1
|
Poole JJA, Mostaço-Guidolin LB. Optical Microscopy and the Extracellular Matrix Structure: A Review. Cells 2021; 10:1760. [PMID: 34359929 PMCID: PMC8308089 DOI: 10.3390/cells10071760] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biological tissues are not uniquely composed of cells. A substantial part of their volume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity. Understanding the intimate interaction between the cells and their structural microenvironment is central to our understanding of the factors driving the formation of normal versus remodelled tissue, including the processes involved in chronic fibrotic diseases. The visualization of the ECM is a key factor to track such changes successfully. This review is focused on presenting several optical imaging microscopy modalities used to characterize different ECM components. In this review, we describe and provide examples of applications of a vast gamut of microscopy techniques, such as widefield fluorescence, total internal reflection fluorescence, laser scanning confocal microscopy, multipoint/slit confocal microscopy, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG, THG), coherent anti-Stokes Raman scattering (CARS), fluorescence lifetime imaging microscopy (FLIM), structured illumination microscopy (SIM), stimulated emission depletion microscopy (STED), ground-state depletion microscopy (GSD), and photoactivated localization microscopy (PALM/fPALM), as well as their main advantages, limitations.
Collapse
Affiliation(s)
| | - Leila B. Mostaço-Guidolin
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
2
|
Kaushik R, Lipachev N, Matuszko G, Kochneva A, Dvoeglazova A, Becker A, Paveliev M, Dityatev A. Fine structure analysis of perineuronal nets in the ketamine model of schizophrenia. Eur J Neurosci 2020; 53:3988-4004. [PMID: 32510674 DOI: 10.1111/ejn.14853] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022]
Abstract
Perineuronal nets (PNNs) represent a highly condensed specialized form of brain extracellular matrix (ECM) enwrapping mostly parvalbumin-positive interneurons in the brain in a mesh-like fashion. PNNs not only regulate the onset and completion of the critical period during postnatal brain development, control cell excitability, and synaptic transmission but are also implicated in several brain disorders including schizophrenia. Holes in the perineuronal nets, harboring the synaptic contacts, along with hole-surrounding ECM barrier can be viewed as PNN compartmentalization units that might determine the properties of synapses and heterosynaptic communication. In this study, we developed a novel open-source script for Fiji (ImageJ) to semi-automatically quantify structural alterations of PNNs such as the number of PNN units, area, mean intensity of PNN marker expression in 2D and 3D, shape parameters of PNN units in the ketamine-treated Sprague-Dawley rat model of schizophrenia using high-resolution confocal microscopic images. We discovered that the mean intensity of ECM within PNN units is inversely correlated with the area and the perimeter of the PNN holes. The intensity, size, and shape of PNN units proved to be three major principal factors to describe their variability. Ketamine-treated rats had more numerous but smaller and less circular PNN units than control rats. These parameters allowed to correctly classify individual PNNs as derived from control or ketamine-treated groups with ≈85% reliability. Thus, the proposed multidimensional analysis of PNN units provided a robust and comprehensive morphometric fingerprinting of fine ECM structure abnormalities in the experimental model of schizophrenia.
Collapse
Affiliation(s)
- Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Nikita Lipachev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Physics, Kazan Federal University, Kazan, Russia
| | - Gabriela Matuszko
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anastasia Kochneva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anastasia Dvoeglazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mikhail Paveliev
- Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
3
|
Szarvas D, Gaál B, Matesz C, Rácz É. Distribution of the Extracellular Matrix in the Pararubral Area of the Rat. Neuroscience 2018; 394:177-188. [PMID: 30367949 DOI: 10.1016/j.neuroscience.2018.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/09/2022]
Abstract
Previously we described similarities and differences in the organization and molecular composition of an aggrecan based extracellular matrix (ECM) in three precerebellar nuclei, the inferior olive, the prepositus hypoglossi nucleus and the red nucleus of the rat associated with their specific cytoarchitecture, connection and function in the vestibular system. The aim of present study is to map the ECM pattern in a mesencephalic precerebellar nucleus, the pararubral area, which has a unique function among the precerebellar nuclei with its retinal connection and involvement in the circadian rhythm regulation. Using histochemistry and immunohistochemistry we have described for the first time the presence of major ECM components, the hyaluronan, aggrecan, versican, neurocan, brevican, tenascin-R (TN-R), and the HAPLN1 link protein in the pararubral area. The most common form of the aggrecan based ECM was the diffuse network in the neuropil, but each type of the condensed forms was also recognizable. Characteristic perineuronal nets (PNNs) were only recognizable with Wisteria floribunda agglutinin (WFA) and aggrecan staining around some of the medium-sized neurons, whereas the small cells were rarely surrounded by a weakly stained PNNs. The moderate expression of key molecules of PNN, the hyaluronan (HA) and HAPLN1 suggests that the lesser stability of ECM assembly around the pararubral neurons may allow quicker response to the modified neuronal activity and contributes to the high level of plasticity in the vestibular system.
