1
|
Agavriloaei LM, Iliescu BF, Pintilie RM, Turliuc DM. Therapeutic Potential of Experimental Stereotactic Hippocampal Cell Transplant in the Management of Alzheimer's Disease. J Clin Med 2025; 14:891. [PMID: 39941562 PMCID: PMC11818268 DOI: 10.3390/jcm14030891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Due to a continuous increase in life expectancy and the progress made in specialized healthcare, the incidence of Alzheimer's disease (AD) has dramatically increased to the point that it has become one of the main challenges of contemporary medicine. Despite a huge scientific and clinical effort, current treatments manage just a temporary alleviation of symptomatology but offer no cure. Modern trials involving cell transplantation in experimental animals require the involvement of neurosurgeons in the treatment protocol. CSF shunting, intraventricular infusions, or DBS for symptoms relief have been an integral part of the therapeutic arsenal from the very beginning. The development of stereotactic surgery has facilitated the experimental potential of cell transplantation in the hippocampus for Alzheimer's disease. We conducted a narrative review of the literature in the top three medical databases (PubMed, Science Direct, and Google Scholar) using the keywords "Alzheimer's disease", "hippocampus", and "transplant". After eliminating duplicates, 241 papers were selected and screened by title and abstract. Two reviewers independently analyzed the 88 papers and chose 32 experiments that involved stereotactic hippocampal transplantation of cells in experimental animals with AD. The stereotactic transplantation of cells such as mesenchymal stem cells (MSCs), neuronal stem cells (NSCs), induced pluripotent cells (iPSCs), astrocytes, and derivates from stem cells was analyzed. The experiments used either a chemically induced or transgenic AD model and observed the impact of the stereotactic transplantation with behavioral testing, MRS spectroscopy, and biochemical analysis. The stereotaxic method delivers minimal invasive treatment option by cell transplantation at the hippocampus. The results showed that amyloid deposits were lower after transplantation, showing a positive impact. Other impactful results involve proliferation of neurogenesis, downregulation of anti-inflammatory response, and increased neuronal plasticity. The increased precision with which the stereotaxic method manages to target deep structures of the brain and the results of the reviewed papers could represent an argument for future human trials. More studies are needed to confirm the viability of the transplanted cells and the long-term effects.
Collapse
Affiliation(s)
- Loredana Mariana Agavriloaei
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.A.)
| | - Bogdan Florin Iliescu
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.A.)
- Department of Neurosurgery, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Robert Mihai Pintilie
- Department of Neurosurgery, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Dana Mihaela Turliuc
- Department of Neurosurgery, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (L.M.A.)
- Department of Neurosurgery, “Prof. Dr. N. Oblu” Emergency Clinical Hospital, 700309 Iasi, Romania
| |
Collapse
|
2
|
Yin T, Liu Y, He B, Gong B, Chu J, Gao C, Liang W, Hao M, Sun W, Zhuang J, Gao J, Yin Y. Cell primitive-based biomimetic nanomaterials for Alzheimer's disease targeting and therapy. Mater Today Bio 2023; 22:100789. [PMID: 37706205 PMCID: PMC10495673 DOI: 10.1016/j.mtbio.2023.100789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which is not just confined to the older population. Although developments have been made in AD treatment, various limitations remain to be addressed. These are partly contributed by biological hurdles, such as the blood-brain barrier and peripheral side effects, as well as by lack of carriers that can efficiently deliver the therapeutics to the brain while preserving their therapeutic efficacy. The increasing AD prevalence and the unavailability of effective treatments have encouraged researchers to develop improved, convenient, and affordable therapies. Functional materials based on primitive cells and nanotechnology are emerging as attractive therapeutics in AD treatment. Cell primitives possess distinct biological functions, including long-term circulation, lesion site targeting, and immune suppression. This review summarizes the challenges in the delivery of AD drugs and recent advances in cell primitive-based materials for AD treatment. Various cell primitives, such as cells, extracellular vesicles, and cell membranes, are presented together with their distinctive biological functions and construction strategies. Moreover, future research directions are discussed on the basis of foreseeable challenges and perspectives.
Collapse
Affiliation(s)
- Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Clinical pharmacy innovation institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200000, China
| | - Bin He
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Wenjing Sun
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| |
Collapse
|
3
|
Chen X, Jiang S, Wang R, Bao X, Li Y. Neural Stem Cells in the Treatment of Alzheimer's Disease: Current Status, Challenges, and Future Prospects. J Alzheimers Dis 2023; 94:S173-S186. [PMID: 36336934 PMCID: PMC10473082 DOI: 10.3233/jad-220721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD), a progressive dementia, is one of the world's most dangerous and debilitating diseases. Clinical trial results of amyloid-β (Aβ) and tau regulators based on the pretext of straightforward amyloid and tau immunotherapy were disappointing. There are currently no effective strategies for slowing the progression of AD. Further understanding of the mechanisms underlying AD and the development of novel therapeutic options are critical. Neurogenesis is impaired in AD, which contributes to memory deficits. Transplanted neural stem cells (NSCs) can regenerate degraded cholinergic neurons, and new neurons derived from NSCs can form synaptic connections with neighboring neurons. In theory, employing NSCs to replace and restore damaged cholinergic neurons and brain connections may offer new treatment options for AD. However there remain barriers to surmount before NSC-based therapy can be used clinically. The objective of this article is to describe recent advances in the treatment of AD models and clinical trials involving NSCs. In addition, we discuss the challenges and prospects associated with cell transplant therapy for AD.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shenzhong Jiang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yongning Li
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Shahzad S, Batool Z, Afzal A, Haider S. Reversal of oxidative stress, cytokine toxicity and DNA fragmentation by quercetin in dizocilpine-induced animal model of Schizophrenia. Metab Brain Dis 2022; 37:2793-2805. [PMID: 36152087 DOI: 10.1007/s11011-022-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Quercetin, a polyphenolic compound found in a variety of plant products possesses various biological activities and beneficial effects on human health. Schizophrenia (SZ) is one of the neuropsychiatric disorders in human beings with rapid mortality and intense morbidity which can be treated with antipsychotics, but these commercial drugs exert adverse effects and have less efficacy to treat the full spectrum of SZ. The present study was conducted to evaluate neuroprotective effects of quercetin in the preventive and therapeutic treatment of SZ. Quercetin was administered as pre- and post-regimens at the dose of 50 mg/kg in dizocilpine-induced SZ rat model for two weeks. Rats were then subjected for the assessment of different behaviors followed by biochemical, neurochemical, and inflammatory marker analyses. The present findings revealed that quercetin significantly reverses the effects of dizocilpine-induced psychosis-like symptoms in all behavioral assessments as well as it also combats oxidative stress. This flavonoid also regulates dopaminergic, serotonergic, and glutamatergic neurotransmission. A profound effect on inflammatory cytokines and decreased %DNA fragmentation was also observed following the administration of quercetin. The findings suggest that quercetin can be considered as a preventive as well as therapeutic strategy to attenuate oxidative stress and cytokine toxicity, regulate neurotransmission, and prevent enhanced DNA fragmentation that can lead to the amelioration of psychosis-like symptoms in SZ.
