1
|
Zanelatto FB, Vieira WF, Nishijima CM, Zanotto TM, Magalhães SFD, Sartori CR, Parada CA, Tambeli CH. Effect of propranolol on temporomandibular joint pain in repeatedly stressed rats. Eur J Oral Sci 2024; 132:e12957. [PMID: 37908149 DOI: 10.1111/eos.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
Stress substantially increases the risk of developing painful temporomandibular disorders (TMDs) by influencing the release of endogenous catecholamines. Propranolol, an antagonist of β-adrenergic receptors, has shown potential in alleviating TMD-associated pain, particularly when the level of catecholamines is elevated. The aim of this study was to explore whether intra-articular propranolol administration is effective in diminishing temporomandibular joint (TMJ) pain during repeated stress situations. Additionally, we investigated the effect of repeated stress on the expression of genes encoding β-adrenoceptors in the trigeminal ganglion. In the present study, rats were exposed to a stress protocol induced by sound, then to the administration of formalin in the TMJ (to elicit a nociceptive response), followed immediately afterward by different doses of propranolol, after which the analgesic response to propranolol was evaluated. We also assessed the levels of beta-1 and beta-2 adrenergic receptor mRNAs (Adrb1 and Adrb2, respectively) using reverse transcription-quantitative PCR (RT-qPCR). Our findings revealed that propranolol administration reduces formalin-induced TMJ nociception more effectively in stressed rats than in non-stressed rats. Furthermore, repeated stress decreases the expression of the Adrb2 gene within the trigeminal ganglion. The findings of this study are noteworthy as they suggest that individuals with a chronic stress history might find potential benefits from β-blockers in TMD treatment.
Collapse
Affiliation(s)
- Fernanda Barchesi Zanelatto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | | | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Tamires Marques Zanotto
- Department of Internal Medicine, School of Medical Science, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Silviane Fernandes de Magalhães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - César Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Scarneo S, Zhang X, Wang Y, Camacho-Domenech J, Ricano J, Hughes P, Haystead T, Nackley AG. Transforming Growth Factor-β-Activated Kinase 1 (TAK1) Mediates Chronic Pain and Cytokine Production in Mouse Models of Inflammatory, Neuropathic, and Primary Pain. THE JOURNAL OF PAIN 2023; 24:1633-1644. [PMID: 37121498 PMCID: PMC10524186 DOI: 10.1016/j.jpain.2023.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
The origin of chronic pain is linked to inflammation, characterized by increased levels of proinflammatory cytokines in local tissues and systemic circulation. Transforming growth factor beta-activated kinase 1 (TAK1) is a key regulator of proinflammatory cytokine signaling that has been well characterized in the context of cancer and autoimmune disorders, yet its role in chronic pain is less clear. Here, we evaluated the ability of our TAK1 small-molecule inhibitor, takinib, to attenuate pain and inflammation in preclinical models of inflammatory, neuropathic, and primary pain. Inflammatory, neuropathic, and primary pain was modeled using intraplantar complete Freund's adjuvant (CFA), chronic constriction injury (CCI), and systemic delivery of the catechol-O-methyltransferase (COMT) inhibitor OR486, respectively. Behavioral responses evoked by mechanical and thermal stimuli were evaluated in separate groups of mice receiving takinib or vehicle prior to pain induction (baseline) and over 12 days following CFA injection, 4 weeks following CCI surgery, and 6 hours following OR486 delivery. Hindpaw edema was also measured prior to and 3 days following CFA injection. Upon termination of behavioral experiments, dorsal root ganglia (DRG) were collected to measure cytokines. We also evaluated the ability of takinib to modulate nociceptor activity via in vitro calcium imaging of neurons isolated from the DRG of Gcamp3 mice. In all 3 models, TAK1 inhibition significantly reduced hypersensitivity to mechanical and thermal stimuli and expression of proinflammatory cytokines in DRG. Furthermore, TAK1 inhibition significantly reduced the activity of tumor necrosis factor (TNF)-primed/capsaicin-evoked DRG nociceptive neurons. Overall, our results support the therapeutic potential of TAK1 as a novel drug target for the treatment of chronic pain syndromes with different etiologies. PERSPECTIVE: This article reports the therapeutic potential of TAK1 inhibitors for the treatment of chronic pain. This new treatment has the potential to provide a greater therapeutic offering to physicians and patients suffering from chronic pain as well as reduce the dependency on opioid-based pain treatments.
Collapse
Affiliation(s)
- Scott Scarneo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina; EydisBio Inc., Department of Research and Development Durham, North Carolina.
| | - Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Department of Anesthesiology, Nanjing Medical University Affiliated Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Yaomin Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Jose Camacho-Domenech
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Jennifer Ricano
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina; EydisBio Inc., Department of Research and Development Durham, North Carolina
| | - Tim Haystead
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina; EydisBio Inc., Department of Research and Development Durham, North Carolina
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
3
|
Zanelatto FB, Vieira WF, Nishijima CM, Sartori CR, Parada CA, Tambeli CH. Effect of sound-induced repeated stress on the development of pain and inflammation in the temporomandibular joint of female and male rats. Eur J Oral Sci 2023:e12936. [PMID: 37243959 DOI: 10.1111/eos.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/03/2023] [Indexed: 05/29/2023]
Abstract
Temporomandibular disorder (TMD) is a common painful condition of the temporomandibular joint (TMJ) and associated structures. Stress is a significant risk factor for developing this painful condition that predominantly affects women. This study aimed to test the hypothesis that stress increases the risk of developing TMJ pain by facilitating inflammatory mechanisms in female and male rats. To test this hypothesis, we evaluated TMJ carrageenan-induced expression of pro-inflammatory cytokines and migration of inflammatory cells and TMJ formalin-induced nociception in female and male rats submitted to a repeated stress protocol induced by sound. We found that sound-induced repeated stress facilitates TMJ inflammation and contributes to TMJ nociception development equally in females and males. We conclude that stress is a risk factor for developing painful TMJ conditions in males and females, at least in part, by favoring the inflammatory process similarly in both sexes.
