1
|
Zhang H, Hu S, Yang P, Long H, Ma Q, Yin D, Xu G. HDAC9-mediated calmodulin deacetylation induces memory impairment in Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14573. [PMID: 38421101 PMCID: PMC10850929 DOI: 10.1111/cns.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive dysfunction and memory impairment. AD pathology involves protein acetylation. Previous studies have mainly focused on histone acetylation in AD, however, the roles of nonhistone acetylation in AD are less explored. METHODS The protein acetylation and expression levels were detected by western blotting and co-immunoprecipitation. The stoichiometry of acetylation was measured by home-made and site-specific antibodies against acetylated-CaM (Ac-CaM) at K22, K95, and K116. Hippocampus-dependent learning and memory were evaluated by using the Morris water maze, novel object recognition, and contextual fear conditioning tests. RESULTS We showed that calmodulin (CaM) acetylation is reduced in plasma of AD patients and mice. CaM acetylation and its target Ca2+ /CaM-dependent kinase II α (CaMKIIα) activity were severely impaired in AD mouse brain. The stoichiometry showed that Ac-K22, K95-CaM acetylation were decreased in AD patients and mice. Moreover, we screened and identified that lysine deacetylase 9 (HDAC9) was the main deacetylase for CaM. In addition, HDAC9 inhibition increased CaM acetylation and CaMKIIα activity, and hippocampus-dependent memory in AD mice. CONCLUSIONS HDAC9-mediated CaM deacetylation induces memory impairment in AD, HDAC9, or CaM acetylation may become potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Hai‐Long Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of NeuroscienceSuzhou Medical College of Soochow University, Medical Center of Soochow UniversitySuzhouChina
| | - Shufen Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of NeuroscienceSuzhou Medical College of Soochow University, Medical Center of Soochow UniversitySuzhouChina
| | - Pin Yang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life ScienceEast China Normal UniversityShanghaiChina
| | - Han‐Chun Long
- Department of NeurologyThe Affiliated Xingyi City Hospital of Guizhou Medical UniversityXingyiChina
| | - Quan‐Hong Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of NeuroscienceSuzhou Medical College of Soochow University, Medical Center of Soochow UniversitySuzhouChina
| | - Dong‐Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life ScienceEast China Normal UniversityShanghaiChina
| | - Guang‐Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of NeuroscienceSuzhou Medical College of Soochow University, Medical Center of Soochow UniversitySuzhouChina
| |
Collapse
|
2
|
Kajita Y, Kojima N, Shirao T. A lack of drebrin causes olfactory impairment. Brain Behav 2024; 14:e3354. [PMID: 38376048 PMCID: PMC10757890 DOI: 10.1002/brb3.3354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Olfactory deficit often occurs during the prodromal stage of Alzheimer's disease (AD). Although olfactory deficit is a useful measure for screening AD-related amnestic disorder, little is known about the cause of this deficit. Human and animal studies indicate that loss of the actin binding protein, drebrin, is closely related to cognitive dysfunction in AD. We hypothesized that the olfactory deficit in AD is caused by the loss of drebrin from the spine. METHODS To verify this hypothesis, we performed the buried food test in two types of drebrin knockout mice, such as drebrin-double (E and A) knockout (DXKO) mice, and drebrin A-specific knockout (DAKO) mice. RESULTS The DXKO mice spent a significantly longer time to find food compared with the wild-type (WT) littermates. In contrast, the DAKO mice, in which drebrin E rather than drebrin A is expressed in the postsynaptic sites of mature neurons, spent an equivalent time trying to find food compared to that of the WT. The DXKO mice showed comparable food motivation and sensory functions other than olfaction, including visual and auditory functions. CONCLUSION These results indicate that drebrin is necessary for normal olfactory function. Further study is needed to determine whether it is necessary for normal olfaction to express drebrin E during the developmental stage or to have drebrin (whether E or A) present after maturation.
Collapse
Affiliation(s)
- Yuki Kajita
- Department of Neurobiology & BehaviorGunma University Graduate School of MedicineMaebashiGunmaJapan
| | - Nobuhiko Kojima
- Department of Neurobiology & BehaviorGunma University Graduate School of MedicineMaebashiGunmaJapan
- Faculty of Life SciencesToyo UniversityOra‐gunGunmaJapan
| | - Tomoaki Shirao
- Department of Neurobiology & BehaviorGunma University Graduate School of MedicineMaebashiGunmaJapan
- AlzMed, Inc., UT South Building, Entrepreneurs LaboratoryBunkyo‐kuTokyoJapan
| |
Collapse
|
3
|
Phldb2 is essential for regulating hippocampal dendritic spine morphology through drebrin in an adult-type isoform-specific manner. Neurosci Res 2022; 185:1-10. [PMID: 36162735 DOI: 10.1016/j.neures.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022]
Abstract
Morphologically dynamic dendritic spines are the major sites of neuronal plasticity in the brain; however, the molecular mechanisms underlying their morphological dynamics have not been fully elucidated. Phldb2 is a protein that contains two predicted coiled-coil domains and the pleckstrin homology domain, whose binding is highly sensitive to PIP3. We have previously demonstrated that Phldb2 regulates synaptic plasticity, glutamate receptor trafficking, and PSD-95 turnover. Drebrin is one of the most abundant neuron-specific F-actin-binding proteins that are pivotal for synaptic morphology and plasticity. We observed that Phldb2 bound to drebrin A (adult-type drebrin), but not to drebrin E (embryonic-type drebrin). In the absence of Phldb2, the subcellular localization of drebrin A in the hippocampal spines and its distribution in the hippocampus were altered. Immature spines, such as the filopodium type, increased relatively in the CA1 regions of the hippocampus, whereas mushroom spines, a typical mature type, decreased in Phldb2-/- mice. Phldb2 suppressed the formation of an abnormal filopodium structure induced by drebrin A overexpression. Taken together, these findings demonstrate that Phldb2 is pivotal for dendritic spine morphology and possibly for synaptic plasticity in mature animals by regulating drebrin A localization.