Collapse
Affiliation(s)
- Sidrah Shahzad
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
- Pakistan Navy Medical Training School and College, PNS Shifa, Karachi, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Asia Afzal
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
- Collaborative Drug Discovery Research (CDDR) Group and Brain Degeneration and Therapeutics Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Puncak Alam, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Zhu Q, Xu X, Chen B, Liao Y, Guan X, He Y, Cui H, Rong Y, Liu Z, Xu Y. Ultrasound targeted microbubble destruction assists dual delivery of beta-amyloid antibody and neural stem cells to restore neural function in transgenic mice of Alzheimer's disease. Med Phys 2022; 49:1357-1367. [PMID: 35092698 DOI: 10.1002/mp.15500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES To explore the feasibility, efficacy and safety of ultrasound targeted microbubbles destruction (UTMD) assisted dual delivery of beta-amyloid (Aβ) antibody loaded by microbubbles (MBAβ ) and neural stem cells (NSCs) on Alzheimer's disease (AD). METHODS 27 APP/PS1 double transgenic mice (Tg mice) and 33 wild-type mice were used. Wild-type mice were insonated by diagnostic ultrasound with microbubbles (MB) for 5 min to observe the blood brain barrier (BBB) opening. The survival situation of engrafted NSCs crossing the opened BBB mediated by UTMD in AD mice was evaluated by in vivo imaging system. We further explored the combination therapy of UTMD mediated Aβ antibody and NSCs dual delivery. Tg mice in each group were exposed to diagnostic ultrasound for 5 min once a week for four times, with MB, MBAβ , and/or NSCs administration. Cognition and memory functions were explored by Morris water maze test, Aβ plaques deposition was evaluated by immunohistochemical, and brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN) expression were detected by western blot and immunofluorescence. RESULTS BBB was opened mediated by diagnostic ultrasound with MB and the duration of opening was about 10 h. The transplanted NSCs survived in Tg mice for no more than 72 h. Compared with control group, the mice in combined delivery of NSCs and Aβ antibody by UTMD group improved memory function and spatial learning with shorter latency to find the platform, longer distance traveled and longer time spent in targeted quadrant, and more crossing times (P < 0.05). Besides, the combination delivery group promoted the clearance of Aβ plaques compared with control group both in hippocampus (P < 0.01) and cortex (P < 0.05). Moreover, the expression of BDNF in combination delivery group was significantly higher than that in control group and US mediated MB group (P < 0.05). No significant change of SYN was observed in each group. CONCLUSION UTMD assisted dual delivery of Aβ antibody and NSCs to AD mice brain could help to clear Aβ plaques, increase the expression of BDNF and restore the impaired neural function. This finding may offer potential insight into treatment of AD. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China
| | - Xiaoxun Xu
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China
| | - Beibei Chen
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China.,Postgraduate Training base of Jinzhou Medical University, Jinzhou, 121000, China
| | - Yiyi Liao
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China
| | - Xue Guan
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China
| | - Ying He
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China
| | - Hai Cui
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China.,Department of Ultrasound, Armed Police Force Hospital, Sichuan, 614000, China
| | - Yani Rong
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China
| | - Yali Xu
- Department of Ultrasound, Xinqiao Hospital of Army Medical University, Chongqing, 400038, China
| |
Collapse
|
6
|
Kim IK, Park JH, Kim B, Hwang KC, Song BW. Recent advances in stem cell therapy for neurodegenerative disease: Three dimensional tracing and its emerging use. World J Stem Cells 2021; 13:1215-1230. [PMID: 34630859 PMCID: PMC8474717 DOI: 10.4252/wjsc.v13.i9.1215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative disease is a brain disorder caused by the loss of structure and function of neurons that lowers the quality of human life. Apart from the limited potential for endogenous regeneration, stem cell-based therapies hold considerable promise for maintaining homeostatic tissue regeneration and enhancing plasticity. Despite many studies, there remains insufficient evidence for stem cell tracing and its correlation with endogenous neural cells in brain tissue with three-dimensional structures. Recent advancements in tissue optical clearing techniques have been developed to overcome the existing shortcomings of cross-sectional tissue analysis in thick and complex tissues. This review focuses on recent progress of stem cell treatments to improve neurodegenerative disease, and introduces tissue optical clearing techniques that can implement a three-dimensional image as a proof of concept. This review provides a more comprehensive understanding of stem cell tracing that will play an important role in evaluating therapeutic efficacy and cellular interrelationship for regeneration in neurodegenerative diseases.
Collapse
Affiliation(s)
- Il-Kwon Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Jun-Hee Park
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
| | - Bomi Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea.
| |
Collapse
|
7
|
Mitra S, Gera R, Linderoth B, Lind G, Wahlberg L, Almqvist P, Behbahani H, Eriksdotter M. A Review of Techniques for Biodelivery of Nerve Growth Factor (NGF) to the Brain in Relation to Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:167-191. [PMID: 34453298 DOI: 10.1007/978-3-030-74046-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Age-dependent progressive neurodegeneration and associated cognitive dysfunction represent a serious concern worldwide. Currently, dementia accounts for the fifth highest cause of death, among which Alzheimer's disease (AD) represents more than 60% of the cases. AD is associated with progressive cognitive dysfunction which affects daily life of the affected individual and associated family. The cognitive dysfunctions are at least partially due to the degeneration of a specific set of neurons (cholinergic neurons) whose cell bodies are situated in the basal forebrain region (basal forebrain cholinergic neurons, BFCNs) but innervate wide areas of the brain. It has been explicitly shown that the delivery of the neurotrophic protein nerve growth factor (NGF) can rescue BFCNs and restore cognitive dysfunction, making NGF interesting as a potential therapeutic substance for AD. Unfortunately, NGF cannot pass through the blood-brain barrier (BBB) and thus peripheral administration of NGF protein is not viable therapeutically. NGF must be delivered in a way which will allow its brain penetration and availability to the BFCNs to modulate BFCN activity and viability. Over the past few decades, various methodologies have been developed to deliver NGF to the brain tissue. In this chapter, NGF delivery methods are discussed in the context of AD.
Collapse
Affiliation(s)
- Sumonto Mitra
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.
| | - Ruchi Gera
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Almqvist
- Section of Neurosurgery, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Homira Behbahani
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Karolinska Universitets laboratoriet (LNP5), Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden.,Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
8
|
Pinz MP, Vogt AG, da Costa Rodrigues K, Dos Reis AS, Duarte LFB, Fronza MG, Domingues WB, Blodorn EB, Alves D, Campos VF, Savegnago L, Wilhelm EA, Luchese C. Effect of a purine derivative containing selenium to improve memory decline and anxiety through modulation of the cholinergic system and Na +/K +-ATPase in an Alzheimer's disease model. Metab Brain Dis 2021; 36:871-888. [PMID: 33651275 DOI: 10.1007/s11011-021-00703-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a worldwide problem, and there are currently no treatments that can stop this disease. To investigate the binding affinity of 6-((4-fluorophenyl) selanyl)-9H-purine (FSP) with acetylcholinesterase (AChE), to verify the effects of FSP in an AD model in mice and to evaluate the toxicological potential of this compound in mice. The binding affinity of FSP with AChE was investigated by molecular docking analyses. The AD model was induced by streptozotocin (STZ) in Swiss mice after FSP treatment (1 mg/kg, intragastrically (i.g.)), 1st-10th day of the experimental protocol. Anxiety was evaluated in an elevated plus maze test, and memory impairment was evaluated in the Y-maze, object recognition and step-down inhibitory avoidance tasks. The cholinergic system was investigated based on by looking at expression and activity of AChE and expression of choline acetyltransferase (ChAT). We evaluated expression and activity of Na+/K+-ATPase. For toxicological analysis, animals received FSP (300 mg/kg, i.g.) and aspartate aminotransferase, alanine aminotransferase activities were determined in plasma and δ-aminolevulinate dehydratase activity in brain and liver. FSP interacts with residues of the AChE active site. FSP mitigated the induction of anxiety and memory impairment caused by STZ. FSP protected cholinergic system dysfunction and reduction of activity and expression of Na+/K+-ATPase. FSP did not modify toxicological parameters evaluated and did not cause the death of mice. FSP protected against anxiety, learning and memory impairment with involvement of the cholinergic system and Na+/K+-ATPase in these actions.