Collapse
Affiliation(s)
- Fernanda Barchesi Zanelatto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Willians Fernando Vieira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - César Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Claudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Vetterlein A, Monzel M, Reuter M. Are catechol-O-methyltransferase gene polymorphisms genetic markers for pain sensitivity after all? - A review and meta-analysis. Neurosci Biobehav Rev 2023; 148:105112. [PMID: 36842714 DOI: 10.1016/j.neubiorev.2023.105112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 02/28/2023]
Abstract
The catechol-O-methyltransferase (COMT) gene has arguably been the designated pain sensitivity gene for nearly two decades. However, the literature provides inconsistent evidence. We performed several meta-analyses including k = 31 samples and n = 4631 participants thereby revealing small effects of rs4680 on pain thresholds in fibromyalgia, headache and across chronic pain conditions. Moreover, rs4680 effects were found across pain patients when affected, but not unaffected, body sites were assessed. No effect was detected for any other SNP investigated. Importantly, our results corroborate earlier findings in that we found a small effect of COMT haplotypes on pain sensitivity. Our review and meta-analysis contribute to the understanding of COMT-dependent effects on pain perception, provide insights into research issues and offer future directions. The results support the theory that rs4680 might only impact behavioural measures of pain when descending pain modulatory pathways are sufficiently challenged. After all, COMT polymorphisms are genetic markers of pain sensitivity, albeit with some limitations which are discussed with respect to their implications for research and clinical significance.
Collapse
Affiliation(s)
| | - Merlin Monzel
- Department of Psychology, University of Bonn, Germany
| | - Martin Reuter
- Department of Psychology, University of Bonn, Germany; Center for Economics and Neuroscience (CENs), Laboratory of Neurogenetics, University of Bonn, Germany
| |
Collapse
|
5
|
Zhou Y, Song Z, Chen S, Yao F, Liu J, Ouyang Z, Liao Z. Mechanism of Catechol-O-methyltransferase Regulating Orofacial Pain Induced by Tooth Movement. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4229491. [PMID: 34725639 PMCID: PMC8557060 DOI: 10.1155/2021/4229491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To explore the mechanism of catechol-O-methyltransferase (COMT) in tooth movement pain. METHODS The experimental groups were randomly allocated into the healthy control, sham operation, model, model+shCOMT experimental, model+shCOMT control, and model+COMT antagonist groups. A tooth movement pain model was established. The pain stimulation and behavior test were performed. The duration of grooming behavior was determined. The appropriate experimental force and duration for application were selected. COMT shRNA vector was constructed and packaged as adenovirus. The shCOMT adenovirus was injected into the left infraorbital foramen. Seven days later, the trigeminal ganglia of all treatment groups were obtained. The COMT and IL-17 expressions were detected by western blot. The appropriate COMT antagonist concentration was selected. The pathological results of each group were detected by HE staining. The tooth movement distance was determined. The COMT gene expression was detected by FISH. The COMT and IL-17 expressions in the right trigeminal ganglion tissue of each group were detected by western blot. RESULTS The 60 g force and 14-day duration required the lowest stimulus intensity, the duration of grooming behavior was the longest, and the effect on COMT and IL-17 was the most significant. In the model group, formation of digestive cavity was seen in the trigeminal ganglion tissue, with infiltration of inflammatory cells, upregulation of the COMT and IL-17 expressions, and significant increase in the tooth movement distance. Compared with the model group, the shCOMT experimental group and the COMT antagonist group significantly improved the trigeminal ganglion tissue injury, significantly decreased the tooth movement distance, and significantly inhibited the COMT and IL-17 expressions. CONCLUSION The efficiency of tooth movement can be influenced by interfering the COMT-related gene expression. This proves that the COMT system can regulate the orthodontic tooth movement pain.