Collapse
|
4
|
Chen J, Liu C, Xu M, Zhu J, Xia Z. Upregulation of miR-19b-3p exacerbates chronic stress-induced changes in synaptic plasticity and cognition by targeting Drebrin. Neuropharmacology 2022; 207:108951. [PMID: 35041806 DOI: 10.1016/j.neuropharm.2022.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022]
Abstract
Chronic stress is associate with impairment of synapse plasticity in hippocampus and cognitive dysfunction in rodent and human. Notably, corticosterone (CORT) is believed to take responsible for dendritic atrophy and reduction of spine number induced by chronic stress in hippocampus. But little is known about the molecular mechanisms underlying CORT induced abnormal synapse plasticity and cognitive dysfunction. Drebrin is an F-actin binding protein that modulates memory formation and maintenance by controlling the genesis and morphology of dendritic spines. In addition, miRNAs have been reported to participate in the negative regulation of protein-coding genes. In this study, five miRNAs capable of targeting Drebrin were selected by searching miRNA databases. One of these miRNAs, miR-19b-3p, was found to be upregulated in the hippocampal neurons of mice with chronic restraint stress (CRS). Luciferase reporter assay and Fluorescence in situ hybridization (FISH) were employed to identified the interaction between miR-19b-3p and Drebrin. In addition, silencing miR-19b-3p expression in vivo using an antagomir or in vitro using an inhibitor increased Drebrin expression, ameliorated the abnormal dendritic structure and upregulated the spine density in hippocampal CA1 pyramidal neurons of CRS mice and primary hippocampal neurons cultured under CORT stimulation, respectively. Electrophysiological analysis revealed that inhibition of miR-19b-3p rescued the limited synaptic transmission and synaptic plasticity in hippocampal neurons. Moreover, blocking miR-19b-3p drastically protected against cognitive deficits in CRS mice. These in vivo and in vitro findings indicate that the upregulation of miR-19b-3p exacerbates CRS-induced abnormal synaptic plasticity and cognitive impairment by targeting Drebrin.
Collapse
Affiliation(s)
- Jingli Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China; Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chang Liu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Mu Xu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Jiaxi Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China; Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
5
|
Furukawa T, Nikaido Y, Shimoyama S, Masuyama N, Notoya A, Ueno S. Impaired Cognitive Function and Hippocampal Changes Following Chronic Diazepam Treatment in Middle-Aged Mice. Front Aging Neurosci 2021; 13:777404. [PMID: 34899279 PMCID: PMC8664496 DOI: 10.3389/fnagi.2021.777404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Gamma-aminobutyric acid (GABA) type A receptors are positively allosterically modulated by benzodiazepine binding, leading to a potentiated response to GABA. Diazepam (DZP, a benzodiazepine) is widely prescribed for anxiety, epileptic discharge, and insomnia, and is also used as a muscle relaxant and anti-convulsant. However, some adverse effects - such as tolerance, dependence, withdrawal effects, and impairments in cognition and learning - are elicited by the long-term use of DZP. Clinical studies have reported that chronic DZP treatment increases the risk of dementia in older adults. Furthermore, several studies have reported that chronic DZP administration may affect neuronal activity in the hippocampus, dendritic spine structure, and cognitive performance. However, the effects of chronic DZP administration on cognitive function in aged mice is not yet completely understood. Methods: A behavioral test, immunohistochemical analysis of neurogenic and apoptotic markers, dendritic spine density analysis, and long-term potentiation (LTP) assay of the hippocampal CA1 and CA3 were performed in both young (8 weeks old) and middle-aged (12 months old) mice to investigate the effects of chronic DZP administration on cognitive function. The chronic intraperitoneal administration of DZP was performed by implanting an osmotic minipump. To assess spatial learning and memory ability, the Morris water maze test was performed. Dendritic spines were visualized using Lucifer yellow injection into the soma of hippocampal neurons, and spine density was analyzed. Moreover, the effects of exercise on DZP-induced changes in spine density and LTP in the hippocampus were assessed. Results: Learning performance was impaired by chronic DZP administration in middle-aged mice but not in young mice. LTP was attenuated by DZP administration in the CA1 of young mice and the CA3 of middle-aged mice. The spine density of hippocampal neurons was decreased by chronic DZP administration in the CA1 of both young and middle-aged mice as well as in the CA3 of middle-aged mice. Neither neurogenesis nor apoptosis in the hippocampus was affected by chronic DZP administration. Conclusion: The results of this study suggest that the effects of chronic DZP are different between young and middle-aged mice. The chronic DZP-induced memory retrieval performance impairment in middle-aged mice can likely be attributed to decreased LTP and dendritic spine density in hippocampal neurons in the CA3. Notably, prophylactic exercise suppressed the adverse effects of chronic DZP on LTP and spine maintenance in middle-aged mice.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshikazu Nikaido
- Department of Frailty Research and Prevention, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Nozomu Masuyama
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ayaka Notoya
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinya Ueno
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Research Center for Child Mental Development, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
6
|
Zhang HL, Zhao B, Yang P, Du YQ, Han W, Xu J, Yin DM. Steroid Receptor Coactivator 3 Regulates Synaptic Plasticity and Hippocampus-dependent Memory. Neurosci Bull 2021; 37:1645-1657. [PMID: 34228315 PMCID: PMC8643392 DOI: 10.1007/s12264-021-00741-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/27/2021] [Indexed: 11/28/2022] Open
Abstract
Steroid hormones play important roles in brain development and function. The signaling of steroid hormones depends on the interaction between steroid receptors and their coactivators. Although the function of steroid receptor coactivators has been extensively studied in other tissues, their functions in the central nervous system are less well investigated. In this study, we addressed the function of steroid receptor coactivator 3 (SRC3) - a member of the p160 SRC protein family that is expressed predominantly in the hippocampus. While hippocampal development was not altered in Src3+/- mice, hippocampus-dependent functions such as short-term memory and spatial memory were impaired. We further demonstrated that the deficient learning and memory in Src3+/- mice was strongly associated with the impairment of long-term potentiation (LTP) at Schaffer Collateral-CA1 synapses. Mechanistic studies indicated that Src3+/- mutation altered the composition of N-methyl-D-aspartate receptor subunits in the postsynaptic densities of hippocampal neurons. Finally, we showed that SRC3 regulated synaptic plasticity and learning mainly dependent on its lysine acetyltransferase activity. Taken together, these results reveal previously unknown functions of SRC3 in the hippocampus and thus may provide insight into how steroid hormones regulate brain function.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Bing Zhao
- MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China
| | - Pin Yang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Yin-Quan Du
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Wei Han
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
7
|
Effects of neuronal drebrin on actin dynamics. Biochem Soc Trans 2021; 49:685-692. [PMID: 33739391 DOI: 10.1042/bst20200577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Drebrin is a key regulator of actin cytoskeleton in neuronal cells which is critical for synaptic plasticity, neuritogenesis, and neuronal migration. It is also known to orchestrate a cross-talk between actin and microtubules. Decreased level of drebrin is a hallmark of multiple neurodegenerative disorders such as Alzheimer's disease. Despite its established importance in health and disease, we still have a lot to learn about drebrin's interactome and its effects on cytoskeletal dynamics. This review aims to summarize the recently reported novel effects of drebrin on actin and its regulators. Here I will also reflect on the most recent progress made in understanding of the role of drebrin isoforms and posttranslational modifications on its functionality.
