1
|
Brunfeldt AT, Desrochers PC, Kagerer FA. Structural Learning Benefits in a Visuomotor Adaptation Task Generalize to a Contralateral Effector. J Mot Behav 2024; 56:642-653. [PMID: 38989887 DOI: 10.1080/00222895.2024.2371503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
Structural learning is characterized by facilitated adaptation following training on a set of sensory perturbations all belonging to the same structure (e.g., 'visuomotor rotations'). This generalization of learning is a core feature of the motor system and is often studied in the context of interlimb transfer. However, such transfer has only been demonstrated when participants learn to counter a specific perturbation in the sensory feedback of their movements; we determined whether structural learning in one limb generalized to the contralateral limb. We trained 13 participants to counter random visual feedback rotations between +/-90 degrees with the right hand and subsequently tested the left hand on a fixed rotation. The structural training group showed faster adaptation in the left hand in both feedforward and feedback components of reaching compared to 13 participants who trained with veridical reaching, with lower initial reaching error, and straighter, faster, and smoother movements than in the control group. The transfer was ephemeral - benefits were confined to roughly the first 20 trials. The results demonstrate that the motor system can extract invariant properties of seemingly random environments in one limb, and that this information can be accessed by the contralateral limb.
Collapse
Affiliation(s)
| | | | - Florian A Kagerer
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
2
|
Brunfeldt AT, Desrochers PC, Kagerer FA. Facilitated adaptation via structural learning increases bimanual interference. Exp Brain Res 2024; 242:137-148. [PMID: 37979066 DOI: 10.1007/s00221-023-06732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Bimanual coordination is an essential feature of the motor system, yet interactions between the limbs during independent control remain poorly understood. Interference between the two hands, or the assimilation of movement characteristics between the two effectors, can be induced by perturbing one arm (e.g., via visuomotor rotation) and then measuring the effects in the contralateral limb. In this study, we sought to further determine the role adaptation plays in bimanual interference using a structural learning paradigm to alter feedback regulation in reaching. We trained healthy participants to counter 60 unique random rotations in right hand visual feedback over 240 reaches. Following this, we assessed feedforward and feedback measures of interference in a bimanual reaching task where the right hand was exposed to a fixed visual feedback rotation while the left hand reached without visual feedback. We found that participants who had been exposed to the structural training task in the right hand showed increased left hand interference during the first 20 trials of the test task. Moreover, interference was greater in feedback, rather than feedforward control parameters. The results further suggest that structural learning enhances bimanual interference via sensory feedback upregulation.
Collapse
Affiliation(s)
- Alexander T Brunfeldt
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA
| | - Phillip C Desrochers
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA
| | - Florian A Kagerer
- Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, MI, 48824, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
3
|
Nataraj R, Sanford S, Liu M, Harel NY. Hand dominance in the performance and perceptions of virtual reach control. Acta Psychol (Amst) 2022; 223:103494. [PMID: 35045355 PMCID: PMC11056909 DOI: 10.1016/j.actpsy.2022.103494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Efforts to optimize human-computer interactions are becoming increasingly prevalent, especially with virtual reality (VR) rehabilitation paradigms that utilize engaging interfaces. We hypothesized that motor and perceptional behaviors within a virtual environment are modulated uniquely through different modes of control of a hand avatar depending on limb dominance. This study investigated the effects of limb dominance on performance and concurrent changes in perceptions, such as time-based measures for intentional binding, during virtual reach-to-grasp. METHODS Participants (n = 16, healthy) controlled a virtual hand through their own hand motions with control adaptations in speed, noise, and automation. RESULTS A significant (p < 0.01) positive relationship between performance (reaching pathlength) and binding (time-interval estimation of beep-sound after grasp contact) was observed for the dominant hand. Unique changes in performance (p < 0.0001) and binding (p < 0.0001) were observed depending on handedness and which control mode was applied. CONCLUSIONS Developers of VR paradigms should consider limb dominance to optimize settings that facilitate better performance and perceptional engagement. Adapting VR rehabilitation for handedness may particularly benefit unilateral impairments, like hemiparesis or single-limb amputation.