Collapse
Affiliation(s)
- Yonglong Zhou
- Department of Orthodontics, School of Stomatology, The Key Laboratory of Oral Biomedicine, Affliated Stomatological Hospital of Nanchang University, No. 49 Fuzhou Road, Nanchang, 330006 Jiangxi Province, China
| | - Zhiping Song
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006 Jiangxi Province, China
| | - Shibiao Chen
- Department of Anesthesia, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006 Jiangxi Province, China
| | - Fen Yao
- Department of Orthodontics, School of Stomatology, The Key Laboratory of Oral Biomedicine, Affliated Stomatological Hospital of Nanchang University, No. 49 Fuzhou Road, Nanchang, 330006 Jiangxi Province, China
| | - Jian Liu
- Department of Orthodontics, School of Stomatology, The Key Laboratory of Oral Biomedicine, Affliated Stomatological Hospital of Nanchang University, No. 49 Fuzhou Road, Nanchang, 330006 Jiangxi Province, China
| | - Zhiqiang Ouyang
- Department of Orthodontics, School of Stomatology, The Key Laboratory of Oral Biomedicine, Affliated Stomatological Hospital of Nanchang University, No. 49 Fuzhou Road, Nanchang, 330006 Jiangxi Province, China
| | - Zhengyu Liao
- Department of Orthodontics, School of Stomatology, The Key Laboratory of Oral Biomedicine, Affliated Stomatological Hospital of Nanchang University, No. 49 Fuzhou Road, Nanchang, 330006 Jiangxi Province, China
| |
Collapse
|
6
|
Zabihian MA, Hosseini M, Bahrami F, Iman M, Ghasemi M, Mohammadi MT, Bahari Z. Intracerebroventricular injection of propranolol blocked analgesic and neuroprotective effects of resveratrol following L 5 spinal nerve ligation in rat. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 18:701-710. [PMID: 33962501 DOI: 10.1515/jcim-2020-0393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/02/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Resveratrol as a natural polyphenolic agent can alleviate neuropathic pain symptoms. The mechanism of analgesic activity of resveratrol is far from clear. The current study examine whether analgesic activity of resveratrol is mediated by its neuroprotective and anti-oxidant activity in the neuropathic pain. We further examine whether analgesic activity of resveratrol is mediated by β-adrenoceptors in the brain. METHODS Neuropathic pain induced by L5 spinal nerve ligation (SNL). Male Wistar rats assigned into sham, SNL, SNL + resveratrol (40 μg/5 μL), and SNL + resveratrol + propranolol (a non-selective β-adrenoceptor antagonist, 30 μg/5 μL) groups. Drugs injected intracerebroventricular (ICV) at day SNL surgery and daily for 6 days following SNL. Thermal allodynia and anxiety examined on days of -1, 2, 4, and 6 following SNL. Electrophysiological study performed on day 6 following SNL for evaluation of resveratrol effects on sciatic nerve conduction velocity (NCV). The activity of catalase (Cat) and superoxide dismutase (SOD) enzymes in the brain assessed on days 6 following SNL. RESULTS Resveratrol significantly decreased thermal allodynia (and not anxiety) in all experimental days. Additionally, resveratrol significantly increased NCV, and also normalized the disrupted Cat and SOD activities following neuropathic pain. Furthermore, propranolol significantly blocked the analgesic and neuroprotective effects of resveratrol. CONCLUSIONS It is suggested that the analgesic effects of resveratrol is mediated by its neuroprotective and antioxidant activities in the neuropathic rats. Furthermore, propranolol blocked the analgesic and neuroprotective effects of resveratrol.
Collapse
Affiliation(s)
- Mohammad Ali Zabihian
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Hosseini
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farideh Bahrami
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Iman
- Department of Pharmaceutics, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Taghi Mohammadi
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Lei J, Yap AU, Zhang M, Fu KY. Temporomandibular disorder subtypes, emotional distress, impaired sleep, and oral health-related quality of life in Asian patients. Community Dent Oral Epidemiol 2021; 49:543-549. [PMID: 33829540 DOI: 10.1111/cdoe.12643] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study determined the differences in emotional states, sleep and oral health-related quality of life (OHRQoL) between patients with pain-related and intra-articular Temporomandibular disorders (TMDs), and associated emotional symptoms with sleep and OHRQoL. METHODS Participants were recruited from a tertiary TMDs referral centre. The Depression, Anxiety, Stress Scales-21 (DASS-21), Pittsburgh Sleep Quality Index (PSQI) and Oral Health Impact Profile-TMDs (OHIP-TMDs) were used to assess emotional states, sleep and Oral health-related quality of life (OHRQoL), respectively. TMD-related and sociodemographic data were also gathered. Patients were divided into pain-related (PT), intra-articular (IT) and combined TMDs (CT) groups based on the Diagnostic Criteria for TMDs. Data were analysed using one-way ANOVA, Chi-square test, Pearson's correlation and logistic regression analysis with the significance level set at P < .05. RESULTS Data from 1079 participants with a mean age of 29.6 ± 14.2 years were appraised (93.3% response rate). The severity/prevalence of emotional distress, impaired sleep and OHRQoL of the PT/CT groups were higher than the IT group. Moderate-to-strong inter-relationships between emotional, sleep and OHRQoL variables were more explicit for participants with painful TMDs. Logistic regression analysis demonstrated that painful TMDs were associated with higher stress and poorer OHRQoL with odds ratios (ORs) of 1.482 (95% CI 1.039-2.114) and 6.502 (95% CI 3.201-13.210), respectively. CONCLUSIONS Painful TMDs are associated with higher levels of emotional distress, sleep and OHRQoL impairments. Routine evaluation of the biopsychosocial distress, especially stress and life quality, is necessary for patients with painful TMDs.