Collapse
|
8
|
Hao W, Liu S, Liu H, Mu X, Chen K, Xin Q, Zhang XD. In Vivo Neuroelectrophysiological Monitoring of Atomically Precise Au 25 Clusters at an Ultrahigh Injected Dose. ACS OMEGA 2020; 5:24537-24545. [PMID: 33015471 PMCID: PMC7528291 DOI: 10.1021/acsomega.0c03005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 05/14/2023]
Abstract
Atomically precise Au25(SG)18 clusters have shown great promise in near-infrared II cerebrovascular imaging, X-ray imaging, and cancer radiotherapy due to their high atomic number, unique molecular-like electronic structure, and renal clearable properties. Therefore, it is important to study the in vivo toxicity of Au25 clusters. Unfortunately, previous toxicological investigations focused on low injected doses (<100 mg kg-1) and routine research methods, such as blood chemistry and biochemistry, which cannot reflect neurotoxicity or tiny changes in neural activity. In this work, in vivo neuroelectrophysiology of Au25 clusters at ultrahigh injected doses (200, 300, and 500 mg kg-1) was investigated. Local field potential showed that the Au25-treated mice showed a spike in delta rhythm and moved to lower frequency over time. The power spectrum showed a 38.3% reduction in the peak value at 10 h post-injection of Au25 clusters compared with 3 h post-injection, which gradually became close to the normal level, indicating no permanent damage to the nervous system. Moreover, no significant structural changes were found in both neurons and glial cells at the histological level. These results of in vivo neuroelectrophysiology will encourage scientists to make more exciting discoveries on nervous system diseases by employing Au25 clusters even at ultrahigh injected doses.
Collapse
Affiliation(s)
- Wenting Hao
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuangjie Liu
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Haile Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Xiaoyu Mu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Qi Xin
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department
of Pathology, Tianjin Third Central Hospital, Tianjin Key Laboratory
of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital affiliated to Nankai University, Tianjin 300170, China
| | - Xiao-Dong Zhang
- Tianjin
International Joint Research Center for Neural Engineering, Academy
of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Wu R, Zhong S, Ni M, Zhu X, Chen Y, Chen X, Zhang L, Chen J. Effects of Malania oleifera Chun Oil on the Improvement of Learning and Memory Function in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8617143. [PMID: 33014116 PMCID: PMC7519201 DOI: 10.1155/2020/8617143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The fruits of Malania oleifera Chun & S. K. Lee have been highly sought after medically because its seeds have high oil content (>60%), especially the highest known proportion of nervonic acid (>55%). Objective of the Study. The objective was to explore the effects of different doses of Malania oleifera Chun oil (MOC oil) on the learning and memory of mice and to evaluate whether additional DHA algae oil and vitamin E could help MOC oil improve learning and memory and its possible mechanisms. METHODS After 30 days of oral administration of the relevant agents to mice, behavioral tests were conducted as well as detection of oxidative stress parameters (superoxide dismutase, malondialdehyde, and glutathione peroxidase) and biochemical indicators (acetylcholine, acetyl cholinesterase, and choline acetyltransferase) in the hippocampus. RESULTS Experimental results demonstrated that MOC oil treatment could markedly improve learning and memory of mouse models in behavioral experiments and increase the activity of GSH-PX in hippocampus and reduce the content of MDA, especially the dose of 46.27 mg/kg. The addition of DHA and VE could better assist MOC oil to improve the learning and memory, and its mechanism may be related to the inhibition of oxidative stress and restrain the activity of AChE and also increase the content of ACh. CONCLUSION Our results demonstrated that MOC oil treatment could improve learning and memory impairments. Therefore, we suggest that MOC oil is a potentially important resource for the development of nervonic acid products.
