1
|
A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22020582. [PMID: 33430140 PMCID: PMC7826574 DOI: 10.3390/ijms22020582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington’s disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington’s disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington’s disease from this knowledge base.
Collapse
|
2
|
Sarchielli E, Guarnieri G, Idrizaj E, Squecco R, Mello T, Comeglio P, Gallina P, Maggi M, Vannelli GB, Morelli A. The G protein-coupled oestrogen receptor, GPER1, mediates direct anti-inflammatory effects of oestrogens in human cholinergic neurones from the nucleus basalis of Meynert. J Neuroendocrinol 2020; 32:e12837. [PMID: 32077170 DOI: 10.1111/jne.12837] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/18/2019] [Accepted: 01/26/2020] [Indexed: 12/28/2022]
Abstract
It has been well established, particularly in animal models, that oestrogens exert neuroprotective effects in brain areas linked to cognitive processes. A key protective role could reside in the capacity of oestrogen to modulate the inflammatory response. However, the direct neuroprotective actions of oestrogens on neurones are complex and remain to be fully clarified. In the present study, we took advantage of a previously characterised primary culture of human cholinergic neurones (hfNBM) from the foetal nucleus basalis of Meynert, which is known to regulate hippocampal and neocortical learning and memory circuits, aiming to investigate the direct effects of oestrogens under inflammatory conditions. Exposure of cells to tumour necrosis factor (TNF)α (10 ng mL-1 ) determined the activation of an inflammatory response, as demonstrated by nuclear factor-kappa B p65 nuclear translocation and cyclooxygenase-2 mRNA expression. These effects were inhibited by treatment with either 17β-oestradiol (E2 ) (10 nmol L-1 ) or G1 (100 nmol L-1 ), the selective agonist of the G protein-coupled oestrogen receptor (GPER1). Interestingly, the GPER1 antagonist G15 abolished the effects of E2 in TNFα-treated cells, whereas the ERα/ERβ inhibitor tamoxifen did not. Electrophysiological measurements in hfNBMs revealed a depolarising effect caused by E2 that was specifically blocked by tamoxifen and not by G15. Conversely, G1 specifically hyperpolarised the cell membrane and also increased both inward and outward currents elicited by a depolarising stimulus, suggesting a modulatory action on hfNBM excitability by GPER1 activation. Interestingly, pretreating cells with TNFα completely blocked the effects of G1 on membrane properties and also significantly reduced GPER1 mRNA expression. In addition, we found a peculiar subcellular localisation of GPER1 to focal adhesion sites that implicates new possible mechanisms of action of GPER1 in the neuronal perception of mechanical stimuli. The results obtained in the present study indicate a modulatory functional role of GPER1 with respect to mediating the oestrogen neuroprotective effect against inflammation in brain cholinergic neurones and, accordingly, may help to identify protective strategies for preventing cognitive impairments.
Collapse
Affiliation(s)
- Erica Sarchielli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Guarnieri
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Tommaso Mello
- Clinical Gastroenterology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pasquale Gallina
- Division of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Neurosurgery School of Tuscany, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gabriella B Vannelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Derivation of Neural Stem Cells from the Developing and Adult Human Brain. Results Probl Cell Differ 2019. [PMID: 30209653 DOI: 10.1007/978-3-319-93485-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Neural stem cells isolated from the developing and adult brain are an ideal source of cells for use in clinical applications such as cell replacement therapy. The clear advantage of these cells over the more commonly utilised embryonic and pluripotent stem cells is that they are already neurally committed. Of particular importance is the fact that these cells don't require the same level of in vitro culture that can be cost and labour intensive. Foetal neural stem cells can be readily derived from the foetal brain and expand in culture over time. Similarly, adult stem cells have been explored for their potential in vitro and in vivo animal models. In this chapter we identify the progress made in developing these cells as well as the advantages of taking them forward for clinical use.
