1
|
Lintas C, Cassano I, Azzarà A, Stigliano MG, Gregorj C, Sacco R, Stoccoro A, Coppedè F, Gurrieri F. Maternal Epigenetic Dysregulation as a Possible Risk Factor for Neurodevelopmental Disorders. Genes (Basel) 2023; 14:genes14030585. [PMID: 36980856 PMCID: PMC10048308 DOI: 10.3390/genes14030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Neurodevelopmental Disorders (NDs) are a heterogeneous group of disorders and are considered multifactorial diseases with both genetic and environmental components. Epigenetic dysregulation driven by adverse environmental factors has recently been documented in neurodevelopmental disorders as the possible etiological agent for their onset. However, most studies have focused on the epigenomes of the probands rather than on a possible epigenetic dysregulation arising in their mothers and influencing neurodevelopment during pregnancy. The aim of this research was to analyze the methylation profile of four well-known genes involved in neurodevelopment (BDNF, RELN, MTHFR and HTR1A) in the mothers of forty-five age-matched AS (Asperger Syndrome), ADHD (Attention Deficit Hyperactivity Disorder) and typically developing children. We found a significant increase of methylation at the promoter of the RELN and HTR1A genes in AS mothers compared to ADHD and healthy control mothers. For the MTHFR gene, promoter methylation was significantly higher in AS mothers compared to healthy control mothers only. The observed dysregulation in AS mothers could potentially contribute to the affected condition in their children deserving further investigation.
Collapse
Affiliation(s)
- Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
- Correspondence: ; Tel.: +39-06-225419174
| | - Ilaria Cassano
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Alessia Azzarà
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Maria Grazia Stigliano
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
| | - Chiara Gregorj
- Operative Research Unit of Hematology, Stem Cell Transplantation, Transfusion Medicine and Cellular Therapy, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Roberto Sacco
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Andrea Stoccoro
- Medical Genetics Laboratory, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fabio Coppedè
- Medical Genetics Laboratory, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Fiorella Gurrieri
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
2
|
Pardo M, Gregorio S, Montalban E, Pujadas L, Elias-Tersa A, Masachs N, Vílchez-Acosta A, Parent A, Auladell C, Girault JA, Vila M, Nairn AC, Manso Y, Soriano E. Adult-specific Reelin expression alters striatal neuronal organization: implications for neuropsychiatric disorders. Front Cell Neurosci 2023; 17:1143319. [PMID: 37153634 PMCID: PMC10157100 DOI: 10.3389/fncel.2023.1143319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
In addition to neuronal migration, brain development, and adult plasticity, the extracellular matrix protein Reelin has been extensively implicated in human psychiatric disorders such as schizophrenia, bipolar disorder, and autism spectrum disorder. Moreover, heterozygous reeler mice exhibit features reminiscent of these disorders, while overexpression of Reelin protects against its manifestation. However, how Reelin influences the structure and circuits of the striatal complex, a key region for the above-mentioned disorders, is far from being understood, especially when altered Reelin expression levels are found at adult stages. In the present study, we took advantage of complementary conditional gain- and loss-of-function mouse models to investigate how Reelin levels may modify adult brain striatal structure and neuronal composition. Using immunohistochemical techniques, we determined that Reelin does not seem to influence the striatal patch and matrix organization (studied by μ-opioid receptor immunohistochemistry) nor the density of medium spiny neurons (MSNs, studied with DARPP-32). We show that overexpression of Reelin leads to increased numbers of striatal parvalbumin- and cholinergic-interneurons, and to a slight increase in tyrosine hydroxylase-positive projections. We conclude that increased Reelin levels might modulate the numbers of striatal interneurons and the density of the nigrostriatal dopaminergic projections, suggesting that these changes may be involved in the protection of Reelin against neuropsychiatric disorders.