Collapse
Affiliation(s)
- Rui Wu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Shaoqi Zhong
- West China Hospital Sichuan University, Chengdu, China
| | - Mengmei Ni
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuejiao Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Yiyi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuxi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health and Healthy Food Evaluation Research Center, Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Dombroski TCD, Peixoto-Santos JE, Maciel K, Baqui MMA, Velasco TR, Sakamoto AC, Assirati JA, Carlotti CG, Machado HR, Sousa GKD, Hanamura K, Leite JP, Costa da Costa J, Palmini AL, Paglioli E, Neder L, Spreafico R, Shirao T, Garbelli R, Martins AR. Drebrin expression patterns in patients with refractory temporal lobe epilepsy and hippocampal sclerosis. Epilepsia 2020; 61:1581-1594. [PMID: 32662890 DOI: 10.1111/epi.16595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Drebrins are crucial for synaptic function and dendritic spine development, remodeling, and maintenance. In temporal lobe epilepsy (TLE) patients, a significant hippocampal synaptic reorganization occurs, and synaptic reorganization has been associated with hippocampal hyperexcitability. This study aimed to evaluate, in TLE patients, the hippocampal expression of drebrin using immunohistochemistry with DAS2 or M2F6 antibodies that recognize adult (drebrin A) or adult and embryonic (pan-drebrin) isoforms, respectively. METHODS Hippocampal sections from drug-resistant TLE patients with hippocampal sclerosis (HS; TLE, n = 33), of whom 31 presented with type 1 HS and two with type 2 HS, and autopsy control cases (n = 20) were assayed by immunohistochemistry and evaluated for neuron density, and drebrin A and pan-drebrin expression. Double-labeling immunofluorescences were performed to localize drebrin A-positive spines in dendrites (MAP2), and to evaluate whether drebrin colocalizes with inhibitory (GAD65) and excitatory (VGlut1) presynaptic markers. RESULTS Compared to controls, TLE patients had increased pan-drebrin in all hippocampal subfields and increased drebrin A-immunopositive area in all hippocampal subfields but CA1. Drebrin-positive spine density followed the same pattern as total drebrin quantification. Confocal microscopy indicated juxtaposition of drebrin-positive spines with VGlut1-positive puncta, but not with GAD65-positive puncta. Drebrin expression in the dentate gyrus of TLE cases was associated negatively with seizure frequency and positively with verbal memory. TLE patients with lower drebrin-immunopositive area in inner molecular layer (IML) than in outer molecular layer (OML) had a lower seizure frequency than those with higher or comparable drebrin-immunopositive area in IML compared with OML. SIGNIFICANCE Our results suggest that changes in drebrin-positive spines and drebrin expression in the dentate gyrus of TLE patients are associated with lower seizure frequency, more preserved verbal memory, and a better postsurgical outcome.
Collapse
Affiliation(s)
| | - Jose Eduardo Peixoto-Santos
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Paulista Medical School, UNIFESP, São Paulo, Brazil
| | - Karina Maciel
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Munira Muhammad Abdel Baqui
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tonicarlo Rodrigues Velasco
- Ribeirao Preto Epilepsy Surgery Center, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Americo Ceiki Sakamoto
- Ribeirao Preto Epilepsy Surgery Center, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Alberto Assirati
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Hélio Rubens Machado
- Department of Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gleice Kelly de Sousa
- Graduate Program of Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - João Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jaderson Costa da Costa
- Department of Internal Medicine, School of Medicine, Epilepsy Surgery Program and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - André Luiz Palmini
- Department of Internal Medicine, School of Medicine, Epilepsy Surgery Program and Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Eliseu Paglioli
- Department of Surgery, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Neder
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Roberto Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit, Scientific Institute for Research and Health Care Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rita Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit, Scientific Institute for Research and Health Care Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Antonio Roberto Martins
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Institute for Neuroscience and Behavior, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Pilot Study on the Effect of Biophysical Therapy on Salivary Alpha-Amylase as a Surrogate Measure of Anxiety/Stress: In Search of a Novel Noninvasive Molecular Approach for the Management of Stress. Int J Mol Sci 2020; 21:ijms21020415. [PMID: 31936495 PMCID: PMC7014022 DOI: 10.3390/ijms21020415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Anxiety and depression impact dramatically on public health, underlying the importance of alternative cost-effective treatments. Previous studies have shown that biophysical treatment can significantly reduce anxiety symptoms and recently, salivary alpha-amylase (SAA) has been identified as an objective correlate of the sympathetic-parasympathetic imbalance related to increased stress burden, defined as allostatic load. The aim of this study was to evaluate the effect of biophysical therapy on SAA levels, in addition to the Depression Anxiety Stress Scale (DASS)-21 questionnaire. Twenty-four workers (sales representatives) presenting with mild anxiety/stress symptoms (Generalized Anxiety Disorder 7-item scale of > 5) were randomized to biophysical treatment (N = 12) or placebo control (N = 12). The biophysical group underwent electromagnetic information transfer through an aqueous system procedure, with daily self-administration for one month. SAA collection and the DASS-21 questionnaire were undertaken at baseline and after one month in all patients. Clinical characteristics and baseline DASS-21 subscale scores were similar between placebo and biophysical group at baseline. After one month, patients receiving biophysical therapy had significantly reduced SAA levels compared to the placebo group (27.8 ± 39.4 vs. 116.8 ± 114.9 U/mL, p = 0.019). All three DASS-21 subscales, depression (9.3 ± 5.1 vs. 5.7 ± 5.5, p = 0.1), anxiety (6.7 ± 25 vs. 3.7 ± 2.2, p = 0.0049) and stress (10.8 ± 4.2 vs. 7.3 ± 3.7, p = 0.041) were also decreased after biophysical treatment compared to placebo after one month. Our findings suggest that biophysical therapy can benefit workers with mild (subclinical) anxiety/stress. These results were also validated by the concomitant reduction of SAA levels and an improvement in DASS-21 subscales. The underlying molecular mechanisms of this therapy remain to be characterized.