Collapse
Affiliation(s)
- Jie Lei
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Adrian Ujin Yap
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,Department of Dentistry, Faculty of Dentistry, Ng Teng Fong General Hospital, National University Health System, Singapore, Singapore.,National Dental Research Institute Singapore, National Dental Centre Singapore and Duke-NUS Medical School, Singapore Health Services, Singapore, Singapore
| | - Minjuan Zhang
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Kai-Yuan Fu
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
8
|
Low catechol-O-methyltransferase and stress potentiate functional pain and depressive behavior, especially in female mice. Pain 2021; 161:446-458. [PMID: 31972854 DOI: 10.1097/j.pain.0000000000001734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Low levels of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines, and stress, which potentiates catecholamine release from sympathetic nerves, are fundamental to chronic functional pain syndromes and comorbid depression, which predominantly affect females. Here, we sought to examine the independent and joint contributions of low COMT and stress to chronic functional pain and depression at the behavioral and molecular level. Male and female C57BL/6 mice received sustained systemic delivery of the COMT inhibitor OR486 over 14 days and underwent a swim stress paradigm on days 8 to 10. Pain and depressive-like behavior were measured over 14 days, and brain-derived neurotrophic factor (BDNF; a factor involved in nociception and depression) and glucocorticoid receptor (GR; a stress-related receptor) expression were measured on day 14. We found that stress potentiates the effect of low COMT on functional pain and low COMT potentiates the effect of stress on depressive-like behavior. The joint effects of low COMT and stress on functional pain and depressive-like behavior were significantly greater in females vs males. Consistent with behavioral data, we found that stress potentiates COMT-dependent increases in spinal BDNF and low COMT potentiates stress-dependent decreases in hippocampal BDNF in females, but not males. Although low COMT increases spinal GR and stress increases hippocampal GR expression, these increases are not potentiated in the OR486 + stress group and are not sex-specific. These results suggest that genetic and environmental factors that enhance catecholamine bioavailability cause abnormalities in BDNF signaling and increase risk of comorbid functional pain and depression, especially among females.
Collapse
|
9
|
Oyewole AL, Akinola O, Owoyele BV. Plasmodium berghei-induced malaria decreases pain sensitivity in mice. ACTA ACUST UNITED AC 2021; 88:e1-e18. [PMID: 33567845 PMCID: PMC7876989 DOI: 10.4102/ojvr.v88i1.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
Various types of pain were reported by people with Plasmodium falciparum and were mostly attributed to a symptom of malarial infection. Neural processes of pain sensation during malarial infection and their contributions to malaria-related death are poorly understood. Thus, these form the focus of this study. Swiss mice used for this study were randomly divided into two groups. Animals in the first group (Pb-infected group) were inoculated with Plasmodium berghei to induce malaria whilst the other group (intact group) was not infected. Formalin test was used to assess pain sensitivity in both groups and using various antagonists, the possible mechanism for deviation in pain sensitivity was probed. Also, plasma and brain samples collected from animals in both groups were subjected to biochemical and/or histological studies. The results showed that Pb-infected mice exhibited diminished pain-related behaviours to noxious chemical. The observed parasite-induced analgesia appeared to be synergistically mediated via µ-opioid, α2 and 5HT2A receptors. When varied drugs capable of decreasing pain threshold (pro-nociceptive drugs) were used, the survival rate was not significantly different in the Pb-infected mice. This showed little or no contribution of the pain processing system to malaria-related death. Also, using an anti-CD68 antibody, there was no immunopositive cell in the brain to attribute the observed effects to cerebral malaria. Although in the haematoxylin and eosin-stained tissues, there were mild morphological changes in the motor and anterior cingulate cortices. In conclusion, the pain symptom was remarkably decreased in the animal model for malaria, and thus, the model may not be appropriate for investigating malaria-linked pain as reported in humans. This is the first report showing that at a critical point, the malaria parasite caused pain-relieving effects in Swiss mice.
Collapse
Affiliation(s)
- Aboyeji L Oyewole
- Department of Physiology, Neuroscience and Inflammation Unit, College of Health Sciences, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria; and, Bioresearch Hub Laboratory, Ilorin.
| | | | | |
Collapse
|
10
|
Windsor RB, Sierra M, Zappitelli M, McDaniel M. Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders. CHILDREN-BASEL 2020; 7:children7120268. [PMID: 33276542 PMCID: PMC7761583 DOI: 10.3390/children7120268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Children and adolescents with recurrent or chronic pain and headache are a complex and heterogenous population. Patients are best served by multi-specialty, multidisciplinary teams to assess and create tailored, individualized pain treatment and rehabilitation plans. Due to the complex nature of pain, generalizing pharmacologic treatment recommendations in children with recurrent or chronic pains is challenging. This is particularly true of complicated patients with co-existing painful and psychiatric conditions. There is an unfortunate dearth of evidence to support many pharmacologic therapies to treat children with chronic pain and headache. This narrative review hopes to supplement the available treatment options for this complex population by reviewing the pediatric and adult literature for analgesic properties of medications that also have psychiatric indication. The medications reviewed belong to medication classes typically described as antidepressants, alpha 2 delta ligands, mood stabilizers, anti-psychotics, anti-sympathetic agents, and stimulants.
Collapse
Affiliation(s)
- Robert Blake Windsor
- Division of Pediatric Pain Medicine, Department of Pediatrics, Prisma Health, Greenville, SC 29607, USA;
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29607, USA; (M.S.); (M.Z.)
- Correspondence:
| | - Michael Sierra
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29607, USA; (M.S.); (M.Z.)