Collapse
|
4
|
Hong M, Shi H, Wang N, Tan HY, Wang Q, Feng Y. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol 2019; 10:696. [PMID: 31297056 PMCID: PMC6606950 DOI: 10.3389/fphar.2019.00696] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1)–induced angiogenesis has been involved in numerous pathological conditions, and it may be harmful or beneficial depending on the types of diseases. Exploration on angiogenesis has sparked hopes in providing novel therapeutic approaches on multiple diseases with high mortality rates, such as cancer and ischemic stroke. The HIF-1 pathway is considered to be a major regulator of angiogenesis. HIF-1 seems to be involved in the vascular formation process by synergistic correlations with other proangiogenic factors in cancer and cerebrovascular disease. The regulation of HIF-1–dependent angiogenesis is related to the modulation of HIF-1 bioactivity by regulating HIF-1α transcription or protein translation, HIF-1α DNA binding, HIF-1α and HIF-1α dimerization, and HIF-1 degradation. Traditional Chinese herbal medicines have a long history of clinical use in both cancer and stroke treatments in Asia. Growing evidence has demonstrated potential proangiogenic benefits of Chinese herbal medicines in ischemic stroke, whereas tumor angiogenesis could be inhibited by the active components in Chinese herbal medicines. The objective of this review is to provide comprehensive insight on the effects of Chinese herbal medicines on angiogenesis by regulating HIF-1 pathways in both cancer and ischemic stroke.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, United States
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
5
|
Marini M, Manetti M, Sgambati E. Immunolocalization of VEGF/VEGFR system in human fetal vomeronasal organ during early development. Acta Histochem 2019; 121:94-100. [PMID: 30442382 DOI: 10.1016/j.acthis.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 02/01/2023]
Abstract
The vomeronasal system (VNS) is an accessory olfactory structure present in most mammals adhibited to the detection of specific chemosignals implied in social and reproductive behavior. The VNS comprises the vomeronasal organ (VNO), vomeronasal nerve and accessory olfactory bulb. VNO is characterized by a neuroepithelium constituted by bipolar neurons and supporting and stem/progenitor cells. In humans, VNO is present during fetal life and is supposed to possess chemoreceptor activity and participate in gonadotropin-releasing hormone neuronal precursor migration toward the hypothalamus. Instead, the existence and functions of VNO in postnatal life is debated. Vascular endothelial growth factor (VEGF) and its receptors (VEGFRs) have been demonstrated to play fundamental roles in various neurogenic events. However, there are no data regarding the localization and possible function of VEGF/VEGFRs in human fetal VNO. Therefore, this study was conceived to investigate the expression of VEGF/VEGFRs in human VNO in an early developmental period (9-12 weeks of gestation), when this organ appears well structured. Coronal sections of maxillofacial specimens were subjected to peroxidase-based immunohistochemistry for VEGF, VEGFR-1 and VEGFR-2. Double immunofluorescence for VEGF, VEGFR-1 or VEGFR-2 and the neuronal marker protein gene product 9.5 (PGP 9.5) was also performed. VEGF expression was evident in the entire VNO epithelium, with particularly strong reactivity in the middle layer. Strongly VEGF-immunostained cells with aspect similar to bipolar neurons and/or their presumable precursors were detected in the middle and basal layers. Cells detaching from the basal epithelial layer and detached cell groups in the surrounding lamina propria showed moderate/strong VEGF expression. The strongest VEGFR-1 and VEGFR-2 expression was detected in the apical epithelial layer. Cells with aspect similar to bipolar neurons and/or their presumable precursors located in the middle and basal layers and the detaching/detached cells displayed a VEGFR-1 and VEGFR-2 reactivity similar to that of VEGF. The basal epithelial layer exhibited stronger staining for VEGFRs than for VEGF. Cells with morphology and VEGF/VEGFR expression similar to those of the detaching/detached cells were also detected in the middle and basal VNO epithelial layers. Double immunofluorescence using anti-PGP 9.5 antibodies demonstrated that most of the VEGF/VEGFR-immunoreactive cells were neuronal cells. Collectively, our findings suggest that during early fetal development the VEGF/VEGFR system might be involved in the presumptive VNO chemoreceptor activity and neuronal precursor migration.
Collapse
Affiliation(s)
- Mirca Marini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Isernia, Italy.