Collapse
Affiliation(s)
- Mònica Pardo
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Gregorio
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrica Montalban
- Institut du Fer à Moulin UMR-S 1270, INSERM, Sorbonne University, Paris, France
| | - Lluís Pujadas
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Experimental Sciences and Methodology, Faculty of Health Science and Welfare, University of Vic – Central University of Catalonia (UVic-UCC), Vic, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Barcelona, Spain
| | - Alba Elias-Tersa
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Masachs
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Vílchez-Acosta
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Carme Auladell
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miquel Vila
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona (UAB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Yasmina Manso
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Yasmina Manso,
| | - Eduardo Soriano
- Developmental Neurobiology and Regeneration Laboratory, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Eduardo Soriano,
| |
Collapse
|
3
|
Torres DJ, Yorgason JT, Mitchell CC, Hagiwara A, Andres MA, Kurokawa S, Steffensen SC, Bellinger FP. Selenoprotein P Modulates Methamphetamine Enhancement of Vesicular Dopamine Release in Mouse Nucleus Accumbens Via Dopamine D2 Receptors. Front Neurosci 2021; 15:631825. [PMID: 33927588 PMCID: PMC8076559 DOI: 10.3389/fnins.2021.631825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Dopamine (DA) transmission plays a critical role in processing rewarding and pleasurable stimuli. Increased synaptic DA release in the nucleus accumbens (NAc) is a central component of the physiological effects of drugs of abuse. The essential trace element selenium mitigates methamphetamine-induced neurotoxicity. Selenium can also alter DA production and turnover. However, studies have not directly addressed the role of selenium in DA neurotransmission. Selenoprotein P (SELENOP1) requires selenium for synthesis and transports selenium to the brain, in addition to performing other functions. We investigated whether SELENOP1 directly impacts (1) DA signaling and (2) the dopaminergic response to methamphetamine. We used fast-scan cyclic voltammetry to investigate DA transmission and the response to methamphetamine in NAc slices from C57/BL6J SELENOP1 KO mice. Recordings from SELENOP1 KO mouse slices revealed reduced levels of evoked DA release and slower DA uptake rates. Methamphetamine caused a dramatic increase in vesicular DA release in SELENOP1 KO mice not observed in wild-type controls. This elevated response was attenuated by SELENOP1 application through a selenium-independent mechanism involving SELENOP1-apolipoprotein E receptor 2 (ApoER2) interaction to promote dopamine D2 receptor (D2R) function. In wild-type mice, increased vesicular DA release in response to methamphetamine was revealed by blocking D2R activation, indicating that the receptor suppresses the methamphetamine-induced vesicular increase. Our data provide evidence of a direct physiological role for SELENOP1 in the dopaminergic response to methamphetamine and suggest a signaling role for the protein in DA transmission.
Collapse
Affiliation(s)
- Daniel J Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States.,Pacific Biosciences Research Center, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Jordan T Yorgason
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, United States
| | - Catherine C Mitchell
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Ayaka Hagiwara
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | - Marilou A Andres
- Pacific Biosciences Research Center, University of Hawai'i at Mânoa, Honolulu, HI, United States
| | | | - Scott C Steffensen
- Department of Psychology, Brigham Young University, Provo, UT, United States
| | - Frederick P Bellinger
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mânoa, Honolulu, HI, United States
| |
Collapse
|
4
|
Visweswaraiah N, Nathan K. Adolescent Obesity and Eating Disorders: Can Calorie Restriction have a Positive Impact. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666190114153400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The current obesogenic environment with relatively increased affordability
and availability of high calorie food and beverages, has led to an alarming increase in the prevalence
of obesity and related lifestyle disorders in children and adolescents, predisposing them to accelerated
aging. The increased prevalence may be due to the eating behavior of adolescents, their genetic
and molecular etiology and/or due to the impact of psychological stress and their wrong lifestyle
choices. Calorie restriction has been extensively researched for reducing the obesity in adolescents
and adults but is yet to be successfully implemented.
Objective:
The present review paper focuses on the types of calorie restriction diets, the role of its
mimics and the nutrigenomic mechanisms that may be helpful in reducing obesity and related disorders
in the adolescents. The role of behavioral therapeutic techniques and physical activity has also
been highlighted in addition to the calorie restricted diet for bringing about an overall lifestyle modification
in the management of obesity.
Conclusion:
Food preferences are acquired in childhood and sound nutritional practices should be
established in childhood to prevent lifestyle disorders and premature aging. Though CR is a known
and preferred non-pharmacological intervention in the management of obesity, its implemention has
not been explored and evaluated extensively. This is a vital area that needs scientific research as the
goals of obesity managements are no longer just weight loss through dietary restrictions. An interdisciplinary
method to lifestyle modification in the management of adolescent obesity addressing all
physiological and psychosocial aspects is recommended.