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Prisma Health, Greenville, SC 29607, USA
| | - Megan Zappitelli
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29607, USA; (M.S.); (M.Z.)
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Prisma Health, Greenville, SC 29607, USA
| | - Maria McDaniel
- Division of Pediatric Pain Medicine, Department of Pediatrics, Prisma Health, Greenville, SC 29607, USA;
- School of Medicine Greenville, University of South Carolina, Greenville, SC 29607, USA; (M.S.); (M.Z.)
| |
Collapse
|
11
|
Oyewole AL, Akinola O, Owoyele BV. Plasmodium berghei-induced malaria decreases pain sensitivity in mice. Onderstepoort J Vet Res 2020. [DOI: 10.4102/ojvr.v87i1.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
12
|
McIlwrath SL, Montera MA, Gott KM, Yang Y, Wilson CM, Selwyn R, Westlund KN. Manganese-enhanced MRI reveals changes within brain anxiety and aversion circuitry in rats with chronic neuropathic pain- and anxiety-like behaviors. Neuroimage 2020; 223:117343. [PMID: 32898676 PMCID: PMC8858643 DOI: 10.1016/j.neuroimage.2020.117343] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 01/31/2023] Open
Abstract
Chronic pain often predicts the onset of psychological distress. Symptoms including anxiety and depression after pain chronification reportedly are caused by brain remodeling/recruitment of the limbic and reward/aversion circuitries. Pain is the primary precipitating factor that has caused opioid overprescribing and continued overuse of opioids leading to the current opioid epidemic. Yet experimental pain therapies often fail in clinical trials. Better understanding of underlying pathologies contributing to pain chronification is needed to address these chronic pain related issues. In the present study, a chronic neuropathic pain model persisting 10 weeks was studied. The model develops both anxiety- and pain-related behavioral measures to mimic clinical pain. The manganese-enhanced magnetic resonance imaging (MEMRI) utilized improved MRI signal contrast in brain regions with higher neuronal activity in the rodent chronic constriction trigeminal nerve injury (CCI-ION) model. T1-weighted MEMRI signal intensity was increased compared to controls in supraspinal regions of the anxiety and aversion circuitry, including anterior cingulate gyrus (ACC), amygdala, habenula, caudate, ventrolateral and dorsomedial periaqueductal gray (PAG). Despite continuing mechanical hypersensitivity, MEMRI T1 signal intensity as the neuronal activity measure, was not significantly different in thalamus and decreased in somatosensory cortex (S1BF) of CCI-ION rats compared to naïve controls. This is consistent with decreased fMRI BOLD signal intensity in thalamus and cortex of patients with longstanding trigeminal neuropathic pain reportedly associated with gray matter volume decrease in these regions. Significant increase in MEMRI T2 signal intensity in thalamus of CCI-ION animals was indication of tissue water content, cell dysfunction and/or reactive astrogliosis. Decreased T2 signal intensity in S1BF cortex of rats with CCI-ION was similar to findings of reduced T2 signals in clinical patients with chronic orofacial pain indicating prolonged astrocyte activation. These findings support use of MEMRI and chronic rodent models for preclinical studies and therapeutic trials to reveal brain sites activated only after neuropathic pain has persisted in timeframes relevant to clinical pain and to observe treatment effects not possible in short-term models which do not have evidence of anxiety-like behaviors. Potential improvement is predicted in the success rate of preclinical drug trials in future studies with this model.
Collapse
Affiliation(s)
| | - Marena A Montera
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Katherine M Gott
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Yirong Yang
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Colin M Wilson
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Reed Selwyn
- University of New Mexico Health Sciences Center, Albuquerque, NM USA
| | - Karin N Westlund
- Research Services New Mexico VA HealthCare System Albuquerque NM 87108 USA; University of New Mexico Health Sciences Center, Albuquerque, NM USA
| |
Collapse
|
13
|
Kim S, Zhang X, O'Buckley SC, Cooter M, Park JJ, Nackley AG. Acupuncture Resolves Persistent Pain and Neuroinflammation in a Mouse Model of Chronic Overlapping Pain Conditions. THE JOURNAL OF PAIN 2018; 19:1384.e1-1384.e14. [PMID: 29981376 PMCID: PMC6289709 DOI: 10.1016/j.jpain.2018.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
Patients with chronic overlapping pain conditions have decreased levels of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. Consistent with clinical syndromes, we previously demonstrated that COMT inhibition in rodents produces persistent pain and heightened immune responses. Here, we sought to determine the efficacy of manual acupuncture in resolving persistent pain and neuroinflammation in the classic inbred C57BL/6 strain and the rapid-wound healing MRL/MpJ strain. Mice received subcutaneous osmotic minipumps to deliver the COMT inhibitor OR486 or vehicle for 13 days. On day 7 after pump implantation, acupuncture was performed at the Zusanli (ST36) point or a non-acupoint for 6 consecutive days. Behavioral responses to mechanical stimuli were measured throughout the experiment. Immunohistochemical analysis of spinal phosphorylated p38 mitogen-activated protein kinase, a marker of inflammation, and glial fibrillary acidic protein, a marker of astrogliosis, was performed on day 13. Results demonstrated that ST36, but not sham, acupuncture resolved mechanical hypersensitivity and reduced OR486-dependent increases in phosphorylated p38 and glial fibrillary acidic protein in both strains. The magnitude of the analgesic response was greater in MRL/MpJ mice. These findings indicate acupuncture as an effective treatment for persistent pain linked to abnormalities in catecholamine signaling and, furthermore, that analgesic efficacy may be influenced by genetic differences. PERSPECTIVE: Chronic overlapping pain conditions remain ineffectively managed by conventional pharmacotherapies. Here, we demonstrate that acupuncture alleviates persistent pain and neuroinflammation linked to heightened catecholaminergic tone. Mice with superior healing capacity exhibit greater analgesic efficacy. Findings indicate acupuncture as an effective treatment for chronic overlapping pain conditions and provide insight into treatment response variability.