Collapse
Affiliation(s)
- Mikaela Peglow Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Ane Gabriela Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Karline da Costa Rodrigues
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Angélica Schiavom Dos Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil
| | - Luis Fernando Barbosa Duarte
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Mariana Gallio Fronza
- Programa de Pós-Graduação em Biotecnologia, GPN, CDTec, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - William Borges Domingues
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Eduardo Bierhaus Blodorn
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Vinicius Farias Campos
- Programa de Pós-Graduação em Biotecnologia, Laboratório de Genômica Estrutural, Centro de Desenvolvimento Tecnológico (CDTec), UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Biotecnologia, GPN, CDTec, UFPel, Pelotas, RS, CEP 96010-900, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão, Pelotas, RS, CEP96010-900, Brazil.
| |
Collapse
|
9
|
Si Z, Wang X. Stem Cell Therapies in Alzheimer's Disease: Applications for Disease Modeling. J Pharmacol Exp Ther 2021; 377:207-217. [PMID: 33558427 DOI: 10.1124/jpet.120.000324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with complex pathologic and biologic characteristics. Extracellular β-amyloid deposits, such as senile plaques, and intracellular aggregation of hyperphosphorylated tau, such as neurofibrillary tangles, remain the main neuropathological criteria for the diagnosis of AD. There is currently no effective treatment of the disease, and many clinical trials have failed to prove any benefits of new therapeutics. More recently, there has been increasing interest in harnessing the potential of stem cell technologies for drug discovery, disease modeling, and cell therapies, which have been used to study an array of human conditions, including AD. The recently developed and optimized induced pluripotent stem cell (iPSC) technology is a critical platform for screening anti-AD drugs and understanding mutations that modify AD. Neural stem cell (NSC) transplantation has been investigated as a new therapeutic approach to treat neurodegenerative diseases. Mesenchymal stem cells (MSCs) also exhibit considerable potential to treat neurodegenerative diseases by secreting growth factors and exosomes, attenuating neuroinflammation. This review highlights recent progress in stem cell research and the translational applications and challenges of iPSCs, NSCs, and MSCs as treatment strategies for AD. Even though these treatments are still in relative infancy, these developing stem cell technologies hold considerable promise to combat AD and other neurodegenerative disorders. SIGNIFICANCE STATEMENT: Alzheimer's disease (AD) is a neurodegenerative disease that results in learning and memory defects. Although some drugs have been approved for AD treatment, fewer than 20% of patients with AD benefit from these drugs. Therapies based on stem cells, including induced pluripotent stem cells, neural stem cells, and mesenchymal stem cells, provide promising therapeutic strategies for AD.
Collapse
Affiliation(s)
- Zizhen Si
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China (Z.S.) and Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China (X.W.)
| | - Xidi Wang
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China (Z.S.) and Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China (X.W.)
| |
Collapse
|
10
|
Haider S, Shahzad S, Batool Z, Sadir S, Liaquat L, Tabassum S, Perveen T. Spirulina platensis reduces the schizophrenic-like symptoms in rat model by restoring altered APO-E and RTN-4 protein expression in prefrontal cortex. Life Sci 2021; 277:119417. [PMID: 33794248 DOI: 10.1016/j.lfs.2021.119417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 01/27/2023]
Abstract
AIMS Schizophrenia (SZ) is recognized as a neuropsychiatric disorder in humans with accelerated mortality and profound morbidity followed with impairments in social as well as vocational functioning. Though various antipsychotics are being considered as approved treatment therapy for the psychotic symptoms of SZ but they also exert adverse effects and also lack efficacy in treating full spectrum of the disorder. Spirulina platensis (blue-green algae), a nutritional supplement, constitutes a variety of multi-nutrients and possesses a large number of neuroprotective activities. Therefore, present experimental work was designed to evaluate the neuroprotective effects of spirulina in ameliorating the psychosis-like symptoms in dizocilpine-induced rat model of SZ. MATERIALS AND METHODS The spirulina was tested as preventive and therapeutic regimen at the dose of 180 mg/kg. After pre- and post-treatment with spirulina, rats were subjected to behavioral assessments followed by biochemical and neurochemical estimations. Biomarkers including APO-E, RTN-4, TNF-α, and IL-6 were also estimated using ELISA. KEY FINDINGS Present results showed that administration of spirulina not only improved behavioral deficits induced by dizocilpine but it also regulates neurotransmission, oligodendrocyte dysfunction and APO-E over expression. Moreover, it also restores the immune response dysfunction by reducing inflammatory cytokines. SIGNIFICANCE Thus, from present findings it may be suggested that spirulina aids in ameliorating the psychosis-like symptoms induced by dizocilpine in animal model possibly via regulation of neurotransmission and other biomarkers that are extensively used to uncover the etiopathology of SZ. Hence, blue-green algae can be used as an effective therapy for preventive or therapeutic measures in SZ.
Collapse
Affiliation(s)
- Saida Haider
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Sidrah Shahzad
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan; Pakistan Navy Medical Training School and College, PNS Shifa, Karachi, Pakistan
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Sadia Sadir
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Laraib Liaquat
- Multidisciplinary Research Lab, Bahria University Medical and Dental College, Bahria University, Karachi, Pakistan
| | - Saiqa Tabassum
- Department of Biosciences, Faculty of Life Science, Shaheed Zulfqar Ali, Bhutto Institute of Science and Technology (Szabist), Karachi, Pakistan
| | - Tahira Perveen
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
11
|
Lu MH, Ji WL, Chen H, Sun YY, Zhao XY, Wang F, Shi Y, Hu YN, Liu BX, Wu JW, Xu DE, Zheng JW, Liu CF, Ma QH. Intranasal Transplantation of Human Neural Stem Cells Ameliorates Alzheimer's Disease-Like Pathology in a Mouse Model. Front Aging Neurosci 2021; 13:650103. [PMID: 33776747 PMCID: PMC7987677 DOI: 10.3389/fnagi.2021.650103] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairments, which has no effective therapy. Stem cell transplantation shows great potential in the therapy of various disease. However, the application of stem cell therapy in neurological disorders, especially the ones with a long-term disease course such as AD, is limited by the delivery approach due to the presence of the brain blood barrier. So far, the most commonly used delivery approach in the therapy of neurological disorders with stem cells in preclinical and clinical studies are intracranial injection and intrathecal injection, both of which are invasive. In the present study, we use repetitive intranasal delivery of human neural stem cells (hNSCs) to the brains of APP/PS1 transgenic mice to investigate the effect of hNSCs on the pathology of AD. The results indicate that the intranasally transplanted hNSCs survive and exhibit extensive migration and higher neuronal differentiation, with a relatively limited glial differentiation. A proportion of intranasally transplanted hNSCs differentiate to cholinergic neurons, which rescue cholinergic dysfunction in APP/PS1 mice. In addition, intranasal transplantation of hNSCs attenuates β-amyloid accumulation by upregulating the expression of β-amyloid degrading enzymes, insulin-degrading enzymes, and neprilysin. Moreover, intranasal transplantation of hNSCs ameliorates other AD-like pathology including neuroinflammation, cholinergic dysfunction, and pericytic and synaptic loss, while enhancing adult hippocampal neurogenesis, eventually rescuing the cognitive deficits of APP/PS1 transgenic mice. Thus, our findings highlight that intranasal transplantation of hNSCs benefits cognition through multiple mechanisms, and exhibit the great potential of intranasal administration of stem cells as a non-invasive therapeutic strategy for AD.