Collapse
Affiliation(s)
- Raviraj Nataraj
- Movement Control Rehabilitation (MOCORE) Laboratory, Altorfer Complex, Room 201, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Sean Sanford
- Movement Control Rehabilitation (MOCORE) Laboratory, Altorfer Complex, Room 201, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Mingxiao Liu
- Movement Control Rehabilitation (MOCORE) Laboratory, Altorfer Complex, Room 201, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Noam Y Harel
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, NY, USA; Departments of Neurology and Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, USA
| |
Collapse
|
4
|
Yao K, Sternad D, Billard A. Hand pose selection in a bimanual fine-manipulation task. J Neurophysiol 2021; 126:195-212. [PMID: 34107225 PMCID: PMC8325606 DOI: 10.1152/jn.00635.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many daily tasks involve the collaboration of both hands. Humans dexterously adjust hand poses and modulate the forces exerted by fingers in response to task demands. Hand pose selection has been intensively studied in unimanual tasks, but little work has investigated bimanual tasks. This work examines hand poses selection in a bimanual high-precision-screwing task taken from watchmaking. Twenty right-handed subjects dismounted a screw on the watch face with a screwdriver in two conditions. Results showed that although subjects used similar hand poses across steps within the same experimental conditions, the hand poses differed significantly in the two conditions. In the free-base condition, subjects needed to stabilize the watch face on the table. The role distribution across hands was strongly influenced by hand dominance: the dominant hand manipulated the tool, whereas the nondominant hand controlled the additional degrees of freedom that might impair performance. In contrast, in the fixed-base condition, the watch face was stationary. Subjects used both hands even though single hand would have been sufficient. Importantly, hand poses decoupled the control of task-demanded force and torque across hands through virtual fingers that grouped multiple fingers into functional units. This preference for bimanual over unimanual control strategy could be an effort to reduce variability caused by mechanical couplings and to alleviate intrinsic sensorimotor processing burdens. To afford analysis of this variety of observations, a novel graphical matrix-based representation of the distribution of hand pose combinations was developed. Atypical hand poses that are not documented in extant hand taxonomies are also included.NEW & NOTEWORTHY We study hand poses selection in bimanual fine motor skills. To understand how roles and control variables are distributed across the hands and fingers, we compared two conditions when unscrewing a screw from a watch face. When the watch face needed positioning, role distribution was strongly influenced by hand dominance; when the watch face was stationary, a variety of hand pose combinations emerged. Control of independent task demands is distributed either across hands or across distinct groups of fingers.
Collapse
Affiliation(s)
- Kunpeng Yao
- 1Learning Algorithms and Systems Laboratory, School of Engineering,
grid.5333.6École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dagmar Sternad
- 2Department of Biology, Northeastern University, Boston, Massachusetts,3Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts,4Department of Physics, Northeastern University, Boston, Massachusetts
| | - Aude Billard
- 1Learning Algorithms and Systems Laboratory, School of Engineering,
grid.5333.6École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Bimanual Interference Increases with Force Demands and is Facilitated by Visuomotor Adaptation. Neuroscience 2021; 463:57-69. [PMID: 33737027 DOI: 10.1016/j.neuroscience.2021.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/23/2022]
Abstract
When simultaneously performing asymmetrical movements with both hands, there is a tendency for the action of one limb to interfere with control of the other. Little is known about how sensory feedback influences interference. We conducted two experiments to determine how manipulating force feedback and visual feedback alter bimanual coordination during center-out reaching. In the adaptive experiment, asymmetrical reaching was induced by a visual feedback rotation for the right hand while the left hand operated under kinesthetic control (i.e., without visual feedback); in the non-adaptive experiment, asymmetrical reaching was induced by having participants move their right hand to rotated targets under veridical visual feedback, again with the left hand operating under kinesthetic control. In both experiments, we applied a spring resistive force to each hand, with different groups of participants experiencing 0 N/m, 30 N/m, or 60 N/m of resistance. In the adaptive experiment, interference increased with an increase in the force demands for movement in a dose-response fashion (i.e., the higher the resistive force, the larger the interference), but this result did not hold generally for the non-adaptive experiment. Our results indicate that adapting to a visuomotor perturbation may increase sensitivity to feedback gains, including to sensory information not present in the perturbation. Additionally, interference may reflect the application of an explicit strategy used for one limb to control the other, and the addition of an implicit adapting process may bolster this communication of motor information across motor cortices.
