EOEE and indicated that for patients with unexplained EOEE, the NAPB gene should be included into the data analysis from whole exome sequencing, which contributes to uncover more patients affected and rich the phenotypic spectrum.
Collapse
Affiliation(s)
- Xuechao Zhao
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Yanhong Wang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, No-33, Longhu Waihuan East Road, 450018, Zhengzhou, Henan Province, China.
| | - Aojie Cai
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou Children's Hospital, No-33, Longhu Waihuan East Road, 450018, Zhengzhou, Henan Province, China.
| | - Ning Liu
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Xiangdong Kong
- The Genetics and Prenatal Diagnosis Center, The Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Gene Editing of Human Genetic Disease, Jianshe Rd, Erqi District, Zhengzhou, Henan, 450052, People's Republic of China.
| |
Collapse
|
3
|
Perez-Ramirez MB, Gu F, Prince DA. Prolonged prophylactic effects of gabapentin on status epilepticus-induced neocortical injury. Neurobiol Dis 2020; 142:104949. [PMID: 32442680 PMCID: PMC8083016 DOI: 10.1016/j.nbd.2020.104949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/17/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023] Open
Abstract
Long-term consequences of status epilepticus (SE) occur in a significant proportion of those who survive the acute episode. We developed an in vivo model of acute focal neocortical SE (FSE) to study long-term effects on local cortical structure and function and potential strategies to mitigate adverse consequences of SE. An acute 2 h episode of FSE was induced in anesthetized mice by epidural application of gabazine +4-aminopyridine over sensorimotor neocortex. Ten and 30 days later, the morphological and functional consequences of this single episode of FSE were studied using immunocytochemical and electrophysiological techniques. Results, focused on cortical layer V, showed astrogliosis, microgliosis, decreased neuronal density, and increased excitatory synapses, along with increased immunoreactivity for thrombospondin 2 (TSP2) and α2δ-1 proteins. In addition, neocortical slices, obtained from the area of prior focal seizure activity, showed abnormal epileptiform burst discharges along with increases in the frequency of miniature and spontaneous excitatory postsynaptic currents in layer V pyramidal cells, together with decreases in both parvalbumin immunoreactivity (PV-IR) and the frequency of miniature inhibitory postsynaptic currents in layer V pyramidal cells. Treatment with an approved drug, gabapentin (GBP) (ip 100 mg/kg/day 3 × /day for 7 days following the FSE episode), prevented the gliosis, the enhanced TSP2- and α2δ-1- IR and the increased excitatory synaptic density in the affected neocortex. This model provides an approach for assessing adverse effects of FSE on neocortical structure and function and potential prophylactic treatments.
Collapse
Affiliation(s)
- Maria-Belen Perez-Ramirez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Feng Gu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David A Prince
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Abstract
We describe a model of neurological disease based on dysfunctional brain oscillators. This is not a new model, but it is not one that is widely appreciated by clinicians. The value of this model lies in the predictions it makes and the utility it provides in translational applications, in particular for neuromodulation devices. Specifically, we provide a perspective on devices that provide input to sensory receptors and thus stimulate endogenous sensory networks. Current forms of clinically applied neuromodulation, including devices such as (implanted) deep brain stimulators (DBS) and various, noninvasive methods such as transcranial magnetic stimulation (TMS) and transcranial current methods (tACS, tDCS), have been studied extensively. The potential strength of neuromodulation of a sensory organ is access to the same pathways that natural environmental stimuli use and, importantly, the modulatory signal will be transformed as it travels through the brain, allowing the modulation input to be consistent with regional neuronal dynamics. We present specific examples of devices that rely on sensory neuromodulation and evaluate the translational potential of these approaches. We argue that sensory neuromodulation is well suited to, ideally, repair dysfunctional brain oscillators, thus providing a broad therapeutic approach for neurological diseases.