Collapse
Affiliation(s)
- Mei-Hong Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Li Ji
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hong Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan-Yun Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiu-Yun Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yi Shi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yan-Ning Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo-Xiang Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jing-Wen Wu
- Department of Functional Neurology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - De-En Xu
- Department of Neurology, Wuxi No. 2 People's Hospital, Wuxi, China
| | | | - Chun-Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Hayashi Y, Lin HT, Lee CC, Tsai KJ. Effects of neural stem cell transplantation in Alzheimer's disease models. J Biomed Sci 2020; 27:29. [PMID: 31987051 PMCID: PMC6986162 DOI: 10.1186/s12929-020-0622-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
Currently there are no therapies for treating Alzheimer's disease (AD) that can effectively halt disease progression. Existing drugs such as acetylcholinesterase inhibitors or NMDA receptor antagonists offers only symptomatic benefit. More recently, transplantation of neural stem cells (NSCs) to treat neurodegenerative diseases, including AD, has been investigated as a new therapeutic approach. Transplanted cells have the potential to replace damaged neural circuitry and secrete neurotrophic factors to counter symptomatic deterioration or to alter lesion protein levels. However, since there are animal models that can recapitulate AD in its entirety, it is challenging to precisely characterize the positive effects of transplanting NSCs. In the present review, we discuss the types of mouse modeling system that are available and the effect in each model after human-derived NSC (hNSC) or murine-derived NSC (mNSC) transplantation. Taken together, results from studies involving NSC transplantation in AD models indicate that this strategy could serve as a new therapeutic approach.
Collapse
Affiliation(s)
- Yoshihito Hayashi
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Huan-Ting Lin
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Cheng-Che Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
13
|
Current status and future prospects of pathophysiology-based neuroprotective drugs for the treatment of vascular dementia. Drug Discov Today 2020; 25:793-799. [PMID: 31981482 DOI: 10.1016/j.drudis.2020.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
Vascular dementia (VaD) is a progressive neurocognitive clinical syndrome that is caused by a decrease in cerebral blood flow and damage to the neurovascular unit. Given increasing life expectancy, VaD is emerging as one of the leading health problems in society. Despite the high global prevalence of cognitive impairment associated with VaD, diagnosis and treatment still remain limited because of the complexity of mechanisms of neuronal loss. Therefore, advances in our understanding of the pathophysiological mechanisms involved is crucial for the development of new therapeutic strategies. In this review, we highlight the pathophysiology, current pharmacology-based primary and secondary prevention strategies and emerging treatment options for VaD.
Collapse
|
14
|
Xia E, Xu F, Hu C, Kumal JPP, Tang X, Mao D, Li Y, Wu D, Zhang R, Wu S, Sun L. Young Blood Rescues the Cognition of Alzheimer's Model Mice by Restoring the Hippocampal Cholinergic Circuit. Neuroscience 2019; 417:57-69. [PMID: 31404586 DOI: 10.1016/j.neuroscience.2019.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 01/10/2023]
Abstract
An increasing number of studies have demonstrated the benefits of young individual-derived blood for aging-related diseases. However, the effects of young blood on the cognitive and cholinergic transmission defects in aging-associated Alzheimer's disease (AD) remain elusive. In the current study, we showed that young blood serum delivered intravenously attenuated deficits in hippocampal-dependent learning and memory, alleviated hippocampal Aβ plaque pathology, restored synapse formation and synaptic plasticity, repaired the hippocampal cholinergic circuit, and triggered several canonical neuroprotective mechanisms [including repressor element 1-silencing transcription factor (REST)/Forkhead box protein O1 (FOXO1) signaling] in aged AD model mice. However, pharmacological blockage of hippocampal cholinergic activity nearly abrogated the neuroprotective actions of young blood serum in AD mice. Thus, our findings suggest that exogenous young blood serum exerts therapeutic effects on AD-associated cognitive disorders and pathology by promoting hippocampal cholinergic input and simultaneously activating other neuroprotective mechanisms.
Collapse
Affiliation(s)
- Endi Xia
- Department of Thoracic Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Fengyan Xu
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Changbin Hu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Jay Prakash Prasad Kumal
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Xudong Tang
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Dongsheng Mao
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Yixuan Li
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China
| | - Di Wu
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Rui Zhang
- Department of Andrology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, Heilongjiang, China.
| | - Shuliang Wu
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China.
| | - Liang Sun
- Department of Human Anatomy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, China.
| |
Collapse
|
15
|
Koseoglu E. New treatment modalities in Alzheimer's disease. World J Clin Cases 2019; 7:1764-1774. [PMID: 31417922 PMCID: PMC6692264 DOI: 10.12998/wjcc.v7.i14.1764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is still a major public health challenge without an effective treatment to prevent or stop it. Routinely used acetylcholinesterase inhibitors and memantine seem to slow disease progression only to a limited extend. Therefore, many investigations on new drugs and other treatment modalities are ongoing in close association with increasing knowledge of the pathophysiology of the disease. Here, we review the studies about the new treatment modalities in AD with a classification based on their main targets, specifically pathologic structures of the disease, amyloid and tau, neural network dysfunction with special interest to the regulation of gamma oscillations, and attempts for the restoration of neural tissue via regenerative medicine. Additionally, we describe the evolving modalities related to gut microbiota, modulation, microglial function, and glucose metabolism.
Collapse
Affiliation(s)
- Emel Koseoglu
- Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
16
|
Mohammadi A, Maleki-Jamshid A, Milan PB, Ebrahimzadeh K, Faghihi F, Joghataei MT. Intrahippocampal Transplantation of Undifferentiated Human Chorionic- Derived Mesenchymal Stem Cells Does Not Improve Learning and Memory in the Rat Model of Sporadic Alzheimer Disease. Curr Stem Cell Res Ther 2019; 14:184-190. [PMID: 30033876 DOI: 10.2174/1574888x13666180723111249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's Disease (AD) is a progressive neurodegenerative disorder with consequent cognitive impairment and behavioral deficits. AD is characterized by loss of cholinergic neurons and the presence of beta-amyloid protein deposits. Stem cell transplantation seems to be a promising strategy for regeneration of defects in the brain. METHOD One of the suitable type of stem cells originated from fetal membrane is Chorion-derived Mesenchymal Stem Cells (C-MSCs). MSCs were isolated from chorion and characterized by Flowcytometric analysis. Then C-MSCs labeled with DiI were transplanted into the STZ induced Alzheimer disease model in rat. RESULTS Nissl staining and behavior test were used to assess the efficacy of the transplanted cells. Phenotypic and Flowcytometric studies showed that isolated cells were positive for mesenchymal stem cell marker panel with spindle like morphology. CONCLUSION Learning and memory abilities were not improved after stem cell transplantation. C-MSCs transplantation can successfully engraft in injured site but the efficacy and function of transplanted cells were not clinically satisfied.
