1
|
PKCγ interneurons, a gateway to pathological pain in the dorsal horn. J Neural Transm (Vienna) 2020; 127:527-540. [PMID: 32108249 DOI: 10.1007/s00702-020-02162-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
Chronic pain is a frequent and disabling condition that is significantly maintained by central sensitization, which results in pathological amplification of responses to noxious and innocuous stimuli. As such, mechanical allodynia, or pain in response to a tactile stimulus that does not normally provoke pain, is a cardinal feature of chronic pain. Recent evidence suggests that the dorsal horn excitatory interneurons that express the γ isoform of protein kinase C (PKCγ) play a critical role in the mechanism of mechanical allodynia during chronic pain. Here, we review this evidence as well as the main aspects of the development, anatomy, electrophysiology, inputs, outputs, and pathophysiology of dorsal horn PKCγ neurons. Primary afferent high-threshold neurons transmit the nociceptive message to the dorsal horn of the spinal cord and trigeminal system where it activates second-order nociceptive neurons relaying the information to the brain. In physiological conditions, low-threshold mechanoreceptor inputs activate inhibitory interneurons in the dorsal horn, which may control activation of second-order nociceptive neurons. During chronic pain, low-threshold mechanoreceptor inputs now activate PKCγ neurons that forward the message to second-order nociceptive neurons, turning thus tactile inputs into pain. Several mechanisms may contribute to opening this gate, including disinhibition, activation of local astrocytes, release of diffusible factors such as reactive oxygen species, and alteration of the descending serotoninergic control on PKCγ neurons through 5-HT2A serotonin receptors. Dorsal horn PKCγ neurons, therefore, appear as a relevant therapeutic target to alleviate mechanical allodynia during chronic pain.
Collapse
|
2
|
Dervishi I, Ozdinler PH. Incorporating upper motor neuron health in ALS drug discovery. Drug Discov Today 2018; 23:696-703. [PMID: 29331501 PMCID: PMC5849515 DOI: 10.1016/j.drudis.2018.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease, that affects the motor neuron circuitry. After consecutive failures in clinical trials for the past 20 years, edaravone was recently approved as the second drug for ALS. This generated excitement in the field revealed the need to improve preclinical assays for continued success. Here, we focus on the importance and relevance of upper motor neuron (UMN) pathology in ALS, and discuss how incorporation of UMN survival in preclinical assays will improve inclusion criteria for clinical trials and expedite the drug discovery effort in ALS and related motor neuron diseases.
Collapse
Affiliation(s)
- Ina Dervishi
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - P Hande Ozdinler
- Department of Neurology and Clinical Neurological Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA; Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Wang F, Wang Q, Li C, Yu P, Qu Y, Zhou L. The role of Celsr3 in the development of central somatosensory projections from dorsal root ganglia. Neuroscience 2017; 359:267-276. [PMID: 28754314 DOI: 10.1016/j.neuroscience.2017.07.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/29/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023]
Abstract
Dorsal root ganglion (DRG) neurons receive peripheral somatosensory information and send orderly projections to second-order relay nuclei in the spinal cord and in the brainstem. Atypical cadherin Celsr3 is known to play a critical role in wiring of several central and peripheral axons. Although Celsr3 mRNA is heavily expressed in DRG neurons, its role in the development of somatosensory projections remains unexplored. Here we assessed the role of Celsr3 in DRG using conditional gene inactivation in crosses with Wnt1-Cre mice. Using Celsr3-GFP transgenic mice, we found that Celsr3 was highly expressed in different DRG cells, such as Pavalbumin-, TrkB-, and calcitonin gene-related peptide (CGRP)-positive neurons. Wnt1-Cre;Celsr3f/- animals survived for a few weeks and looked smaller than littermate controls. DiI tracing showed that early DRG axons entered the spinal cord and reached spinal cord targets similarly in mutant and control mice. CGRP-positive fiber density was significantly decreased in lamina I in the mutant versus control spinal cord at postnatal day (P) 7 and P14. Furthermore, more Pavalbumin-positive fibers invaded the gray matter and made more contacts with spinal motor neurons in mutant than in control samples. Behavioral analysis showed that mutant animals were less sensitive to pain and more sensitive to mechanical stimulation than controls. In conclusion, Celsr3 is dispensable for the patterning of central DRG projections, but it regulates for the fine mapping of sensory fibers in the gray matter, which is important for somatosensory processing.
Collapse
Affiliation(s)
- Feifei Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Qianghua Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Chen Li
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Panpan Yu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, PR China; Co-innovation Center of Neuroregeneration, Jiangsu, PR China; Key Laboratory of Neuroscience, School of Basic Medical Sciences, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
5
|
Mermet-Joret N, Chatila N, Pereira B, Monconduit L, Dallel R, Antri M. Lamina specific postnatal development of PKCγ interneurons within the rat medullary dorsal horn. Dev Neurobiol 2016; 77:102-119. [PMID: 27346325 DOI: 10.1002/dneu.22414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/17/2023]
Abstract
Protein kinase C gamma (PKCγ) interneurons, located in the superficial spinal (SDH) and medullary dorsal horns (MDH), have been shown to play a critical role in cutaneous mechanical hypersensitivity. However, a thorough characterization of their development in the MDH is lacking. Here, it is shown that the number of PKCγ-ir interneurons changes from postnatal day 3 (P3) to P60 (adult) and such developmental changes differ according to laminae. PKCγ-ir interneurons are already present at P3-5 in laminae I, IIo, and III. In lamina III, they then decrease from P11-P15 to P60. Interestingly, PKCγ-ir interneurons appear only at P6 in lamina IIi, and they conversely increase to reach adult levels at P11-15. Analysis of neurogenesis using bromodeoxyuridine (BrdU) does not detect any PKCγ-BrdU double-labeling in lamina IIi. Quantification of the neuronal marker, NeuN, reveals a sharp neuronal decline (∼50%) within all superficial MDH laminae during early development (P3-15), suggesting that developmental changes in PKCγ-ir interneurons are independent from those of other neurons. Finally, neonatal capsaicin treatment, which produces a permanent loss of most unmyelinated afferent fibers, has no effect on the development of PKCγ-ir interneurons. Together, the results show that: (i) the expression of PKCγ-ir interneurons in MDH is developmentally regulated with a critical period at P11-P15, (ii) PKCγ-ir interneurons are developmentally heterogeneous, (iii) lamina IIi PKCγ-ir interneurons appear less vulnerable to cell death, and (iv) postnatal maturation of PKCγ-ir interneurons is due to neither neurogenesis, nor neuronal migration, and is independent of C-fiber development. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 102-119, 2017.
Collapse
Affiliation(s)
- Noemie Mermet-Joret
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| | - Nadwa Chatila
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, F-63100, France
| | - Lénaic Monconduit
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| | - Radhouane Dallel
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France.,Service D'Odontologie, CHU Clermont-Ferrand, Clermont-Ferrand, F-63000, France
| | - Myriam Antri
- Neuro-Dol, Clermont Université, Université D'Auvergne, BP 10448, F-63000, Clermont-Ferrand & Inserm U1107, Clermont-Ferrand, F-63100, France
| |
Collapse
|