Collapse
Affiliation(s)
- Dóra Szarvas
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - Clara Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary
| | - Éva Rácz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen H-4032, Hungary; MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen 4032, Hungary.
| |
Collapse
|
4
|
Chelini G, Pantazopoulos H, Durning P, Berretta S. The tetrapartite synapse: a key concept in the pathophysiology of schizophrenia. Eur Psychiatry 2018; 50:60-69. [PMID: 29503098 PMCID: PMC5963512 DOI: 10.1016/j.eurpsy.2018.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/01/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Growing evidence points to synaptic pathology as a core component of the pathophysiology of schizophrenia (SZ). Significant reductions of dendritic spine density and altered expression of their structural and molecular components have been reported in several brain regions, suggesting a deficit of synaptic plasticity. Regulation of synaptic plasticity is a complex process, one that requires not only interactions between pre- and post-synaptic terminals, but also glial cells and the extracellular matrix (ECM). Together, these elements are referred to as the ‘tetrapartite synapse’, an emerging concept supported by accumulating evidence for a role of glial cells and the extracellular matrix in regulating structural and functional aspects of synaptic plasticity. In particular, chondroitin sulfate proteoglycans (CSPGs), one of the main components of the ECM, have been shown to be synthesized predominantly by glial cells, to form organized perisynaptic aggregates known as perineuronal nets (PNNs), and to modulate synaptic signaling and plasticity during postnatal development and adulthood. Notably, recent findings from our group and others have shown marked CSPG abnormalities in several brain regions of people with SZ. These abnormalities were found to affect specialized ECM structures, including PNNs, as well as glial cells expressing the corresponding CSPGs. The purpose of this review is to bring forth the hypothesis that synaptic pathology in SZ arises from a disruption of the interactions between elements of the tetrapartite synapse.
Collapse
Affiliation(s)
- Gabriele Chelini
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA.
| | - Peter Durning
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA.
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, 115 Mill Street, Belmont, MA, 02478 USA; Dept. of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115 USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Ave., Boston, MA, 02115 USA.
| |
Collapse
|
5
|
Beebe NL, Schofield BR. Perineuronal nets in subcortical auditory nuclei of four rodent species with differing hearing ranges. J Comp Neurol 2018; 526:972-989. [PMID: 29277975 DOI: 10.1002/cne.24383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/20/2017] [Accepted: 12/09/2017] [Indexed: 12/19/2022]
Abstract
Perineuronal nets (PNs) are aggregates of extracellular matrix molecules that surround some neurons in the brain. While PNs occur widely across many cortical areas, subcortical PNs are especially associated with motor and auditory systems. The auditory system has recently been suggested as an ideal model system for studying PNs and their functions. However, descriptions of PNs in subcortical auditory areas vary, and it is unclear whether the variation reflects species differences or differences in staining techniques. Here, we used two staining techniques (one lectin stain and one antibody stain) to examine PN distribution in the subcortical auditory system of four different species: guinea pigs (Cavia porcellus), mice (Mus musculus, CBA/CaJ strain), Long-Evans rats (Rattus norvegicus), and naked mole-rats (Heterocephalus glaber). We found that some auditory nuclei exhibit dramatic differences in PN distribution among species while other nuclei have consistent PN distributions. We also found that PNs exhibit molecular heterogeneity, and can stain with either marker individually or with both. PNs within a given nucleus can be heterogeneous or homogenous in their staining patterns. We compared PN staining across the frequency axes of tonotopically organized nuclei and among species with different hearing ranges. PNs were distributed non-uniformly across some nuclei, but only rarely did this appear related to the tonotopic axis. PNs were prominent in all four species; we found no systematic relationship between the hearing range and the number, staining patterns or distribution of PNs in the auditory nuclei.
Collapse
Affiliation(s)
- Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| |
Collapse
|