Collapse
Affiliation(s)
- Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Maleki-Jamshid
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Pars Advanced and Minimally Invasive medical Manners Research Center, Pars hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kaveh Ebrahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Alipour M, Nabavi SM, Arab L, Vosough M, Pakdaman H, Ehsani E, Shahpasand K. Stem cell therapy in Alzheimer's disease: possible benefits and limiting drawbacks. Mol Biol Rep 2018; 46:1425-1446. [PMID: 30565076 DOI: 10.1007/s11033-018-4499-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death globally and the main reason for dementia in elderly people. AD is a long-term and progressive neurodegenerative disorder that steadily worsens memory and communicating skills eventually leads to a disabled person of performing simple daily tasks. Unfortunately, numerous clinical trials exploring new therapeutic drugs have encountered disappointing outcomes in terms of improved cognitive performance since they are not capable of halting or stimulating the regeneration of already-damaged neural cells, and merely provide symptomatic relief. Therefore, a deeper understanding of the mechanism of action of stem cell may contribute to the development of novel and effective therapies. The revolutionary discovery of stem cells has cast a new hope for the development of disease-modifying treatments for AD, in terms of their potency in the replenishment of lost cells via differentiating towards specific lineages, stimulating in situ neurogenesis, and delivering the therapeutic agents to the brain. Herein, firstly, we explore the pathophysiology of AD. Next, we summarize the most recent preclinical stem cell reports designed for AD treatment, their benefits and outcomes according to cell type. We briefly review relevant clinical trials and their potential clinical applications in order to find a unique solution to effectively relieve the patients' pain.
Collapse
Affiliation(s)
- Masoume Alipour
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran
| | - Seyed Massood Nabavi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran
| | - Leila Arab
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pakdaman
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ehsani
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Banihashem Sq., Banihashem St., Resalat highway, P.O. Box 19395-4644, Tehran, Iran.
| |
Collapse
|
18
|
Kizil C, Bhattarai P. Is Alzheimer's Also a Stem Cell Disease? - The Zebrafish Perspective. Front Cell Dev Biol 2018; 6:159. [PMID: 30533414 PMCID: PMC6265475 DOI: 10.3389/fcell.2018.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is the leading form of dementia. AD entails chronic inflammation, impaired synaptic integrity and reduced neurogenesis. The clinical and molecular onsets of the disease do not temporally overlap and the initiation phase of the cellular changes might start with a complex causativeness between chronic inflammation, reduced neural stem cell plasticity and neurogenesis. Although the immune and neuronal aspects in AD are well studied, the neural stem cell-related features are far less investigated. An intriguing question is, therefore, whether a stem cell can ever be made proliferative and neurogenic during the prevalent AD in the brain. Recent findings affirm this hypothesis and thus a plausible way to circumvent the AD phenotypes could be to mobilize the endogenous stem cells by enhancing their proliferative and neurogenic capacity as well as to provide the newborn neurons the potential to survive and integrate into the existing circuitry. To address these questions, zebrafish offers unprecedented information and tools, which can be effectively translated into mammalian experimental systems.
Collapse
Affiliation(s)
- Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
19
|
McGinley LM, Kashlan ON, Bruno ES, Chen KS, Hayes JM, Kashlan SR, Raykin J, Johe K, Murphy GG, Feldman EL. Human neural stem cell transplantation improves cognition in a murine model of Alzheimer's disease. Sci Rep 2018; 8:14776. [PMID: 30283042 PMCID: PMC6170460 DOI: 10.1038/s41598-018-33017-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation offers a potentially transformative approach to treating neurodegenerative disorders. The safety of cellular therapies is established in multiple clinical trials, including our own in amyotrophic lateral sclerosis. To initiate similar trials in Alzheimer's disease, efficacious cell lines must be identified. Here, we completed a preclinical proof-of-concept study in the APP/PS1 murine model of Alzheimer's disease. Human neural stem cell transplantation targeted to the fimbria fornix significantly improved cognition in two hippocampal-dependent memory tasks at 4 and 16 weeks post-transplantation. While levels of synapse-related proteins and cholinergic neurons were unaffected, amyloid plaque load was significantly reduced in stem cell transplanted mice and associated with increased recruitment of activated microglia. In vitro, these same neural stem cells induced microglial activation and amyloid phagocytosis, suggesting an immunomodulatory capacity. Although long-term transplantation resulted in significant functional and pathological improvements in APP/PS1 mice, stem cells were not identified by immunohistochemistry or PCR at the study endpoint. These data suggest integration into native tissue or the idea that transient engraftment may be adequate for therapeutic efficacy, reducing the need for continued immunosuppression. Overall, our results support further preclinical development of human neural stem cells as a safe and effective therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Samy R Kashlan
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Julia Raykin
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Karl Johe
- Neuralstem, Inc, Germantown, MD, USA
| | - Geoffrey G Murphy
- Department of Molecular & Integrative Physiology, Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Lin C, Chen P, Chan H, Huang Y, Chang NW. Peroxisome proliferator‐activated receptor alpha accelerates neuronal differentiation and this might involve the mitogen‐activated protein kinase pathway. Int J Dev Neurosci 2018; 71:46-51. [DOI: 10.1016/j.ijdevneu.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chingju Lin
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Pei‐Yi Chen
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Hsu‐Chin Chan
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Yi‐Ping Huang
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Nai Wen Chang
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
21
|
Kim CR, Kim HS, Choi SJ, Kim JK, Gim MC, Kim YJ, Shin DH. Erucamide from Radish Leaves Has an Inhibitory Effect Against Acetylcholinesterase and Prevents Memory Deficit Induced by Trimethyltin. J Med Food 2018; 21:769-776. [DOI: 10.1089/jmf.2017.4117] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Cho Rong Kim
- Department of Food and Biotechnology, Korea University, Seoul, South Korea
| | - Hoi Suk Kim
- Department of Food and Biotechnology, Korea University, Seoul, South Korea
| | - Soo Jung Choi
- Functional Food Research Center, Korea University, Seoul, South Korea
| | - Jae Kyeom Kim
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, North Carolina, USA
| | - Min Chul Gim
- Department of Food and Biotechnology, Korea University, Seoul, South Korea
| | - Youn-Jung Kim
- College of Nursing Science, Kyunghee University, Seoul, South Korea
| | - Dong-Hoon Shin
- Department of Food and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
22
|