Collapse
Affiliation(s)
- Seungtae Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea
| | - Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina; Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Sandra C O'Buckley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Jongbae J Park
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
14
|
Zhang X, Hartung JE, Bortsov AV, Kim S, O'Buckley SC, Kozlowski J, Nackley AG. Sustained stimulation of β 2- and β 3-adrenergic receptors leads to persistent functional pain and neuroinflammation. Brain Behav Immun 2018; 73:520-532. [PMID: 29935309 PMCID: PMC6129429 DOI: 10.1016/j.bbi.2018.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Functional pain syndromes, such as fibromyalgia and temporomandibular disorder, are associated with enhanced catecholamine tone and decreased levels of catechol-O-methyltransferase (COMT; an enzyme that metabolizes catecholamines). Consistent with clinical syndromes, our lab has shown that sustained 14-day delivery of the COMT inhibitor OR486 in rodents results in pain at multiple body sites and pain-related volitional behaviors. The onset of COMT-dependent functional pain is mediated by peripheral β2- and β3-adrenergic receptors (β2- and β3ARs) through the release of the pro-inflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Here, we first sought to investigate the role of β2- and β3ARs and downstream mediators in the maintenance of persistent functional pain. We then aimed to characterize the resulting persistent inflammation in neural tissues (neuroinflammation), characterized by activated glial cells and phosphorylation of the mitogen-activated protein kinases (MAPKs) p38 and extracellular signal-regulated kinase (ERK). Separate groups of rats were implanted with subcutaneous osmotic mini-pumps to deliver OR486 (15 mg/kg/day) or vehicle for 14 days. The β2AR antagonist ICI118551 and β3AR antagonist SR59230A were co-administrated subcutaneously with OR486 or vehicle either on day 0 or day 7. The TNFα inhibitor Etanercept, the p38 inhibitor SB203580, or the ERK inhibitor U0126 were delivered intrathecally following OR486 cessation on day 14. Behavioral responses, pro-inflammatory cytokine levels, glial cell activation, and MAPK phosphorylation were measured over the course of 35 days. Our results demonstrate that systemic delivery of OR486 leads to mechanical hypersensitivity that persists for at least 3 weeks after OR486 cessation. Corresponding increases in spinal TNFα, IL-1β, and IL-6 levels, microglia and astrocyte activation, and neuronal p38 and ERK phosphorylation were observed on days 14-35. Persistent functional pain was alleviated by systemic delivery of ICI118551 and SR59230A beginning on day 0, but not day 7, and by spinal delivery of Etanercept or SB203580 beginning on day 14. These results suggest that peripheral β2- and β3ARs drive persistent COMT-dependent functional pain via increased activation of immune cells and production of pro-inflammatory cytokines, which promote neuroinflammation and nociceptor activation. Thus, therapies that resolve neuroinflammation may prove useful in the management of functional pain syndromes.
Collapse
MESH Headings
- Animals
- Catechol O-Methyltransferase/metabolism
- Catechol O-Methyltransferase Inhibitors/metabolism
- Catechols/pharmacology
- Cytokines/metabolism
- Etanercept/pharmacology
- Female
- Fibromyalgia/metabolism
- Fibromyalgia/physiopathology
- Hyperalgesia/metabolism
- Imidazoles/pharmacology
- Interleukin-1beta/metabolism
- Interleukin-6/metabolism
- Male
- Microglia/metabolism
- Mitogen-Activated Protein Kinases
- Neuroglia/metabolism
- Pain/metabolism
- Pain/physiopathology
- Phosphorylation
- Propanolamines/pharmacology
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/physiology
- Receptors, Adrenergic, beta-3/drug effects
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/physiology
- Spinal Cord/metabolism
- Temporomandibular Joint Disorders/metabolism
- Temporomandibular Joint Disorders/physiopathology
- Tumor Necrosis Factor-alpha/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Pain Management Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jane E Hartung
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrey V Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Seungtae Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA; Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Sandra C O'Buckley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Julia Kozlowski
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
15
|
A moldable sustained release bupivacaine formulation for tailored treatment of postoperative dental pain. Sci Rep 2018; 8:12172. [PMID: 30111777 PMCID: PMC6093872 DOI: 10.1038/s41598-018-29696-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022] Open
Abstract
A moldable and biodegradable dental material was designed for customized placement and sustained delivery of bupivacaine (BP) within an extraction cavity. Microparticles comprising poly(lactic-co-glycolic acid) (PLGA) containing BP were generated via solvent-evaporation and combined with absorbable hemostat Gelfoam®. Kinetics of drug release were evaluated by in vitro dialysis assays, showing higher release within the first 24 hours, with subsequent tapering of release kinetics. Formulations of Gelfoam® and BP-PLGA microparticles (GelBP), with three targeted dosing profiles (0.25, 0.5, and 1 mg/kg/day), were evaluated alongside acute subcutaneous BP injections (2 mg/kg) to determine analgesic efficacy in a rat model of tooth extraction pain. Molar extraction resulted in mechanical and thermal cold hyperalgesia in male and female rats. GelBP outperformed acute BP in blocking post-surgical dental pain, with the 0.25 mg/kg GelBP dose preventing hypersensitivity to mechanical (p < 0.01) and thermal cold stimuli (p = 0.05). Molar extraction also resulted in decreased food consumption and weight. Males receiving acute BP and 0.25 mg/kg GelBP maintained normal food consumption (p < 0.002) and weight (p < 0.0001) throughout 7 days. Females, receiving 0.25 mg/kg GelBP maintained weight on days 5-7 (p < 0.04). Customized, sustained release formulation of anesthetic within a tooth extraction cavity holds potential to eliminate post-operative dental pain over several days.