Collapse
|
12
|
Yang J, Wang L, Wang F, Tang X, Zhou P, Liang R, Zheng C, Ming D. Low-Frequency Pulsed Magnetic Field Improves Depression-Like Behaviors and Cognitive Impairments in Depressive Rats Mainly via Modulating Synaptic Function. Front Neurosci 2019; 13:820. [PMID: 31481866 PMCID: PMC6710372 DOI: 10.3389/fnins.2019.00820] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has shown great promise as a medical treatment of depression. The effectiveness of TMS treatment at high frequency has been well investigated; however, low-frequency TMS in depression treatment has rarely been investigated in depression-induced cognitive deficits. Herein, this study was carried out to assess the possible modulatory role of low-frequency pulsed magnetic field (LFPMF) on reversing cognitive impairment in a model of depression induced by chronic unpredictable stress (CUS). Wistar rats were randomly allocated into four groups as follows: a control group (CON), a control applied with LFPMF (CON + LFPMF), a CUS group, and a CUS treated with LFPMF (CUS + LFPMF) group. During 8 weeks of CUS, compared to those in the CON group, animals not only gained less weight but also exhibited anhedonia, anxiety, and cognitive decline in behavioral tests. After 2-week treatment of LFPMF, a 20 mT, 1 Hz magnetic stimulation, it reversed the impairment of spatial cognition as well as hippocampal synaptic function including long-term potentiation and related protein expression. Thus, LFPMF has shown effectively improvements on depressant behavior and cognitive dysfunction in CUS rats, possibly via regulating synaptic function.
Collapse
Affiliation(s)
- Jiajia Yang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Ling Wang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Faqi Wang
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaoxuan Tang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Peng Zhou
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Rong Liang
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Chenguang Zheng
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Dong Ming
- Laboratory of Neural Engineering and Rehabilitation, Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
Zhang YY, Liu MY, Liu Z, Zhao JK, Zhao YG, He L, Li W, Zhang JQ. GPR30-mediated estrogenic regulation of actin polymerization and spatial memory involves SRC-1 and PI3K-mTORC2 in the hippocampus of female mice. CNS Neurosci Ther 2019; 25:714-733. [PMID: 30714337 PMCID: PMC6515707 DOI: 10.1111/cns.13108] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022] Open
Abstract
AIMS The G-protein-coupled estrogen receptor GPR30 (also referred to as GPER) has been implicated in the estrogenic regulation of hippocampal plasticity and spatial memory; however, the molecular mechanisms are largely unclear. METHODS In this study, we initially examined the levels of GPR30 in the hippocampus of postnatal, ovariectomy (OVX)- and letrozole (LET)-treated female mice. Under G1, G15, and/or OVX treatment, the spatial memory, spine density, levels of ERα, ERβ, and SRC-1, selected synaptic proteins, mTORC2 signals (Rictor and p-AKT Ser473), and actin polymerization dynamics were subsequently evaluated. Furthermore, G1, G15, and/or E2 combined with SRC-1 and/or PI3K inhibitors, actin cytoskeleton polymerization modulator JPK, and CytoD treatments were used to address the mechanisms that underlie GPR30 regulation in vitro. Finally, mTORC2 activator A-443654 (A4) was used to explore the role of mTORC2 in GPR30 regulation of spatial memory. RESULTS The results showed that high levels of GPR30 were detected in the adult hippocampus and the levels were downregulated by OVX and LET. OVX induced an impairment of spatial memory, and changes in other parameters previously described were reversed by G1 and mimicked by G15. Furthermore, the E2 effects on SRC-1 and mTORC2 signals, synaptic proteins, and actin polymerization were inhibited by G15, whereas G1 effects on these parameters were inhibited by the blockade of SRC-1 or PI3K; the levels of synaptic proteins were regulated by JPK and CytoD. Importantly, G15-induced actin depolymerization and spatial memory impairment were rescued by mTORC2 activation with A4. CONCLUSIONS Taking together, these results demonstrated that decreased GPR30 induces actin depolymerization through SRC-1 and PI3K/mTORC2 pathways and ultimately impairs learning and memory, indicating its potential role as a therapeutic target against hippocampus-based, E2-related memory impairments.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Meng-Ying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Zhi Liu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Ji-Kai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Yan-Gang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| | - Li He
- School of Nursing, Third Military Medical University, Chongqing, China
| | - Wei Li
- School of Nursing, Third Military Medical University, Chongqing, China
| | - Ji-Qiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Yasuda H, Kojima N, Hanamura K, Yamazaki H, Sakimura K, Shirao T. Drebrin Isoforms Critically Regulate NMDAR- and mGluR-Dependent LTD Induction. Front Cell Neurosci 2018; 12:330. [PMID: 30349460 PMCID: PMC6186840 DOI: 10.3389/fncel.2018.00330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023] Open
Abstract
Drebrin is an actin-binding protein that is preferentially expressed in the brain. It is highly localized in dendritic spines and regulates spine shapes. The embryonic-type (drebrin E) is expressed in the embryonic and early postnatal brain and is replaced by the adult-type (drebrin A) during development. In parallel, NMDA receptor (NMDAR)-dependent long-term depression (LTD) of synaptic transmission, induced by low-frequency stimulation (LFS), is dominant in the immature brain and decreases during development. Here, we report that drebrin regulates NMDAR-dependent and group 1 metabotropic glutamate receptor (mGluR)-dependent LTD induction in the hippocampus. While LFS induced NMDAR-dependent LTD in the developing hippocampus in wild-type (WT) mice, it did not induce LTD in developing drebrin E and A double knockout (DXKO) mice, indicating that drebrin is required for NMDAR-dependent LTD. On the other hand, LFS induced robust LTD dependent on mGluR5, one of group 1 mGluRs, in both developing and adult brains of drebrin A knockout (DAKO) mice, in which drebrin E is expressed throughout development and adulthood. Agonist-induced mGluR-dependent LTD was normal in WT and DXKO mice; however, it was enhanced in DAKO mice. Also, mGluR1, another group 1 mGluR, was involved in agonist-induced mGluR-dependent LTD in DAKO mice. These data suggest that abnormal drebrin E expression in adults promotes group 1 mGluR-dependent LTD induction. Therefore, while drebrin expression is critical for NMDAR-dependent LTD induction, developmental conversion from drebrin E to drebrin A prevents robust group 1 mGluR-dependent LTD.