Ronowska A, Szutowicz A, Bielarczyk H, Gul-Hinc S, Klimaszewska-Łata J, Dyś A, Zyśk M, Jankowska-Kulawy A. The Regulatory Effects of Acetyl-CoA Distribution in the Healthy and Diseased Brain. Front Cell Neurosci 2018; 12:169. [PMID: 30050410 PMCID: PMC6052899 DOI: 10.3389/fncel.2018.00169] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Brain neurons, to support their neurotransmitter functions, require a several times higher supply of glucose than non-excitable cells. Pyruvate, the end product of glycolysis, through pyruvate dehydrogenase complex reaction, is a principal source of acetyl-CoA, which is a direct energy substrate in all brain cells. Several neurodegenerative conditions result in the inhibition of pyruvate dehydrogenase and decrease of acetyl-CoA synthesis in mitochondria. This attenuates metabolic flux through TCA in the mitochondria, yielding energy deficits and inhibition of diverse synthetic acetylation reactions in all neuronal sub-compartments. The acetyl-CoA concentrations in neuronal mitochondrial and cytoplasmic compartments are in the range of 10 and 7 μmol/L, respectively. They appear to be from 2 to 20 times lower than acetyl-CoA Km values for carnitine acetyltransferase, acetyl-CoA carboxylase, aspartate acetyltransferase, choline acetyltransferase, sphingosine kinase 1 acetyltransferase, acetyl-CoA hydrolase, and acetyl-CoA acetyltransferase, respectively. Therefore, alterations in acetyl-CoA levels alone may significantly change the rates of metabolic fluxes through multiple acetylation reactions in brain cells in different physiologic and pathologic conditions. Such substrate-dependent alterations in cytoplasmic, endoplasmic reticulum or nuclear acetylations may directly affect ACh synthesis, protein acetylations, and gene expression. Thereby, acetyl-CoA may regulate the functional and adaptative properties of neuronal and non-neuronal brain cells. The excitotoxicity-evoked intracellular zinc excess hits several intracellular targets, yielding the collapse of energy balance and impairment of the functional and structural integrity of postsynaptic cholinergic neurons. Acute disruption of brain energy homeostasis activates slow accumulation of amyloid-β1-42 (Aβ). Extra and intracellular oligomeric deposits of Aβ affect diverse transporting and signaling pathways in neuronal cells. It may combine with multiple neurotoxic signals, aggravating their detrimental effects on neuronal cells. This review presents evidences that changes of intraneuronal levels and compartmentation of acetyl-CoA may contribute significantly to neurotoxic pathomechanisms of different neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Anna Ronowska
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Szutowicz
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Hanna Bielarczyk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Sylwia Gul-Hinc
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Klimaszewska-Łata
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Dyś
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Marlena Zyśk
- Department of Laboratory Medicine, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
23
|
Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders. Mol Neurobiol 2018; 56:307-318. [PMID: 29549645 DOI: 10.1007/s12035-018-0968-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/16/2018] [Indexed: 12/30/2022]
|
24
|
Ariga T. The Pathogenic Role of Ganglioside Metabolism in Alzheimer's Disease-Cholinergic Neuron-Specific Gangliosides and Neurogenesis. Mol Neurobiol 2018; 54:623-638. [PMID: 26748510 DOI: 10.1007/s12035-015-9641-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Institute of Neuroscience, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA. .,Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda-ku, Tokyo, 101-8308, Japan.
| |
Collapse
|
25
|
Zhang W, Gu GJ, Zhang Q, Liu JH, Zhang B, Guo Y, Wang MY, Gong QY, Xu JR. NSCs promote hippocampal neurogenesis, metabolic changes and synaptogenesis in APP/PS1 transgenic mice. Hippocampus 2017; 27:1250-1263. [PMID: 28833933 DOI: 10.1002/hipo.22794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/02/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023]
Abstract
Adult neurogenesis and synaptic remodeling persist as a unique form of structural and functional plasticity in the hippocampal dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles due to the existence of neural stem cells (NSCs). Transplantation of NSCs may represent a promising approach for the recovery of neural circuits. Here, we aimed to examine effects of highly neuronal differentiation of NSCs transplantation on hippocampal neurogenesis, metabolic changes and synaptic formation in APP/PS1 mice. 12-month-old APP/PS1 mice were used for behavioral tests, immunohistochemistry, western blot, transmission electron microscopy and proton magnetic resonance spectroscopy (1H-MRS). The results showed that N-acetylaspartate (NAA) and Glutamate (Glu) levels were increased in the Tg-NSC mice compared with the Tg-PBS and Tg-AD mice 10 weeks after NSCs transplantation. NSC-induced an increase in expression of synaptophysin and postsynaptic protein-95, and the number of neurons with normal synapses was significantly increased in Tg-NSC mice. More doublecortin-, BrdU/NeuN- and Nestin-positive neurons were observed in the hippocampal DG and SVZ of the Tg-NSC mice. This is the first demonstration that engrafted NSCs with a high differentiation rate to neurons can enhance neurogenesis in a mouse model of AD and can be detected by 1H-MRS in vivo. It is suggested that engraft of NSCs can restore memory and promote endogenous neurogenesis and synaptic remodeling, moreover, 1H-MRS can detect metabolite changes in AD mice in vivo. The observed changes in NAA/creatine (Cr) and glutamate (Glu)/Cr may be correlated with newborn neurons and new synapse formation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Imaging, Renji Hospital, Medical School of Jiaotong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, P. R. China
| | - Guo-Jun Gu
- Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Qi Zhang
- Department of Blood Transfusion, Huashan Hospital, Fudan University, No. 12, Urumqi Road, Jing'an District, Shanghai, 200040, P. R. China
| | - Jian-Hui Liu
- Department of Anesthesiology, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Bo Zhang
- Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Yi Guo
- Department of Medical Imaging, Tongji Hospital, Medical School of Tongji University, No. 389, Xincun Road, Putuo District, Shanghai, 200065, P. R. China
| | - Mei-Yun Wang
- Department of Radiology, Henan Provincial People's Hospital, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, P. R. China
| | - Qi-Yong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610065, P. R. China
| | - Jian-Rong Xu
- Department of Medical Imaging, Renji Hospital, Medical School of Jiaotong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, P. R. China
| |
Collapse
|
26
|
McGinley LM, Kashlan ON, Chen KS, Bruno ES, Hayes JM, Backus C, Feldman S, Kashlan BN, Johe K, Feldman EL. Human neural stem cell transplantation into the corpus callosum of Alzheimer's mice. Ann Clin Transl Neurol 2017; 4:749-755. [PMID: 29046883 PMCID: PMC5634341 DOI: 10.1002/acn3.443] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 01/17/2023] Open
Abstract
The hippocampus has been the target of stem cell transplantations in preclinical studies focused on Alzheimer's disease, with results showing improvements in histological and behavioral outcomes. The corpus callosum is another structure that is affected early in Alzheimer's disease. Therefore, we hypothesize that this structure is a novel target for human neural stem cell transplantation in transgenic Alzheimer's disease mouse models. This study demonstrates the feasibility of targeting the corpus callosum and identifies an effective immunosuppression regimen for transplanted neural stem cell survival. These results support further preclinical development of the corpus callosum as a therapeutic target in Alzheimer's disease.