Collapse
|
5
|
Vierck C. Mechanisms of Below-Level Pain Following Spinal Cord Injury (SCI). THE JOURNAL OF PAIN 2019; 21:262-280. [PMID: 31493490 DOI: 10.1016/j.jpain.2019.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/05/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
Mechanisms of below-level pain are discoverable as neural adaptations rostral to spinal injury. Accordingly, the strategy of investigations summarized here has been to characterize behavioral and neural responses to below-level stimulation over time following selective lesions of spinal gray and/or white matter. Assessments of human pain and the pain sensitivity of humans and laboratory animals following spinal injury have revealed common disruptions of pain processing. Interruption of the spinothalamic pathway partially deafferents nocireceptive cerebral neurons, rendering them spontaneously active and hypersensitive to remaining inputs. The spontaneous activity among these neurons is disorganized and unlikely to generate pain. However, activation of these neurons by their remaining inputs can result in pain. Also, injury to spinal gray matter results in a cascade of secondary events, including excitotoxicity, with rostral propagation of excitatory influences that contribute to chronic pain. Establishment and maintenance of below-level pain results from combined influences of injured and spared axons in the spinal white matter and injured neurons in spinal gray matter on processing of nociception by hyperexcitable cerebral neurons that are partially deafferented. A model of spinal stenosis suggests that ischemic injury to the core spinal region can generate below-level pain. Additional questions are raised about demyelination, epileptic discharge, autonomic activation, prolonged activity of C nocireceptive neurons, and thalamocortical plasticity in the generation of below-level pain. PERSPECTIVE: An understanding of mechanisms can direct therapeutic approaches to prevent development of below-level pain or arrest it following spinal cord injury. Among the possibilities covered here are surgical and other means of attenuating gray matter excitotoxicity and ascending propagation of excitatory influences from spinal lesions to thalamocortical systems involved in pain encoding and arousal.
Collapse
Affiliation(s)
- Chuck Vierck
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, Florida.
| |
Collapse
|
6
|
González OC, Krishnan GP, Timofeev I, Bazhenov M. Ionic and synaptic mechanisms of seizure generation and epileptogenesis. Neurobiol Dis 2019; 130:104485. [PMID: 31150792 DOI: 10.1016/j.nbd.2019.104485] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
The biophysical mechanisms underlying epileptogenesis and the generation of seizures remain to be better understood. Among many factors triggering epileptogenesis are traumatic brain injury breaking normal synaptic homeostasis and genetic mutations disrupting ionic concentration homeostasis. Impairments in these mechanisms, as seen in various brain diseases, may push the brain network to a pathological state characterized by increased susceptibility to unprovoked seizures. Here, we review recent computational studies exploring the roles of ionic concentration dynamics in the generation, maintenance, and termination of seizures. We further discuss how ionic and synaptic homeostatic mechanisms may give rise to conditions which prime brain networks to exhibit recurrent spontaneous seizures and epilepsy.
Collapse
Affiliation(s)
- Oscar C González
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, United States of America; Department of Medicine, University of California, San Diego, CA 92093, United States of America
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, CA 92093, United States of America
| | - Igor Timofeev
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601 de la Canardière, Québec, QC, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Maxim Bazhenov
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, United States of America; Department of Medicine, University of California, San Diego, CA 92093, United States of America.
| |
Collapse
|
7
|
Intraocular Neurografts as a Model for Studying of Organization of Synaptic Connections in a Denervated Brain Area. Bull Exp Biol Med 2019; 166:816-819. [PMID: 31020582 DOI: 10.1007/s10517-019-04447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 10/26/2022]
Abstract
Intraocular neurografts of the septal region of rats were used as the model of deafferentiated brain area where the lack of adequate innervation is compensated for own interneuronal connections. Septum anlage from the brain of a 17-day fetus served as the donor material. The grafts developing in the anterior eye chamber over 3 months represented well-differentiated samples of the nervous tissue. A comparative morphometric study of the tripartite organization of synapses in the grafts and in the septum in situ was conducted. In the grafts, the mean volume and perimeter of synaptic terminals were below the normal. At the same time, postsynaptic densities did not differ from the control. A significant difference was found in the degree of surrounding of presynaptic terminals by astrocytic processes: in the grafts this parameter was higher by 1.8 times. Our results attest to an important role of perisynaptic glia in the formation of functionally active synaptic contacts with unusual neuronal targets.