Collapse
Affiliation(s)
- Hiroki Yasuda
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Division of Physiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Nobuhiko Kojima
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Faculty of Life Sciences, Toyo University, Itakura, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan.,Education and Research Support Center, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
15
|
Miao S, Koganezawa N, Hanamura K, Puspitasari A, Shirao T. N-methyl-D-aspartate Receptor Mediates X-irradiation-induced Drebrin Decrease in Hippocampus. ACTA ACUST UNITED AC 2018. [DOI: 10.2974/kmj.68.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Shuchuan Miao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
| | - Anggraeini Puspitasari
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
- International Open Laboratory, Harvard Medical School/MGH Dr. Held Lab, Gunma University Initiative for Advanced Research (GIAR)
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine
| |
Collapse
|
16
|
Hanamura K, Kamata Y, Yamazaki H, Kojima N, Shirao T. Isoform-dependent Regulation of Drebrin Dynamics in Dendritic Spines. Neuroscience 2018. [DOI: 10.1016/j.neuroscience.2018.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Suchowerska AK, Fok S, Stefen H, Gunning PW, Hardeman EC, Power J, Fath T. Developmental Profiling of Tropomyosin Expression in Mouse Brain Reveals Tpm4.2 as the Major Post-synaptic Tropomyosin in the Mature Brain. Front Cell Neurosci 2017; 11:421. [PMID: 29311841 PMCID: PMC5743921 DOI: 10.3389/fncel.2017.00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Nerve cell connections, formed in the developing brain of mammals, undergo a well-programmed process of maturation with changes in their molecular composition over time. The major structural element at the post-synaptic specialization is the actin cytoskeleton, which is composed of different populations of functionally distinct actin filaments. Previous studies, using ultrastructural and light imaging techniques have established the presence of different actin filament populations at the post-synaptic site. However, it remains unknown, how these different actin filament populations are defined and how their molecular composition changes over time. In the present study, we have characterized changes in a core component of actin filaments, the tropomyosin (Tpm) family of actin-associated proteins from embryonal stage to the adult stage. Using biochemical fractionation of mouse brain tissue, we identified the tropomyosin Tpm4.2 as the major post-synaptic Tpm. Furthermore, we found age-related differences in the composition of Tpms at the post-synaptic compartment. Our findings will help to guide future studies that aim to define the functional properties of actin filaments at different developmental stages in the mammalian brain.
Collapse
Affiliation(s)
- Alexandra K Suchowerska
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sandra Fok
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Holly Stefen
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuron Culture Core Facility, University of New South Wales, SydneyNSW, Australia
| | - Peter W Gunning
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - John Power
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Neuron Culture Core Facility, University of New South Wales, SydneyNSW, Australia
| |
Collapse
|
18
|
Drebrin in Neuronal Migration and Axonal Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:141-155. [PMID: 28865019 DOI: 10.1007/978-4-431-56550-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During development, production of neurons from neural stem cells, migration of neurons from their birthplace to their final location, and extension of neurites, axons, and dendrites are important for the formation of functional neuronal circuits. The actin cytoskeleton has major roles in the morphological development of neurons. In this chapter, we focused on the distribution and function of the actin-binding protein, drebrin, to elucidate the importance of drebrin-bound F-actin in neurons during early developmental stages of neurons in embryonic, postnatal, and adult brains. There are three major isoforms of drebrin in the chicken brain (E1, E2, and A) and two major isoforms in the mammalian brain (E and A). Among these drebrin isoforms, drebrin E1 and E2 in chicken and drebrin E in the mammalian brain are involved in these neuronal stages. In migrating neurons of the developing and adult brain, drebrin is localized at the base of filopodia of leading processes, to regulate neuronal migration. In axonal growth cones, drebrin is localized in the transitional zone to regulate axonal growth by inhibiting actomyosin interactions and mediating the interactions between F-actin and microtubules. For axonal collateral branching, drebrin is localized at axonal actin patches and the base of filopodia, to accelerate the transition from actin patches to filopodia and stabilize the filopodia.
Collapse
|
19
|
Majoul IV, Ernesti JS, Butkevich EV, Duden R. Drebrins and Connexins: A Biomedical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:225-247. [DOI: 10.1007/978-4-431-56550-5_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Nair RR, Patil S, Tiron A, Kanhema T, Panja D, Schiro L, Parobczak K, Wilczynski G, Bramham CR. Dynamic Arc SUMOylation and Selective Interaction with F-Actin-Binding Protein Drebrin A in LTP Consolidation In Vivo. Front Synaptic Neurosci 2017; 9:8. [PMID: 28553222 PMCID: PMC5426369 DOI: 10.3389/fnsyn.2017.00008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Activity-regulatedcytoskeleton-associated protein (Arc) protein is implicated as a master regulator of long-term forms of synaptic plasticity and memory formation, but the mechanisms controlling Arc protein function are little known. Post-translation modification by small ubiquitin-like modifier (SUMO) proteins has emerged as a major mechanism for regulating protein-protein interactions and function. We first show in cell lines that ectopically expressed Arc undergoes mono-SUMOylation. The covalent addition of a single SUMO1 protein was confirmed by in vitro SUMOylation of immunoprecipitated Arc. To explore regulation of endogenous Arc during synaptic plasticity, we induced long-term potentiation (LTP) in the dentate gyrus of live anesthetized rats. Using coimmunoprecipitation of native proteins, we show that Arc synthesized during the maintenance phase of LTP undergoes dynamic mono-SUMO1-ylation. Levels of unmodified Arc increase in multiple subcellular fractions (cytosol, membrane, nuclear and cytoskeletal), whereas enhanced Arc SUMOylation was specific to the synaptoneurosomal and the cytoskeletal fractions. Dentate gyrus LTP consolidation requires a period of sustained Arc synthesis driven by brain-derived neurotrophic factor (BDNF) signaling. Local infusion of the BDNF scavenger, TrkB-Fc, during LTP maintenance resulted in rapid reversion of LTP, inhibition of Arc synthesis and loss of enhanced Arc SUMO1ylation. Furthermore, coimmunoprecipitation analysis showed that SUMO1-ylated Arc forms a complex with the F-actin-binding protein drebrin A, a major regulator of cytoskeletal dynamics in dendritic spines. Although Arc also interacted with dynamin 2, calcium/calmodulindependentprotein kinase II-beta (CaMKIIβ), and postsynaptic density protein-95 (PSD-95), these complexes lacked SUMOylated Arc. The results support a model in which newly synthesized Arc is SUMOylated and targeted for actin cytoskeletal regulation during in vivo LTP.