Collapse
|
16
|
Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018; 129:343-366. [PMID: 29462012 PMCID: PMC6051899 DOI: 10.1097/aln.0000000000002130] [Citation(s) in RCA: 769] [Impact Index Per Article: 128.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pain is maintained in part by central sensitization, a phenomenon of synaptic plasticity, and increased neuronal responsiveness in central pain pathways after painful insults. Accumulating evidence suggests that central sensitization is also driven by neuroinflammation in the peripheral and central nervous system. A characteristic feature of neuroinflammation is the activation of glial cells, such as microglia and astrocytes, in the spinal cord and brain, leading to the release of proinflammatory cytokines and chemokines. Recent studies suggest that central cytokines and chemokines are powerful neuromodulators and play a sufficient role in inducing hyperalgesia and allodynia after central nervous system administration. Sustained increase of cytokines and chemokines in the central nervous system also promotes chronic widespread pain that affects multiple body sites. Thus, neuroinflammation drives widespread chronic pain via central sensitization. We also discuss sex-dependent glial/immune signaling in chronic pain and new therapeutic approaches that control neuroinflammation for the resolution of chronic pain.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
| | - Andrea Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - Niccolò Terrando
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| | - William Maixner
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
17
|
The effects of propranolol on heart rate variability and quantitative, mechanistic, pain profiling: a randomized placebo-controlled crossover study. Scand J Pain 2018; 18:479-489. [DOI: 10.1515/sjpain-2018-0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Abstract
Background and aims
The autonomic nervous system (ANS) is capable of modulating pain. Aberrations in heart rate variability (HRV), reflective of ANS activity, are associated with experimental pain sensitivity, chronic pain, and more recently, pain modulatory mechanisms but the underlying mechanisms are still unclear. HRV is lowered during experimental pain as well as in chronic pain conditions and HRV can be increased by propranolol, which is a non-selective β-blocker. Sensitization of central pain pathways have been observed in several chronic pain conditions and human mechanistic pain biomarkers for these central pain pathways include temporal summation of pain (TSP) and conditioned pain modulation (CPM). The current study aimed to investigate the effect of the β-blocker propranolol, and subsequently assessing the response to standardized, quantitative, mechanistic pain biomarkers.
Methods
In this placebo-controlled, double-blinded, randomized crossover study, 25 healthy male volunteers (mean age 25.6 years) were randomized to receive 40 mg propranolol and 40 mg placebo. Heart rate, blood pressure, and HRV were assessed before and during experimental pain tests. Cuff pressure pain stimulation was used for assessment of pain detection (cPDTs) and pain tolerance (cPTTs) thresholds, TSP, and CPM. Offset analgesia (OA) was assessed using heat stimulation.
Results
Propranolol significantly reduced heart rate (p<0.001), blood pressure (p<0.02) and increased HRV (p<0.01) compared with placebo. No significant differences were found comparing cPDT (p>0.70), cPTT (p>0.93), TSP (p>0.70), OA-effect (p>0.87) or CPM (p>0.65) between propranolol and placebo.
Conclusions
The current study demonstrated that propranolol increased HRV, but did not affect pressure pain sensitivity or any pain facilitatory or modulatory outcomes.
Implications
Analgesic effects of propranolol have been reported in clinical pain populations and the results from the current study could indicate that increased HRV from propranolol is not associated with peripheral and central pain pathways in healthy male subjects.
Collapse
|
18
|
Sharma M, Kantorovich S, Lee C, Anand N, Blanchard J, Fung ET, Meshkin B, Brenton A, Richeimer S. An observational study of the impact of genetic testing for pain perception in the clinical management of chronic non-cancer pain. J Psychiatr Res 2017; 89:65-72. [PMID: 28182962 DOI: 10.1016/j.jpsychires.2017.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/26/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Pain levels are a key metric in clinical care. However, the assessment of pain is limited to basic questionnaires and physician interpretation, which yield subjective data. Genetic markers of pain sensitivity, such as single nucleotide polymorphisms in the catechol-O-methyltransferase gene, have been shown to be associated with pain perception and have been used to provide objective information about a patient's pain. The goal of this study was to determine if physician treatment adjustments based on genetic tests of pain perception resulted in improved outcomes for patients. MATERIAL AND METHODS A prospective, longitudinal study was conducted with 134 chronic non-cancer pain patients genotyped for pain perception-related catechol-O-methyltransferase haplotypes. Physicians were provided with patients' results and asked to document 1) their assessment of benefit of the genetic test; 2) treatment changes made based on the genetic test; and 3) patient clinical responses to changes implemented. RESULTS Based on genetic testing results, physicians adjusted treatment plans for 40% of patients. When medication changes were made based on genetic testing results, 72% of patients showed improvement in clinical status. When non-pharmacological actions were performed, 69% of physicians felt their patients' clinical status improved. Moreover, physicians believed the genetic test results were consistent with patient pain levels in 85% of cases. CONCLUSIONS These results demonstrate that providing personalized medicine with genetic information related to pain perception affected physician clinical decision-making for a substantial proportion of patients in this study, and that the availability and utilization of this information was a contributing factor in clinical improvement.