Collapse
|
6
|
Scarpina F, Bruno V, Rabuffetti M, Priano L, Tagini S, Gindri P, Mauro A, Garbarini F. Drawing lines and circles in Parkinson's Disease: The lateralized symptoms interfere with the movements of the unaffected hand. Neuropsychologia 2020; 151:107718. [PMID: 33309678 DOI: 10.1016/j.neuropsychologia.2020.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Evidence about altered bimanual coordination has been reported in Parkinson's Disease. However, no previous study has explored such an alteration quantifying the interference effect that the trajectory of each hand might impose on the other one. Thus, in the present research, we applied the traditional Circles-Lines Coupling Task, which allowed assessing the motor coordination of the two hands, in the context of Parkinson's Disease. METHODS Thirty-six individuals affected by Parkinson's Disease were consecutively recruited and assigned to two groups according to their symptoms' lateralization. Moreover, eighteen age-matched healthy controls participated in the study. We capitalized on the Circles-Lines Coupling Task, in which the performance during incongruent movements (drawing lines with one hand and circles with the other hand) was compared with the performance during congruent movements (drawing lines with both hands). A bimanual coupling index was computed to compare the interference effect of each hand on the other one. RESULTS In healthy controls, the bimanual coupling index did not differ between the two hands. Crucially, in both groups of individuals affected by Parkinson's Disease, the less affected hand showed a significantly higher bimanual coupling index, due to the abnormal interference exerted by the most affected one, than vice versa. CONCLUSIONS Our results highlighted an altered spatial bimanual coupling in Parkinson's disease, depending on the symptoms' lateralization. We offered different explanations of our results according to the theoretical frameworks about the mechanisms subserving bimanual coordination.
Collapse
Affiliation(s)
- Federica Scarpina
- "Rita Levi Montalcini" Department of Neurosciences, University of Turin, Italy; Istituto Auxologico Italiano, IRCCS, U.O. di Neurologia e Neuroriabilitazione, Piancavallo, VCO, Italy.
| | - Valentina Bruno
- MANIBUS Lab, Department of Psychology, University of Turin, Italy
| | | | - Lorenzo Priano
- "Rita Levi Montalcini" Department of Neurosciences, University of Turin, Italy; Istituto Auxologico Italiano, IRCCS, U.O. di Neurologia e Neuroriabilitazione, Piancavallo, VCO, Italy
| | - Sofia Tagini
- Istituto Auxologico Italiano, IRCCS, U.O. di Neurologia e Neuroriabilitazione, Piancavallo, VCO, Italy
| | | | - Alessandro Mauro
- "Rita Levi Montalcini" Department of Neurosciences, University of Turin, Italy; Istituto Auxologico Italiano, IRCCS, U.O. di Neurologia e Neuroriabilitazione, Piancavallo, VCO, Italy
| | | |
Collapse
|
7
|
Schaffer JE, Maenza C, Good DC, Przybyla A, Sainburg RL. Left hemisphere damage produces deficits in predictive control of bilateral coordination. Exp Brain Res 2020; 238:2733-2744. [PMID: 32970199 PMCID: PMC10704921 DOI: 10.1007/s00221-020-05928-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Previous research has demonstrated hemisphere-specific motor deficits in ipsilesional and contralesional unimanual movements in patients with hemiparetic stroke due to MCA infarct. Due to the importance of bilateral motor actions on activities of daily living, we now examine how bilateral coordination may be differentially affected by right or left hemisphere stroke. To avoid the caveat of simply adding unimanual deficits in assessing bimanual coordination, we designed a unique task that requires spatiotemporal coordination features that do not exist in unimanual movements. Participants with unilateral left (LHD) or right hemisphere damage (RHD) and age-matched controls moved a virtual rectangle (bar) from a midline start position to a midline target. Movement along the long axis of the bar was redundant to the task, such that the bar remained in the center of and parallel to an imaginary line connecting each hand. Thus, to maintain midline position of the bar, movements of one hand closer to or further away from the bar midline required simultaneous, but oppositely directed displacements with the other hand. Our findings indicate that left (LHD), but not right (RHD) hemisphere-damaged patients showed poor interlimb coordination, reflected by significantly lower correlations between displacements of each hand along the bar axis. These left hemisphere-specific deficits were only apparent prior to peak velocity, likely reflecting predictive control of interlimb coordination. In contrast, the RHD group bilateral coordination was not significantly different than that of the control group. We conclude that predictive mechanisms that govern bilateral coordination are dependent on left hemisphere mechanisms. These findings indicate that assessment and training in cooperative bimanual tasks should be considered as part of an intervention framework for post-stroke physical rehabilitation.