Collapse
Affiliation(s)
- Rajeevkumar R Nair
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Adrian Tiron
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Tambudzai Kanhema
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Debabrata Panja
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Lars Schiro
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| | - Kamil Parobczak
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Grzegorz Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of BergenBergen, Norway
| |
Collapse
|
21
|
Shirao T, Hanamura K, Koganezawa N, Ishizuka Y, Yamazaki H, Sekino Y. The role of drebrin in neurons. J Neurochem 2017; 141:819-834. [PMID: 28199019 DOI: 10.1111/jnc.13988] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 01/13/2023]
Abstract
Drebrin is an actin-binding protein that changes the helical pitch of actin filaments (F-actin), and drebrin-decorated F-actin shows slow treadmilling and decreased rate of depolymerization. Moreover, the characteristic morphology of drebrin-decorated F-actin enables it to respond differently to the same signals from other actin cytoskeletons. Drebrin consists of two major isoforms, drebrin E and drebrin A. In the developing brain, drebrin E appears in migrating neurons and accumulates in the growth cones of axons and dendrites. Drebrin E-decorated F-actin links lamellipodium F-actin to microtubules in the growth cones. Then drebrin A appears at nascent synapses and drebrin A-decorated F-actin facilitates postsynaptic molecular assembly. In the adult brain, drebrin A-decorated F-actin is concentrated in the central region of dendritic spines. During long-term potentiation initiation, NMDA receptor-mediated Ca2+ influx induces the transient exodus of drebrin A-decorated F-actin via myosin II ATPase activation. Because of the unique physical characteristics of drebrin A-decorated F-actin, this exodus likely contributes to the facilitation of F-actin polymerization and spine enlargement. Additionally, drebrin reaccumulation in dendritic spines is observed after the exodus. In our drebrin exodus model of structure-based synaptic plasticity, reestablishment of drebrin A-decorated F-actin is necessary to keep the enlarged spine size during long-term potentiation maintenance. In this review, we introduce the genetic and biochemical properties of drebrin and the roles of drebrin in early stage of brain development, synaptic formation and synaptic plasticity. Further, we discuss the pathological relevance of drebrin loss in Alzheimer's disease. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuta Ishizuka
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yuko Sekino
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Division of Pharmacology, National Institute of Health Sciences, Tokyo, Japan
| |
Collapse
|
22
|
Willmes CG, Mack TGA, Ledderose J, Schmitz D, Wozny C, Eickholt BJ. Investigation of hippocampal synaptic transmission and plasticity in mice deficient in the actin-binding protein Drebrin. Sci Rep 2017; 7:42652. [PMID: 28198431 PMCID: PMC5309812 DOI: 10.1038/srep42652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
The dynamic regulation of the actin cytoskeleton plays a key role in controlling the structure and function of synapses. It is vital for activity-dependent modulation of synaptic transmission and long-term changes in synaptic morphology associated with memory consolidation. Several regulators of actin dynamics at the synapse have been identified, of which a salient one is the postsynaptic actin stabilising protein Drebrin (DBN). It has been suggested that DBN modulates neurotransmission and changes in dendritic spine morphology associated with synaptic plasticity. Given that a decrease in DBN levels is correlated with cognitive deficits associated with ageing and dementia, it was hypothesised that DBN protein abundance instructs the integrity and function of synapses. We created a novel DBN deficient mouse line. Analysis of gross brain and neuronal morphology revealed no phenotype in the absence of DBN. Electrophysiological recordings in acute hippocampal slices and primary hippocampal neuronal cultures showed that basal synaptic transmission, and both long-term and homeostatic synaptic plasticity were unchanged, suggesting that loss of DBN is not sufficient in inducing synapse dysfunction. We propose that the overall lack of changes in synaptic function and plasticity in DBN deficient mice may indicate robust compensatory mechanisms that safeguard cytoskeleton dynamics at the synapse.
Collapse
Affiliation(s)
- Claudia G Willmes
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Germany
| | - Till G A Mack
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Julia Ledderose
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dietmar Schmitz
- NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Germany.,Neuroscience Research Center (NWFZ), Charité Universitätsmedizin, 10117 Berlin, Germany
| | - Christian Wozny
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Britta J Eickholt
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,NeuroCure - Cluster of Excellence, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
23
|
Koganezawa N, Hanamura K, Sekino Y, Shirao T. The role of drebrin in dendritic spines. Mol Cell Neurosci 2017; 84:85-92. [PMID: 28161364 DOI: 10.1016/j.mcn.2017.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/06/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
Dendritic spines form typical excitatory synapses in the brain and their shapes vary depending on synaptic inputs. It has been suggested that the morphological changes of dendritic spines play an important role in synaptic plasticity. Dendritic spines contain a high concentration of actin, which has a central role in supporting cell motility, and polymerization of actin filaments (F-actin) is most likely involved in spine shape changes. Drebrin is an actin-binding protein that forms stable F-actin and is highly accumulated within dendritic spines. Drebrin has two isoforms, embryonic-type drebrin E and adult-type drebrin A, that change during development from E to A. Inhibition of drebrin A expression results in a delay of synapse formation and inhibition of postsynaptic protein accumulation, suggesting that drebrin A has an important role in spine maturation. In mature synapses, glutamate stimulation induces rapid spine-head enlargement during long-term potentiation (LTP) formation. LTP stimulation induces Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors, which causes drebrin exodus from dendritic spines. Once drebrin exits from dendritic spine heads, the dynamic actin pool increases in spine heads to facilitate F-actin polymerization. To maintain enlarged spine heads, drebrin-decorated F-actin is thought to reform within the spine heads. Thus, drebrin plays a pivotal role in spine plasticity through regulation of F-actin.