Collapse
Affiliation(s)
- Maneesh Sharma
- Interventional Pain Institute, Baltimore, MD, United States
| | | | - Chee Lee
- Proove Biosciences, Inc., Irvine, CA, United States
| | | | | | - Eric T Fung
- Proove Biosciences, Inc., Irvine, CA, United States
| | | | | | - Steven Richeimer
- University of Southern California Keck School of Medicine, Los Angeles, CA, United States; University of Southern California Departments of Anesthesiology and Psychiatry, Los Angeles, CA, United States
| |
Collapse
|
19
|
Bastos P, Gomes T, Ribeiro L. Catechol-O-Methyltransferase (COMT): An Update on Its Role in Cancer, Neurological and Cardiovascular Diseases. Rev Physiol Biochem Pharmacol 2017; 173:1-39. [DOI: 10.1007/112_2017_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Abstract
INTRODUCTION The etiologies of functional dyspepsia symptoms, including postprandial distress syndrome, remain unknown. We tested the hypothesis that neonatal colon inflammation induces postprandial distress syndrome-like symptoms in adult life that associate with increased activation of vagal afferent pathways and forebrain limbic regions. RESULTS These rats showed a significant decrease in nutrient meal consumption to satiety after an overnight fast, decrease in gastric emptying, decrease in total distance traveled, and decrease in percent distance traveled in midfield versus control rats in open field test, indicating postprandial anxiety- and depression-like behaviors. Adult naïve rats treated with oral iodoacetamide to induce H. pylori-like mild gastritis demonstrated similar postprandial effects as the above rats. CONCLUSIONS We concluded that neonatal colon inflammation is a risk factor for the development of postprandial distress syndrome-like symptoms. While mild gastritis can induce symptoms similar to those of neonatal colon inflammation, gastritis in these rats does not worsen the symptoms.
Collapse
|
21
|
Ciszek BP, O'Buckley SC, Nackley. AG. Persistent Catechol-O-methyltransferase-dependent Pain Is Initiated by Peripheral β-Adrenergic Receptors. Anesthesiology 2016; 124:1122-35. [PMID: 26950706 PMCID: PMC5015695 DOI: 10.1097/aln.0000000000001070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients with chronic pain disorders exhibit increased levels of catecholamines alongside diminished activity of catechol-O-methyltransferase (COMT), an enzyme that metabolizes catecholamines. The authors found that acute pharmacologic inhibition of COMT in rodents produces hypersensitivity to mechanical and thermal stimuli via β-adrenergic receptor (βAR) activation. The contribution of distinct βAR populations to the development of persistent pain linked to abnormalities in catecholamine signaling requires further investigation. METHODS Here, the authors sought to determine the contribution of peripheral, spinal, and supraspinal βARs to persistent COMT-dependent pain. They implanted osmotic pumps to deliver the COMT inhibitor OR486 (Tocris, USA) for 2 weeks. Behavioral responses to mechanical and thermal stimuli were evaluated before and every other day after pump implantation. The site of action was evaluated in adrenalectomized rats receiving sustained OR486 or in intact rats receiving sustained βAR antagonists peripherally, spinally, or supraspinally alongside OR486. RESULTS The authors found that male (N = 6) and female (N = 6) rats receiving sustained OR486 exhibited decreased paw withdrawal thresholds (control 5.74 ± 0.24 vs. OR486 1.54 ± 0.08, mean ± SEM) and increased paw withdrawal frequency to mechanical stimuli (control 4.80 ± 0.22 vs. OR486 8.10 ± 0.13) and decreased paw withdrawal latency to thermal heat (control 9.69 ± 0.23 vs. OR486 5.91 ± 0.11). In contrast, adrenalectomized rats (N = 12) failed to develop OR486-induced hypersensitivity. Furthermore, peripheral (N = 9), but not spinal (N = 4) or supraspinal (N = 4), administration of the nonselective βAR antagonist propranolol, the β2AR antagonist ICI-118,511, or the β3AR antagonist SR59230A blocked the development of OR486-induced hypersensitivity. CONCLUSIONS Peripheral adrenergic input is necessary for the development of persistent COMT-dependent pain, and peripherally-acting βAR antagonists may benefit chronic pain patients.
Collapse
Affiliation(s)
- Brittney P. Ciszek
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| | - Sandra C. O'Buckley
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| | - Andrea G. Nackley.
- Center for Pain Research and Innovation, Koury Oral Health Sciences Building, University of North Carolina, Chapel Hill NC 27599-7455
| |
Collapse
|