Collapse
Affiliation(s)
- Jacob E Schaffer
- Department of Kinesiology, The Pennsylvania State University, 27 Recreation Building, University Park, PA, 16802, USA.
| | - Candice Maenza
- Department of Neurology, Penn State Milton S. Hershey College of Medicine, Hershey, USA
| | - David C Good
- Department of Neurology, Penn State Milton S. Hershey College of Medicine, Hershey, USA
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, USA
| | - Robert L Sainburg
- Department of Kinesiology, The Pennsylvania State University, 27 Recreation Building, University Park, PA, 16802, USA
- Department of Neurology, Penn State Milton S. Hershey College of Medicine, Hershey, USA
| |
Collapse
|
8
|
Takagi A, Maxwell S, Melendez-Calderon A, Burdet E. The dominant limb preferentially stabilizes posture in a bimanual task with physical coupling. J Neurophysiol 2020; 123:2154-2160. [PMID: 32348682 DOI: 10.1152/jn.00047.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Humans are endowed with an ability to skillfully handle objects, like when holding a jar with the nondominant hand while opening the lid with the dominant hand. Dynamic dominance, a prevailing theory in handedness research, proposes that the nondominant hand is specialized for postural stability, which would explain why right-handed people hold the jar steady using the left hand. However, the underlying specialization of the nondominant hand has only been tested unimanually, or in a bimanual task where the two hands had different functions. Using a dedicated dual-wrist robotic interface, we tested the dynamic dominance hypothesis in a bimanual task where both hands carry out the same function. We examined how left- and right-handed subjects held onto a vibrating virtual object using their wrists, which were physically coupled by the object. Muscular activity of the wrist flexors and extensors revealed a preference for cocontracting the dominant hand during both holding and transport of the object, which suggests proficiency in the dominant hand for stabilization, contradicting the dynamic dominance hypothesis. While the reliance on the dominant hand was partially explained by its greater strength, the Edinburgh inventory was a better predictor of the difference in the cocontraction between the dominant and nondominant hands. When provided with redundancy to stabilize the task, the dominant hand preferentially cocontracts to absorb perturbing forces.NEW & NOTEWORTHY We found that subjects prefer to stabilize a bimanually held object by cocontracting their dominant limb, contradicting the established view that the nondominant limb is specialized toward stabilization.
Collapse
Affiliation(s)
- A Takagi
- NTT Communication Science Laboratories, Atsugi, Kanagawa, Japan.,Imperial College of Science, Technology and Medicine, London, United Kingdom.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - S Maxwell
- Imperial College of Science, Technology and Medicine, London, United Kingdom
| | - A Melendez-Calderon
- School of Information Technology and Electronic Engineering, University of Queensland, St Lucia, Queensland, Australia.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - E Burdet
- Imperial College of Science, Technology and Medicine, London, United Kingdom
| |
Collapse
|
9
|
Desrochers PC, Brunfeldt AT, Kagerer FA. Neurophysiological Correlates of Adaptation and Interference during Asymmetrical Bimanual Movements. Neuroscience 2020; 432:30-43. [PMID: 32036015 DOI: 10.1016/j.neuroscience.2020.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/28/2019] [Accepted: 01/29/2020] [Indexed: 12/30/2022]
Abstract
In this study, we investigated brain dynamics during interference between hands during bimanual movements. Participants performed a bimanual center-out reaching task in which a visuomotor rotation was applied to the right hand while the left hand did not receive visual feedback of its movements. This manipulation resulted in interference from the adapting right hand to the kinesthetically guided left hand. Electroencephalography (EEG) recordings during the task showed that spectral power in the high and low beta frequency bands was elevated early in exposure, but decreased throughout learning. This may be representative of error-based updating of internal models of movement. Additionally, coherence, a measure of neural functional connectivity, was elevated both within and between hemispheres in the beta frequencies during the initial presentation of the visuomotor rotation, and then decreased throughout adaptation. This suggests that beta oscillatory neural activity may be marker for transmission of conflicting motor information between hemispheres, which manifests in interference between the hands during asymmetrical bimanual movements.
Collapse
Affiliation(s)
- Phillip C Desrochers
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Florian A Kagerer
- Department of Kinesiology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Shuggi IM, Oh H, Wu H, Ayoub MJ, Moreno A, Shaw EP, Shewokis PA, Gentili RJ. Motor Performance, Mental Workload and Self-Efficacy Dynamics during Learning of Reaching Movements throughout Multiple Practice Sessions. Neuroscience 2019; 423:232-248. [PMID: 31325564 DOI: 10.1016/j.neuroscience.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
The human capability to learn new motor skills depends on the efficient engagement of cognitive-motor resources, as reflected by mental workload, and psychological mechanisms (e.g., self-efficacy). While numerous investigations have examined the relationship between motor behavior and mental workload or self-efficacy in a performance context, a fairly limited effort focused on the combined examination of these notions during learning. Thus, this study aimed to examine their concomitant dynamics during the learning of a novel reaching skill practiced throughout multiple sessions. Individuals had to learn to control a virtual robotic arm via a human-machine interface by using limited head motion throughout eight practice sessions while motor performance, mental workload, and self-efficacy were assessed. The results revealed that as individuals learned to control the robotic arm, performance improved at the fastest rate, followed by a more gradual reduction of mental workload and finally an increase in self-efficacy. These results suggest that once the performance improved, less cognitive-motor resources were recruited, leading to an attenuated mental workload. Considering that attention is a primary cognitive resource driving mental workload, it is suggested that during early learning, attentional resources are primarily allocated to address task demands and not enough are available to assess self-efficacy. However, as the performance becomes more automatic, a lower level of mental workload is attained driven by decreased recruitment of attentional resources. These available resources allow for a reliable assessment of self-efficacy resulting in a subsequent observable change. These results are also discussed in terms of the application to the training and design of assistive technologies.