Collapse
Affiliation(s)
- Lisa M McGinley
- Department of Neurology University of Michigan Ann Arbor Michigan
| | - Osama N Kashlan
- Department of Neurosurgery University of Michigan Ann Arbor Michigan
| | - Kevin S Chen
- Department of Neurosurgery University of Michigan Ann Arbor Michigan
| | | | - John M Hayes
- Department of Neurology University of Michigan Ann Arbor Michigan
| | - Carey Backus
- Department of Neurology University of Michigan Ann Arbor Michigan
| | - Seth Feldman
- Department of Neurology University of Michigan Ann Arbor Michigan
| | - Bader N Kashlan
- Department of Neurology University of Michigan Ann Arbor Michigan
| | | | - Eva L Feldman
- Department of Neurology University of Michigan Ann Arbor Michigan.,A. Alfred Taubman Medical Research Institute University of Michigan Ann Arbor Michigan
| |
Collapse
|
27
|
Zhen J, Qian Y, Fu J, Su R, An H, Wang W, Zheng Y, Wang X. Deep Brain Magnetic Stimulation Promotes Neurogenesis and Restores Cholinergic Activity in a Transgenic Mouse Model of Alzheimer's Disease. Front Neural Circuits 2017; 11:48. [PMID: 28713248 PMCID: PMC5492391 DOI: 10.3389/fncir.2017.00048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/14/2017] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive decline of memory and cognitive functions. Deep magnetic stimulation (DMS), a noninvasive and nonpharmacological brain stimulation, has been reported to alleviate stress-related cognitive impairment in neuropsychiatric disorders. Our previous study also discovered the preventive effect of DMS on cognitive decline in an AD mouse model. However, the underlying mechanism must be explored further. In this study, we investigated the effect of DMS on spatial learning and memory functions, neurogenesis in the dentate gyrus (DG), as well as expression and activity of the cholinergic system in a transgenic mouse model of AD (5XFAD). Administration of DMS effectively improved performance in spatial learning and memory of 5XFAD mice. Furthermore, neurogenesis in the hippocampal DG of DMS-treated 5XFAD mice was clearly enhanced. In addition, DMS significantly raised the level of acetylcholine and prevented the increase in acetylcholinesterase activity as well as the decrease in acetyltransferase activity in the hippocampus of 5XFAD mice. These findings indicate that DMS may be a promising noninvasive tool for treatment and prevention of AD cognitive impairment by promoting neurogenesis and enhancing cholinergic system function.
Collapse
Affiliation(s)
- Junli Zhen
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical UniversityBeijing, China.,Beijing Institute for Brain DisordersBeijing, China.,The Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Yanjing Qian
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical UniversityBeijing, China.,Beijing Institute for Brain DisordersBeijing, China
| | - Jian Fu
- The Second Hospital of Hebei Medical UniversityShijiazhuang, China
| | - Ruijun Su
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical UniversityBeijing, China.,Beijing Institute for Brain DisordersBeijing, China
| | - Haiting An
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical UniversityBeijing, China.,Beijing Institute for Brain DisordersBeijing, China
| | - Wei Wang
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical UniversityBeijing, China.,Beijing Institute for Brain DisordersBeijing, China
| | - Yan Zheng
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical UniversityBeijing, China.,Beijing Institute for Brain DisordersBeijing, China
| | - Xiaomin Wang
- Department of Neurobiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical UniversityBeijing, China.,Beijing Institute for Brain DisordersBeijing, China
| |
Collapse
|
28
|
Li SH, Gao P, Wang LT, Yan YH, Xia Y, Song J, Li HY, Yang JX. Osthole Stimulated Neural Stem Cells Differentiation into Neurons in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9 and Rescued the Functional Impairment of Hippocampal Neurons in APP/PS1 Transgenic Mice. Front Neurosci 2017; 11:340. [PMID: 28659755 PMCID: PMC5468409 DOI: 10.3389/fnins.2017.00340] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/30/2017] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most serious neurodegenerative disease worldwide and is characterized by progressive cognitive impairment and multiple neurological changes, including neuronal loss in the brain. However, there are no available drugs to delay or cure this disease. Consequently, neuronal replacement therapy may be a strategy to treat AD. Osthole (Ost), a natural coumarin derivative, crosses the blood-brain barrier and exerts strong neuroprotective effects against AD in vitro and in vivo. Recently, microRNAs (miRNAs) have demonstrated a crucial role in pathological processes of AD, implying that targeting miRNAs could be a therapeutic approach to AD. In the present study, we investigated whether Ost could enhance cell viability and prevent cell death in amyloid precursor protein (APP)-expressing neural stem cells (NSCs) as well as promote APP-expressing NSCs differentiation into more neurons by upregulating microRNA (miR)-9 and inhibiting the Notch signaling pathway in vitro. In addition, Ost treatment in APP/PS1 double transgenic (Tg) mice markedly restored cognitive functions, reduced Aβ plague production and rescued functional impairment of hippocampal neurons. The results of the present study provides evidence of the neurogenesis effects and neurobiological mechanisms of Ost against AD, suggesting that Ost is a promising drug for treatment of AD or other neurodegenerative diseases.
Collapse
Affiliation(s)
- Shao-Heng Li
- Department of Pharmacology, School of Pharmacy, Liaoning University of Traditional Chinese MedicineDalian, China
| | - Peng Gao
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Li-Tong Wang
- Department of Neurological Rehabilitation, Second Affiliated Hospital of Dalian Medical UniversityDalian, China
| | - Yu-Hui Yan
- Department of Pharmacology, School of Pharmacy, Liaoning University of Traditional Chinese MedicineDalian, China
| | - Yang Xia
- Department of Engineering, University of OxfordOxford, United Kingdom
| | - Jie Song
- Department of Pharmacology, School of Pharmacy, Liaoning University of Traditional Chinese MedicineDalian, China
| | - Hong-Yan Li
- Department of Pharmacology, School of Pharmacy, Liaoning University of Traditional Chinese MedicineDalian, China
| | - Jing-Xian Yang
- Department of Pharmacology, School of Pharmacy, Liaoning University of Traditional Chinese MedicineDalian, China
| |
Collapse
|
29
|
Lu J, Yao XQ, Luo X, Wang Y, Chung SK, Tang HX, Cheung CW, Wang XY, Meng C, Li Q. Monosialoganglioside 1 may alleviate neurotoxicity induced by propofol combined with remifentanil in neural stem cells. Neural Regen Res 2017; 12:945-952. [PMID: 28761428 PMCID: PMC5514870 DOI: 10.4103/1673-5374.208589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Monosialoganglioside 1 (GM1) is the main ganglioside subtype and has neuroprotective properties in the central nervous system. In this study, we aimed to determine whether GM1 alleviates neurotoxicity induced by moderate and high concentrations of propofol combined with remifentanil in the immature central nervous system. Hippocampal neural stem cells were isolated from newborn Sprague-Dawley rats and treated with remifentanil (5, 10, 20 ng/mL) and propofol (1.0, 2.5, 5.0 μg/mL), and/or GM1 (12.5, 25, 50 μg/mL). GM1 reversed combined propofol and remifentanil-induced decreases in the percentage of 5-bromodeoxyuridine(+) cells and also reversed the increase in apoptotic cell percentage during neural stem cell proliferation and differentiation. However, GM1 with combined propofol and remifentanil did not affect β-tubulin(+) or glial fibrillary acidic protein(+) cell percentage during neural stem cell differentiation. In conclusion, we show that GM1 alleviates the damaging effects of propofol combined with remifentanil at moderate and high exposure concentrations in neural stem cells in vitro, and exerts protective effects on the immature central nervous system.