| |
Collapse
|
6
|
Cortical and spinal conditioned media modify the inward ion currents and excitability and promote differentiation of human striatal primordium. J Chem Neuroanat 2018; 90:87-97. [DOI: 10.1016/j.jchemneu.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/18/2022]
|
7
|
Neuroprotective effects of quercetin 4'-O-β-d-diglucoside on human striatal precursor cells in nutrient deprivation condition. Acta Histochem 2018; 120:122-128. [PMID: 29336843 DOI: 10.1016/j.acthis.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/14/2023]
Abstract
Several investigations have demonstrated neuroprotective effects of quercetin, a polyphenol widely present in nature, against neurotoxic chemicals, as well as in neuronal injury/neurodegenerative disease models. Most of these studies have been performed with quercetin aglycone and its metabolites, while scanty data are available on its glycosides. This study is aimed at investigating the neuroprotective effects of quercetin 3,4'-O-β-d-diglucoside (Q3,4'dG), isolated from the bulbs of the white cultivar (Allium cepa L.), using an in vitro model of human striatal precursor cells (HSPs), a primary culture isolated from the striatal primordium and previously characterized. To study the effect of Q3,4'dG on cell survival, HSPs were exposed to nutrient deprivation created by replacing culture medium with phosphate buffer saline (PBS). Our findings showed that Q3,4'dG treatment significantly promoted cell survival and strongly decreased apoptosis induced by nutrient deprivation, as evaluated by cell proliferation/death analyses. In addition, since the adhesive capacities of cells are essential for cell survival, the expression of some adhesion molecules, such as pancadherin and focal adhesion kinase, was evaluated. Interestingly, PBS exposure significantly decreased the expression of both molecules, while in the presence of Q3,4'dG this effect was prevented. This study provides evidence of a neuroprotective role exerted by Q3,4'dG and suggests its possible implication in sustaining neuronal survival for prevention and treatment of neurodegenerative disorders.
Collapse
|
8
|
Morelli A, Sarchielli E, Guarnieri G, Coppi E, Pantano D, Comeglio P, Nardiello P, Pugliese AM, Ballerini L, Matucci R, Ambrosini S, Castronovo G, Valente R, Mazzanti B, Bucciantini S, Maggi M, Casamenti F, Gallina P, Vannelli GB. Young Human Cholinergic Neurons Respond to Physiological Regulators and Improve Cognitive Symptoms in an Animal Model of Alzheimer's Disease. Front Cell Neurosci 2017; 11:339. [PMID: 29163051 PMCID: PMC5666298 DOI: 10.3389/fncel.2017.00339] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
The degeneration of cholinergic neurons of the nucleus basalis of Meynert (NBM) in the basal forebrain (BF) is associated to the cognitive decline of Alzheimer's disease (AD) patients. To date no resolutive therapies exist. Cell-based replacement therapy is a strategy currently under consideration, although the mechanisms underlying the generation of stem cell-derived NBM cholinergic neurons able of functional integration remain to be clarified. Since fetal brain is an optimal source of neuronal cells committed towards a specific phenotype, this study is aimed at isolating cholinergic neurons from the human fetal NBM (hfNBMs) in order to study their phenotypic, maturational and functional properties. Extensive characterization confirmed the cholinergic identity of hfNBMs, including positivity for specific markers (such as choline acetyltransferase) and acetylcholine (Ach) release. Electrophysiological measurements provided the functional validation of hfNBM cells, which exhibited the activation of peculiar sodium (INa) and potassium (IK) currents, as well as the presence of functional cholinergic receptors. Accordingly, hfNBMs express both nicotinic and muscarinic receptors, which were activated by Ach. The hfNBMs cholinergic phenotype was regulated by the nerve growth factor (NGF), through the activation of the high-affinity NGF receptor TrkA, as well as by 17-β-estradiol through a peculiar recruitment of its own receptors. When intravenously administered in NBM-lesioned rats, hfNBMs determined a significant improvement in memory functions. Histological examination of brain sections showed that hfNBMs (labeled with PKH26 fluorescent dye prior to administration) reached the damaged brain areas. The study provides a useful model to study the ontogenetic mechanisms regulating the development and maintenance of the human brain cholinergic system and to assess new lines of research, including disease modeling, drug discovery and cell-based therapy for AD.