Collapse
Affiliation(s)
- Isabelle M Shuggi
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Hyuk Oh
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Helena Wu
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Maria J Ayoub
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Arianna Moreno
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Emma P Shaw
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA; Nutrition Sciences Department, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA; Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
11
|
Nouredanesh M, Frazer M, Tung J, Jeon S, Arami A. Effect of Visual Information on Dominant and Non-dominant Hands During Bimanual Drawing with a Robotic Platform. IEEE Int Conf Rehabil Robot 2019; 2019:1221-1226. [PMID: 31374796 DOI: 10.1109/icorr.2019.8779461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In a stable bimanual trajectory tracing task with interlimb spatial and temporal synchrony, blocking the visual information from one hand may alter the performance of either hand. In this paper, we investigate the effect of visual information on motor behaviour of dominant and non-dominant hands during a bimanual task, with a focus on motor lateralization theory's anticipation for a more pronounced distortion on one hand due to visual information withdrawal. To address this question, four bimanual circle tracing experiments were designed with two rehabilitation robotic arms with real time visual feedback. Two experiments were conducted under the free-visual condition whereas the visual feedback from one hand was blocked for the other two. The in-depth analysis of the metrics extracted from 685 circles, drawn by 6 participants, revealed that non-dominant hand, when visible, generally performs worse than the dominant hand, for instance it exhibits less circularity. In their invisible modes, the performance of the dominant and non-dominant hands displayed inconsistent difference across the participants. Moreover, both hands showed a higher pace when partial visual information was available. Our findings using this robotic framework as a systematic tool on developing new paradigms are discussed.
Collapse
|
12
|
Shuggi IM, Shewokis PA, Herrmann JW, Gentili RJ. Changes in motor performance and mental workload during practice of reaching movements: a team dynamics perspective. Exp Brain Res 2017; 236:433-451. [PMID: 29214390 DOI: 10.1007/s00221-017-5136-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
Abstract
Few investigations have examined mental workload during motor practice or learning in a context of team dynamics. This study examines the underlying cognitive-motor processes of motor practice by assessing the changes in motor performance and mental workload during practice of reaching movements. Individuals moved a robotic arm to reach targets as fast and as straight as possible while satisfying the task requirement of avoiding a collision between the end-effector and the workspace limits. Individuals practiced the task either alone (HA group) or with a synthetic teammate (HRT group), which regulated the effector velocity to help satisfy the task requirements. The findings revealed that the performance of both groups improved similarly throughout practice. However, when compared to the individuals of the HA group, those in the HRT group (1) had a lower risk of collisions, (2) exhibited higher performance consistency, and (3) revealed a higher level of mental workload while generally perceiving the robotic teammate as interfering with their performance. As the synthetic teammate changed the effector velocity in specific regions near the workspace boundaries, individuals may have been constrained to learn a piecewise visuomotor map. This piecewise map made the task more challenging, which increased mental workload and perception of the synthetic teammate as a burden. The examination of both motor performance and mental workload revealed a combination of both adaptive and maladaptive team dynamics. This work is a first step to examine the human cognitive-motor processes underlying motor practice in a context of team dynamics and contributes to inform human-robot applications.
Collapse
Affiliation(s)
- Isabelle M Shuggi
- Systems Engineering Program, University of Maryland, College Park, MD, 20742, USA.,Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, 20742, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, USA
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 19102, USA.,Nutrition Sciences Department, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, 19102, USA
| | - Jeffrey W Herrmann
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.,Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, 20742, USA. .,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, USA. .,Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
13
|
Shuggi IM, Oh H, Shewokis PA, Gentili RJ. Mental workload and motor performance dynamics during practice of reaching movements under various levels of task difficulty. Neuroscience 2017; 360:166-179. [PMID: 28757242 DOI: 10.1016/j.neuroscience.2017.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
14
|
Kagerer FA. Asymmetric interference in left-handers during bimanual movements reflects switch in lateralized control characteristics. Exp Brain Res 2016; 234:1545-53. [DOI: 10.1007/s00221-016-4556-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|