Collapse
|
8
|
Yao XL, Yao ZH, Li L, Nie L, Zhang SF. Oxiracetam can improve cognitive impairment after chronic cerebral hypoperfusion in rats. Psychiatry Res 2016; 246:284-292. [PMID: 27741481 DOI: 10.1016/j.psychres.2016.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/10/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) induces cognitive deficits. Although CCH can be improved, cognitive impairment is not improved accordingly. To date, many studies have focused on investigating the pathophysiological mechanisms of CCH; however, the treatment of the induced cognitive impairment remains ineffective. Thus, the mechanisms underlying cognitive impairment after CCH and potential agents for treating this impairment need to be explored further. Oxiracetam is a nootropic drug that improves clinical outcomes for some central nervous system (CNS) disorders. Whether it can improve cognitive impairment after CCH is unknown. In this study, we used behavioural methods, electrophysiology, biochemistry, histopathological staining and transmission electron microscope to investigate rat's cognitive impairment by CCH, and found that Oxiracetam could improve CCH-induced cognitive impairment and prevent deficits of neural plasticity, white matter lesions, and synaptic ultrastructure. These results suggest that Oxiracetam may be effective as a potential agent against CCH-induced cognitive impairment.
Collapse
Affiliation(s)
- Xiao-Li Yao
- Department of Neurology, Central hospital of Zhengzhou, #195 Tongbo Road, Zhengzhou, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China
| | - Zhao-Hui Yao
- Department of Geriatrics, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China.
| | - Li Li
- Department of Geriatrics, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China
| | - Li Nie
- Department of Geriatrics, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China
| | - Shao-Feng Zhang
- Department of Geriatrics, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China
| |
Collapse
|
9
|
MicroRNA-132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture Model of Acquired Epilepsy and Associated with Epileptogenesis Process. Neural Plast 2016; 2016:5108489. [PMID: 27579184 PMCID: PMC4992765 DOI: 10.1155/2016/5108489] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/11/2016] [Accepted: 05/26/2016] [Indexed: 12/03/2022] Open
Abstract
Increasing evidence suggests that epilepsy is the result of synaptic reorganization and pathological excitatory loop formation in the central nervous system; however, the mechanisms that regulate this process are not well understood. We proposed that microRNA-132 (miR-132) and p250GAP might play important roles in this process by activating the downstream Rho GTPase family. We tested this hypothesis using a magnesium-free medium-induced epileptic model of cultured hippocampal neurons. We investigated whether miR-132 regulates GTPase activity through p250GAP and found that Cdc42 was significantly activated in our experimental model. Silencing miR-132 inhibited the electrical excitability level of cultured epileptic neurons, whereas silencing p250GAP had an opposite effect. In addition, we verified the effect of miR-132 in vivo and found that silencing miR-132 inhibited the aberrant formation of dendritic spines and chronic spontaneous seizure in a lithium-pilocarpine-induced epileptic mouse model. Finally, we confirmed that silencing miR-132 has a neuroprotective effect on cultured epileptic neurons; however, this effect did not occur through the p250GAP pathway. Generally, silencing miR-132 may suppress spontaneous seizure activity through the miR-132/p250GAP/Cdc42 pathway by regulating the morphology and electrophysiology of dendritic spines; therefore, miR-132 may serve as a potential target for the development of antiepileptic drugs.
Collapse
|
10
|
LSPS/Optogenetics to Improve Synaptic Connectivity Mapping: Unmasking the Role of Basket Cell-Mediated Feedforward Inhibition. eNeuro 2016; 3:eN-MNT-0142-15. [PMID: 27517089 PMCID: PMC4976301 DOI: 10.1523/eneuro.0142-15.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 12/20/2022] Open
Abstract
Neocortical pyramidal cells (PYRs) receive synaptic inputs from many types of GABAergic interneurons. Connections between parvalbumin (PV)-positive, fast-spiking interneurons (“PV cells”) and PYRs are characterized by perisomatic synapses and high-amplitude, short-latency IPSCs. Here, we present novel methods to study the functional influence of PV cells on layer 5 PYRs using optogenetics combined with laser-scanning photostimulation (LSPS). First, we examined the strength and spatial distribution of PV-to-PYR inputs. To that end, the fast channelrhodopsin variant AAV5-EF1α-DIO-hChR2(E123T)-eYFP (ChETA) was expressed in PV cells in somatosensory cortex of mice using an adeno-associated virus-based viral construct. Focal blue illumination (100–150 µm half-width) was directed through the microscope objective to excite PV cells along a spatial grid covering layers 2–6, while IPSCs were recorded in layer 5 PYRs. The resulting optogenetic input maps showed evoked PV cell inputs originating from an ∼500-μm-diameter area surrounding the recorded PYR. Evoked IPSCs had the short-latency/high-amplitude characteristic of PV cell inputs. Second, we investigated how PV cell activity modulates PYR output in response to synaptic excitation. We expressed halorhodopsin (eNpHR3.0) in PV cells using the same strategy as for ChETA. Yellow illumination hyperpolarized eNpHR3.0-expressing PV cells, effectively preventing action potential generation and thus decreasing the inhibition of downstream targets. Synaptic input maps onto layer 5 PYRs were acquired using standard glutamate-photolysis LSPS either with or without full-field yellow illumination to silence PV cells. The resulting IPSC input maps selectively lacked short-latency perisomatic inputs, while EPSC input maps showed increased connectivity, particularly from upper layers. This indicates that glutamate uncaging LSPS-based excitatory synaptic maps will consistently underestimate connectivity.