Collapse
Affiliation(s)
- Noriko Koganezawa
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuko Sekino
- Division of Pharmacology, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.
| |
Collapse
|
24
|
Sekino Y, Koganezawa N, Mizui T, Shirao T. Role of Drebrin in Synaptic Plasticity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:183-201. [DOI: 10.1007/978-4-431-56550-5_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
|
26
|
Ishizuka Y, Hanamura K. Drebrin in Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:203-223. [DOI: 10.1007/978-4-431-56550-5_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
27
|
Kojima N. Molecular Cloning of Drebrin: Progress and Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:25-36. [DOI: 10.1007/978-4-431-56550-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
28
|
Sevoflurane Inhalation Accelerates the Long-Term Memory Consolidation via Small GTPase Overexpression in the Hippocampus of Mice in Adolescence. PLoS One 2016; 11:e0163151. [PMID: 27632208 PMCID: PMC5025001 DOI: 10.1371/journal.pone.0163151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/02/2016] [Indexed: 12/30/2022] Open
Abstract
Sevoflurane exposure impairs the long-term memory in neonates. Whether the exposure to animals in adolescence affects the memory, however, has been unclear. A small hydrolase enzyme of guanosine triphosphate (GTPase) rac1 plays a role in the F-actin dynamics related to the synaptic plasticity, as well as superoxide production via reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. The current study was designed to examine whether sevoflurane exposure to mice in early adolescence modifies the long-term learning ability concomitantly with the changes in F-actin constitution as well as superoxide production in the hippocampus according to the levels of rac1 protein expression. Four-week-old mice were subjected to the evaluation of long-term learning ability for three days. On day one, each mouse was allowed to enter a dark chamber for five min to acclimatization. On day two, the procedure was repeated with the addition of an electric shock as soon as a mouse entered the dark chamber. All mice subsequently inhaled 2 L/min air with (Sevoflurane group) and without (Control group) 2.5% sevoflurane for three hours. On day three, each mouse was placed on the platform and retention time, which is the latency to enter the dark chamber, was examined. The brain removed after the behavior test, was used for analyses of immunofluorescence, Western immunoblotting and intracellular levels of superoxide. Sevoflurane exposure significantly prolonged retention time, indicating the enhanced long-term memory. Sevoflurane inhalation augmented F-actin constitution coexisting with the rac1 protein overexpression in the hippocampus whereas it did not alter the levels of superoxide. Sevoflurane exposure to 4-week-old mice accelerates the long-term memory concomitantly with the enhanced F-actin constitution coexisting with the small GTPase rac1 overexpression in the hippocampus. These results suggest that sevoflurane inhalation may amplify long-term memory consolidation via the increased cytoskeleton constitution in the hippocampus of animals in early adolescence.
Collapse
|
29
|
The role of the drebrin/EB3/Cdk5 pathway in dendritic spine plasticity, implications for Alzheimer's disease. Brain Res Bull 2016; 126:293-299. [PMID: 27365229 DOI: 10.1016/j.brainresbull.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 11/21/2022]
Abstract
The drebrin/EB3/Cdk5 intracellular signalling pathway couples actin filaments to dynamic microtubules in cellular settings where cells are changing shape. The pathway has been most intensively studied in neuronal development, particularly neuritogenesis and neuronal migration, and in synaptic plasticity at dendritic spines in mature neurons. Drebrin is an actin filament side-binding and bundling protein that stabilises actin filaments. The end-binding (EB) proteins are microtubule plus-end tracking proteins (+TIPs) that localise to the growing plus-ends of dynamic microtubules and regulate their behavior and the binding of other +TIP proteins. EB3 binds specifically to drebrin when drebrin is bound to actin filaments, for example at the base of a growth cone filopodium, and EB3 is located at the plus-end of a growing microtubule inserting into the filopodium. This interaction therefore forms the basis for coupling dynamic microtubules to actin filaments in growth cones of developing neurons. Appropriate responses to growth cone guidance cues depend on actin filament/microtubule co-ordination in the growth cone, although the role of the drebrin/EB3/Cdk5 pathway in this context has not been directly tested. A similar cytoskeleton coupling pathway operates in dendritic spines in mature neurons where the activity-dependent insertion of dynamic microtubules into dendritic spines is facilitated by drebrin binding to EB3. Microtubule insertion into dendritic spines drives spine maturation during long-term potentiation and therefore has a role in synaptic plasticity and memory formation. In Alzheimer's disease and related chronic neurodegenerative diseases, there is an early and dramatic loss of drebrin from dendritic spines that precedes synapse loss and neurodegeneration and might contribute to a failure of synaptic plasticity and hence to cognitive decline.
Collapse
|
30
|
Brettle M, Patel S, Fath T. Tropomyosins in the healthy and diseased nervous system. Brain Res Bull 2016; 126:311-323. [PMID: 27298153 DOI: 10.1016/j.brainresbull.2016.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
Regulation of the actin cytoskeleton is dependent on a plethora of actin-associated proteins in all eukaryotic cells. The family of tropomyosins plays a key role in controlling the function of several of these actin-associated proteins and their access to actin filaments. In order to understand the regulation of the actin cytoskeleton in highly dynamic subcellular compartments of neurons such as growth cones of developing neurons and the synaptic compartment of mature neurons, it is pivotal to decipher the functional role of tropomyosins in the nervous system. In this review, we will discuss the current understanding and recent findings on the regulation of the actin cytoskeleton by tropomyosins and potential implication that this has for the dysregulation of the actin cytoskeleton in neurological diseases.
Collapse
Affiliation(s)
- Merryn Brettle
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Shrujna Patel
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia
| | - Thomas Fath
- Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, 2052 Sydney, New South Wales, Australia.
| |
Collapse
|