Collapse
Affiliation(s)
- Jiang Lu
- Anesthesiology Research Institute of Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xue-Qin Yao
- Anesthesiology Research Institute of Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xin Luo
- Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory and Clinical Research Institute for Pain, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Sookja Kim Chung
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - He-Xin Tang
- Anesthesiology Research Institute of Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Chi Wai Cheung
- Anesthesiology Research Institute of Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Laboratory and Clinical Research Institute for Pain, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xian-Yu Wang
- Anesthesiology Research Institute of Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Chen Meng
- Anesthesiology Research Institute of Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Qing Li
- Anesthesiology Research Institute of Hubei University of Medicine, Shiyan, Hubei Province, China.,Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| |
Collapse
|
30
|
Current Perspective of Stem Cell Therapy in Neurodegenerative and Metabolic Diseases. Mol Neurobiol 2016; 54:7276-7296. [PMID: 27815831 DOI: 10.1007/s12035-016-0217-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/12/2016] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases have been an unsolved riddle for quite a while; to date, there are no proper and effective curative treatments and only palliative and symptomatic treatments are available to treat these illnesses. The absence of therapeutic treatments for neurodegenerative ailments has huge economic hit and strain on the society. Pharmacotherapies and various surgical procedures like deep brain stimulation are being given to the patient, but they are only effective for the symptoms and not for the diseases. This paper reviews the recent studies and development of stem cell therapy for neurodegenerative disorders. Stem cell-based treatment is a promising new way to deal with neurodegenerative diseases. Stem cell transplantation can advance useful recuperation by delivering trophic elements that impel survival and recovery of host neurons in animal models and patients with neurodegenerative maladies. Several mechanisms, for example, substitution of lost cells, cell combination, release of neurotrophic factor, proliferation of endogenous stem cell, and transdifferentiation, may clarify positive remedial results. With the current advancements in the stem cell therapies, a new hope for the cure has come out since they have potential to be a cure for the same. This review compiles stem cell therapy recent conceptions in neurodegenerative and neurometabolic diseases and updates in this field. Graphical Absract ᅟ.
Collapse
|
31
|
Hayase T, Tachibana S, Yamakage M. Effect of sevoflurane anesthesia on the comprehensive mRNA expression profile of the mouse hippocampus. Med Gas Res 2016; 6:70-76. [PMID: 27867470 PMCID: PMC5110135 DOI: 10.4103/2045-9912.184715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Postoperative nausea and vomiting (PONV) is a common complication after general anesthesia. Recent studies suggested that the hippocampus is involved in PONV. Hypothesising that hippocampal dopaminergic neurons are related to PONV, we examined the comprehensive mRNA profile of the hippocampus, using a sevoflurane-treated mouse model to confirm this. This study was conducted after approval from our institutional animal ethics committee, the Animal Research Center of Sapporo Medical University School of Medicine (project number: 12-033). Eight mice were assigned to two groups: a naïve group and a sevoflurane group (Sev group). In the Sev group, four mice were anesthetised with 3.5% sevoflurane for 1 hour. Subsequently, mRNA was isolated from their hippocampal cells and RNA sequencing was performed on an Illumina HiSeq 2500 platform. Mapping of the quality-controlled, filtered paired-end reads to mouse genomes and quantification of the expression levels of each gene were performed using R software. The Rtn4rl2 gene that encodes the Nogo receptor was the most up-regulated gene in the present study. The expression levels of dopamine receptor genes and the tachykinin gene were increased by sevoflurane exposure, while the genes related to serotonin receptors were not altered by sevoflurane exposure. The expression levels of LIM-homeodomain-related genes were highly down-regulated by sevoflurane. These findings suggest that sevoflurane exposure induces dopaminergic stimulation of hippocampal neurons and triggers PONV, while neuronal inflammation caused by LIM-homeodomain-related genes is down-regulated by sevoflurane.
Collapse
Affiliation(s)
- Tomo Hayase
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shunsuke Tachibana
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
32
|
Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity. ASIAN PAC J TROP MED 2016; 9:662-7. [DOI: 10.1016/j.apjtm.2016.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/16/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022] Open
|
33
|
Zhang L, Han X, Cheng X, Tan XF, Zhao HY, Zhang XH. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regen Res 2016; 11:597-603. [PMID: 27212920 PMCID: PMC4870916 DOI: 10.4103/1673-5374.180744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao Han
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xue-Feng Tan
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - He-Yan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xin-Hua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
34
|
Li P, Yin YL, Zhu ML, Pan GP, Zhao FR, Lu JX, Liu Z, Wang SX, Hu CP. Chronic administration of isocarbophos induces vascular cognitive impairment in rats. J Cell Mol Med 2016; 20:731-9. [PMID: 26818681 PMCID: PMC5125717 DOI: 10.1111/jcmm.12775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/01/2015] [Indexed: 01/26/2023] Open
Abstract
Vascular dementia, being the most severe form of vascular cognitive impairment (VCI), is caused by cerebrovascular disease. Whether organophosphorus causes VCI remains unknown. Isocarbophos (0.5 mg/kg per 2 days) was intragastrically administrated to rats for 16 weeks. The structure and function of cerebral arteries were assayed. The learning and memory were evaluated by serial tests of step-down, step-through and morris water maze. Long-term administration of isocarbophos reduced the hippocampal acetylcholinesterase (AChE) activity and acetylcholine (ACh) content but did not alter the plasma AChE activity, and significantly damaged the functions of learning and memory. Moreover, isocarbophos remarkably induced endothelial dysfunction in the middle cerebral artery and the expressions of ICAM-1 and VCAM-1 in the posterior cerebral artery. Morphological analysis by light microscopy and electron microscopy indicated disruptions of the hippocampus and vascular wall in the cerebral arteries from isocarbophos-treated rats. Treatment of isocarbophos injured primary neuronal and astroglial cells isolated from rats. Correlation analysis demonstrated that there was a high correlation between vascular function of cerebral artery and hippocampal AChE activity or ACh content in rats. In conclusion, chronic administration of isocarbophos induces impairments of memory and learning, which is possibly related to cerebral vascular dysfunction.
Collapse
Affiliation(s)
- Peng Li
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China.,College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Ya-Ling Yin
- College of Basic Medical Sciences, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Mo-Li Zhu
- Sanqun Medical College, Xinxiang Medical University, Xinxiang, China
| | - Guo-Pin Pan
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China
| | - Fan-Rong Zhao
- Sanqun Medical College, Xinxiang Medical University, Xinxiang, China
| | - Jun-Xiu Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhan Liu
- Department of Clinical Nutrition, The Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Shuang-Xi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Chang-Ping Hu
- Department of Pharmacology, Pharmaceutical College, Central South University, Changsha, China
| |
Collapse
|
35
|
The Emerging Therapeutic Role of NGF in Alzheimer’s Disease. Neurochem Res 2016; 41:1211-8. [DOI: 10.1007/s11064-016-1829-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/08/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
|
36
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
37
|
Effects of stem cell transplantation on cognitive decline in animal models of Alzheimer's disease: A systematic review and meta-analysis. Sci Rep 2015; 5:12134. [PMID: 26159750 PMCID: PMC4498325 DOI: 10.1038/srep12134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD), an irreversible progressive neurodegenerative disease, causes characteristic cognitive impairment, and no curative treatments are currently available. Stem cell transplantation offers a powerful tool for the treatment of AD. We conducted a systematic review and meta-analysis of data from controlled studies to study the impact of stem cell biology and experimental design on learning and memory function following stem cell transplantation in animal models of AD. A total of 58 eligible controlled studies were included by searching PubMed, EMBASE, and Web of Science up to April 13, 2015. Meta-analysis showed that stem cell transplantation could promote both learning and memory recovery. Stratified meta-analysis was used to explore the influence of the potential factors on the estimated effect size, and meta-regression analyses were undertaken to explore the sources of heterogeneity for learning and memory function. Publication bias was assessed using funnel plots and Egger’s test. The present review reinforces the evidence supporting stem cell transplantation in experimental AD. However, it highlights areas that require well-designed and well-reported animal studies.
Collapse
|