Collapse
|
11
|
Chauvette S, Soltani S, Seigneur J, Timofeev I. In vivo models of cortical acquired epilepsy. J Neurosci Methods 2016; 260:185-201. [PMID: 26343530 PMCID: PMC4744568 DOI: 10.1016/j.jneumeth.2015.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 10/23/2022]
Abstract
The neocortex is the site of origin of several forms of acquired epilepsy. Here we provide a brief review of experimental models that were recently developed to study neocortical epileptogenesis as well as some major results obtained with these methods. Most of neocortical seizures appear to be nocturnal and it is known that neuronal activities reveal high levels of synchrony during slow-wave sleep. Therefore, we start the review with a description of mechanisms of neuronal synchronization and major forms of synchronized normal and pathological activities. Then, we describe three experimental models of seizures and epileptogenesis: ketamine-xylazine anesthesia as feline seizure triggered factor, cortical undercut as cortical penetrating wound model and neocortical kindling. Besides specific technical details describing these models we also provide major features of pathological brain activities recorded during epileptogenesis and seizures. The most common feature of all models of neocortical epileptogenesis is the increased duration of network silent states that up-regulates neuronal excitability and eventually leads to epilepsy.
Collapse
Affiliation(s)
- Sylvain Chauvette
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3
| | - Sara Soltani
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada
| | - Josée Seigneur
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3
| | - Igor Timofeev
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), Local F-6500, 2601 de la Canardière, Québec, QC, Canada G1J2G3; Department of Psychiatry and Neuroscience, Université Laval, Québec, Canada.
| |
Collapse
|
12
|
Abstract
Homeostatic synaptic plasticity (HSP) has been implicated in the development of hyperexcitability and epileptic seizures following traumatic brain injury (TBI). Our in vivo experimental studies in cats revealed that the severity of TBI-mediated epileptogenesis depends on the age of the animal. To characterize mechanisms of these differences, we studied the properties of the TBI-induced epileptogenesis in a biophysically realistic cortical network model with dynamic ion concentrations. After deafferentation, which was induced by dissection of the afferent inputs, there was a reduction of the network activity and upregulation of excitatory connections leading to spontaneous spike-and-wave type seizures. When axonal sprouting was implemented, the seizure threshold increased in the model of young but not the older animals, which had slower or unidirectional homeostatic processes. Our study suggests that age-related changes in the HSP mechanisms are sufficient to explain the difference in the likelihood of seizure onset in young versus older animals. Significance statement: Traumatic brain injury (TBI) is one of the leading causes of intractable epilepsy. Likelihood of developing epilepsy and seizures following severe brain trauma has been shown to increase with age. Specific mechanisms of TBI-related epileptogenesis and how these mechanisms are affected by age remain to be understood. We test a hypothesis that the failure of homeostatic synaptic regulation, a slow negative feedback mechanism that maintains neural activity within a physiological range through activity-dependent modulation of synaptic strength, in older animals may augment TBI-induced epileptogenesis. Our results provide new insight into understanding this debilitating disorder and may lead to novel avenues for the development of effective treatments of TBI-induced epilepsy.
Collapse
|
13
|
Xi Z, Deng W, Wang L, Xiao F, Li J, Wang Z, Wang X, Mi X, Wang N, Wang X. Association of Alpha-Soluble NSF Attachment Protein with Epileptic Seizure. J Mol Neurosci 2015; 57:417-25. [DOI: 10.1007/s12031-015-0596-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/02/2015] [Indexed: 01/02/2023]
|