Collapse
Affiliation(s)
- Annamaria Morelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Erica Sarchielli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Guarnieri
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniela Pantano
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Pamela Nardiello
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna M Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lara Ballerini
- Cell Therapy and Transfusion Medicine Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rosanna Matucci
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Stefano Ambrosini
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuseppe Castronovo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Clinical Physiopathology, Florence, Italy
| | - Rosa Valente
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Benedetta Mazzanti
- Cell Therapy and Transfusion Medicine Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Neuroscience, Psychology, Drug Research and Child Health, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Pasquale Gallina
- Neurosurgery School of Tuscany, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Gabriella B Vannelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Squecco R, Idrizaj E, Morelli A, Gallina P, Vannelli GB, Francini F. An electrophysiological study on the effects of BDNF and FGF2 on voltage dependent Ca(2+) currents in developing human striatal primordium. Mol Cell Neurosci 2016; 75:50-62. [PMID: 27370937 DOI: 10.1016/j.mcn.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/24/2016] [Accepted: 06/27/2016] [Indexed: 01/06/2023] Open
Abstract
Over the past decades, studies in both Huntington's disease animal models and pilot clinical trials have demonstrated that replacement of degenerated striatum and repair of circuitries by grafting fetal striatal primordium is feasible, safe and may counteract disease progression. However, a better comprehension of striatal ontogenesis is required to assess the fetal graft regenerative potential. During neuronal development, neurotrophins exert pleiotropic actions in regulating cell fate and synaptic plasticity. In this regard, brain-derived neurotrophic factor (BDNF) and fibroblast growth factor 2 (FGF2) are crucially implicated in the control of fate choice of striatal progenitor cells. In this study, we intended to refine the functional features of human striatal precursor (HSP) cells isolated from ganglionic eminence of 9-12week old human fetuses, by studying with electrophysiological methods the effect of BDNF and FGF2 on the membrane biophysical properties and the voltage-dependent Ca(2+) currents. These features are particularly relevant to evaluate neuronal cell functioning and can be considered reliable markers of the developmental phenotype of human striatal primordium. Our results have demonstrated that BDNF and FGF2 induced membrane hyperpolarization, increased the membrane capacitance and reduced the resting total and specific conductance values, suggesting a more efficient control of resting ionic fluxes. Moreover, the treatment with both neurotrophins enhanced N-type Ca(2+) current amplitude and reduced L- and T-type ones. Overall, our data indicate that BDNF and FGF2 may help HSP cells to attain a more functionally mature phenotype.
Collapse
Affiliation(s)
- Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, viale Morgagni 63, 50134 Florence, Italy.
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, viale Morgagni 63, 50134 Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Pasquale Gallina
- Department of Surgery and Translational Medicine, University of Florence, Largo Palagi 1, 50139 Florence, Italy
| | - Gabriella B Vannelli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Fabio Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, viale Morgagni 63, 50134 Florence, Italy
| |
Collapse
|
10
|
Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening. Int J Mol Sci 2016; 17:389. [PMID: 26999111 PMCID: PMC4813245 DOI: 10.3390/ijms17030389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022] Open
Abstract
Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA.
Collapse
|
11
|
Intermittent Compressive Stress Enhanced Insulin-Like Growth Factor-1 Expression in Human Periodontal Ligament Cells. Int J Cell Biol 2015; 2015:369874. [PMID: 26106417 PMCID: PMC4464684 DOI: 10.1155/2015/369874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 02/06/2023] Open
Abstract
Mechanical force was shown to promote IGF-1 expression in periodontal ligament both in vitro and in vivo. Though the mechanism of this effect has not yet been proved, here we investigated the molecular mechanism of intermittent mechanical stress on IGF-1 expression. In addition, the role of hypoxia on the intermittent compressive stress on IGF-1 expression was also examined. In this study, human periodontal ligament cells (HPDLs) were stimulated with intermittent mechanical stress for 24 hours. IGF-1 expression was examined by real-time polymerase chain reaction. Chemical inhibitors were used to determine molecular mechanisms of these effects. For hypoxic mimic condition, the CoCl2 supplementation was employed. The results showed that intermittent mechanical stress dramatically increased IGF-1 expression at 24 h. The pretreatment with TGF-β receptor I or TGF-β1 antibody could inhibit the intermittent mechanical stress-induced IGF-1 expression. Moreover, the upregulation of TGF-β1 proteins was detected in intermittent mechanical stress treated group. Correspondingly, the IGF-1 expression was upregulated upon being treated with recombinant human TGF-β1. Further, the hypoxic mimic condition attenuated the intermittent mechanical stress and rhTGF-β1-induced IGF-1 expression. In summary, this study suggests intermittent mechanical stress-induced IGF-1 expression in HPDLs through TGF-β1 and this phenomenon could be inhibited in hypoxic mimic condition.
Collapse
|
12
|
Porfirio B, Morelli A, Conti R, Vannelli GB, Gallina P. A commentary on "Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient". Front Cell Neurosci 2015; 9:177. [PMID: 26029049 PMCID: PMC4428124 DOI: 10.3389/fncel.2015.00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/22/2015] [Indexed: 12/04/2022] Open
Affiliation(s)
- Berardino Porfirio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence Florence, Italy
| | - Annamaria Morelli
- Department of Clinical and Experimental Medicine, University of Florence Florence, Italy
| | - Renato Conti
- Department of Surgery and Translational Medicine, University of Florence Florence, Italy
| | - Gabriella B Vannelli
- Department of Clinical and Experimental Medicine, University of Florence Florence, Italy
| | - Pasquale Gallina
- Department of Surgery and Translational Medicine, University of Florence Florence, Italy
| |
Collapse
|