Collapse
Affiliation(s)
- Naveen Visweswaraiah
- Foundation for Assessment and Integration of Traditional Health Systems, Bengaluru, Karnataka, 560027, India
| | - Kousalya Nathan
- Department of Lifestyle Management, Apollo Spectra Hospitals, MRC Nagar RA Puram, Chennai, 600028, India
| |
Collapse
|
5
|
The Effect of Chronic Methamphetamine Treatment on Schizophrenia Endophenotypes in Heterozygous Reelin Mice: Implications for Schizophrenia. Biomolecules 2020; 10:biom10060940. [PMID: 32580454 PMCID: PMC7355789 DOI: 10.3390/biom10060940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 01/29/2023] Open
Abstract
Reelin has been implicated in the development of schizophrenia but the mechanisms involved in this interaction remain unclear. Chronic methamphetamine (Meth) use may cause dopaminergic sensitisation and psychosis and has been proposed to affect brain dopamine systems similarly to changes seen in schizophrenia. We compared the long-term effect of chronic Meth treatment between heterozygous reelin mice (HRM) and wildtype controls (WT) with the aim of better understanding the role of reelin in schizophrenia. Meth pretreatment induced sensitisation to the effect of an acute Meth challenge on locomotor activity, but it had no effect on baseline PPI or sociability and social preference. In all behavioural models, HRM did not significantly differ from WT at baseline, except spontaneous exploratory locomotor activity which was higher in HRM than WT, and sociability which was enhanced in HRM. Locomotor hyperactivity sensitisation was not significantly different between HRM and WT. Chronic Meth treatment reduced spontaneous locomotor activity to the level of WT. No deficits in PPI or social behaviour were induced by chronic Meth pretreatment in either strain. In conclusion, these data do not support a role of reelin in schizophrenia, at least not in HRM and in the methamphetamine sensitisation model.
Collapse
|
6
|
Wang L, Zhao D, Wang M, Wang Y, Vreugdenhil M, Lin J, Lu C. Modulation of Hippocampal Gamma Oscillations by Dopamine in Heterozygous Reeler Mice in vitro. Front Cell Neurosci 2020; 13:586. [PMID: 32116553 PMCID: PMC7026475 DOI: 10.3389/fncel.2019.00586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/23/2019] [Indexed: 11/14/2022] Open
Abstract
The reelin haploinsufficient heterozygous reeler mice (HRM), an animal model of schizophrenia, have altered mesolimbic dopaminergic pathways and share similar neurochemical and behavioral properties with patients with schizophrenia. Dysfunctional neural circuitry with impaired gamma (γ) oscillation (30–80 Hz) has been implicated in abnormal cognition in patients with schizophrenia. However, the function of neural circuitry in terms of γ oscillation and its modulation by dopamine (DA) has not been reported in HRM. In this study, first, we recorded γ oscillations in CA3 from wild-type mice (WTM) and HRM hippocampal slices, and we studied the effects of DA on γ oscillations. We found that there was no difference in γ power between WTM and HRM and that DA increased γ power of WTM but not HRM, suggesting that DA modulations of network oscillations in HRM are impaired. Second, we found that N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 itself increased γ power and occluded DA-mediated enhancement of γ power in WTM but partially restored DA modulation of γ oscillations in HRM. Third, inhibition of phosphatidylinositol 3-kinase (PI3K), a downstream molecule of NMDAR, increased γ power and blocked the effects of DA on γ oscillation in WTM and had no significant effect on γ power but largely restored DA modulation of γ oscillations in HRM. Our results reveal that impaired DA function in HRM is associated with dysregulated NMDAR–PI3K signaling, a mechanism that may be relevant in the pathology of schizophrenia.
Collapse
Affiliation(s)
- Lu Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Dandan Zhao
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Mengmeng Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| | - Yuan Wang
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China
| | - Martin Vreugdenhil
- Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Juntang Lin
- School of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Chengbiao Lu
- The International-Joint Lab for Non-Invasive Neural Modulation, Xinxiang Medical University, Xinxiang, China.,Key Laboratory for the Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, China.,Department of Neurobiology and Physiology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Li W, Pozzo-Miller L. Dysfunction of the corticostriatal pathway in autism spectrum disorders. J Neurosci Res 2019; 98:2130-2147. [PMID: 31758607 DOI: 10.1002/jnr.24560] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
The corticostriatal pathway that carries sensory, motor, and limbic information to the striatum plays a critical role in motor control, action selection, and reward. Dysfunction of this pathway is associated with many neurological and psychiatric disorders. Corticostriatal synapses have unique features in their cortical origins and striatal targets. In this review, we first describe axonal growth and synaptogenesis in the corticostriatal pathway during development, and then summarize the current understanding of the molecular bases of synaptic transmission and plasticity at mature corticostriatal synapses. Genes associated with autism spectrum disorder (ASD) have been implicated in axonal growth abnormalities, imbalance of the synaptic excitation/inhibition ratio, and altered long-term synaptic plasticity in the corticostriatal pathway. Here, we review a number of ASD-associated high-confidence genes, including FMR1, KMT2A, GRIN2B, SCN2A, NLGN1, NLGN3, MET, CNTNAP2, FOXP2, TSHZ3, SHANK3, PTEN, CHD8, MECP2, DYRK1A, RELN, FOXP1, SYNGAP1, and NRXN, and discuss their relevance to proper corticostriatal function.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Tsartsalis S, Tournier BB, Habiby S, Ben Hamadi M, Barca C, Ginovart N, Millet P. Dual-radiotracer translational SPECT neuroimaging. Comparison of three methods for the simultaneous brain imaging of D2/3 and 5-HT2A receptors. Neuroimage 2018; 176:528-540. [DOI: 10.1016/j.neuroimage.2018.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/11/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022] Open
|
9
|
Sex differences in animal models of schizophrenia shed light on the underlying pathophysiology. Neurosci Biobehav Rev 2016; 67:41-56. [DOI: 10.1016/j.neubiorev.2015.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
|
10
|
Lintas C, Sacco R, Persico AM. Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. J Neurodev Disord 2016; 8:18. [PMID: 27134686 PMCID: PMC4850686 DOI: 10.1186/s11689-016-9151-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/12/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients. METHODS In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval. RESULTS ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls. CONCLUSIONS The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.
Collapse
Affiliation(s)
- Carla Lintas
- Unit of Child and Adolescent Neuropsychiatry, University Campus Bio-Medico, Rome, Italy ; Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Roberto Sacco
- Unit of Child and Adolescent Neuropsychiatry, University Campus Bio-Medico, Rome, Italy ; Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Antonio M Persico
- Unit of Child and Adolescent Neuropsychiatry, "Gaetano Martino" University Hospital, University of Messina, via Consolare Valeria 1, I-98125 Messina, Italy ; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
11
|
Caruncho HJ, Brymer K, Romay-Tallón R, Mitchell MA, Rivera-Baltanás T, Botterill J, Olivares JM, Kalynchuk LE. Reelin-Related Disturbances in Depression: Implications for Translational Studies. Front Cell Neurosci 2016; 10:48. [PMID: 26941609 PMCID: PMC4766281 DOI: 10.3389/fncel.2016.00048] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023] Open
Abstract
The finding that reelin expression is significantly decreased in mood and psychotic disorders, together with evidence that reelin can regulate key aspects of hippocampal plasticity in the adult brain, brought our research group and others to study the possible role of reelin in the pathogenesis of depression. This review describes recent progress on this topic using an animal model of depression that makes use of repeated corticosterone (CORT) injections. This methodology produces depression-like symptoms in both rats and mice that are reversed by antidepressant treatment. We have reported that CORT causes a decrease in the number of reelin-immunopositive cells in the dentate gyrus subgranular zone (SGZ), where adult hippocampal neurogenesis takes place; that down-regulation of the number of reelin-positive cells closely parallels the development of a depression-like phenotype during repeated CORT treatment; that reelin downregulation alters the co-expression of reelin with neuronal nitric oxide synthase (nNOS); that deficits in reelin might also create imbalances in glutamatergic and GABAergic circuits within the hippocampus and other limbic structures; and that co-treatment with antidepressant drugs prevents both reelin deficits and the development of a depression-like phenotype. We also observed alterations in the pattern of membrane protein clustering in peripheral lymphocytes in animals with low levels of reelin. Importantly, we found parallel changes in membrane protein clustering in depression patients, which differentiated two subpopulations of naïve depression patients that showed a different therapeutic response to antidepressant treatment. Here, we review these findings and develop the hypothesis that restoring reelin-related function could represent a novel approach for antidepressant therapies.
Collapse
Affiliation(s)
- Hector J Caruncho
- Neuroscience Cluster, College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| | - Kyle Brymer
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | | | - Milann A Mitchell
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Tania Rivera-Baltanás
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Justin Botterill
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Jose M Olivares
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Lisa E Kalynchuk
- Department of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|