1
|
McNaughton N, Vann SD. Construction of complex memories via parallel distributed cortical-subcortical iterative integration. Trends Neurosci 2022; 45:550-562. [PMID: 35599065 PMCID: PMC7612902 DOI: 10.1016/j.tins.2022.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
The construction of complex engrams requires hippocampal-cortical interactions. These include both direct interactions and ones via often-overlooked subcortical loops. Here, we review the anatomical organization of a hierarchy of parallel 'Papez' loops through the hypothalamus that are homologous in mammals from rats to humans. These hypothalamic loops supplement direct hippocampal-cortical connections with iterative reprocessing paced by theta rhythmicity. We couple existing anatomy and lesion data with theory to propose that recirculation in these loops progressively enhances desired connections, while reducing interference from competing external goals and internal associations. This increases the signal-to-noise ratio in the distributed engrams (neocortical and cerebellar) necessary for complex learning and memory. The hypothalamic nodes provide key motivational input for engram enhancement during consolidation.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, POB56, Dunedin, New Zealand.
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
2
|
Balcerek E, Włodkowska U, Czajkowski R. Retrosplenial cortex in spatial memory: focus on immediate early genes mapping. Mol Brain 2021; 14:172. [PMID: 34863215 PMCID: PMC8642902 DOI: 10.1186/s13041-021-00880-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
The ability to form, retrieve and update autobiographical memories is one of the most fascinating features of human behavior. Spatial memory, the ability to remember the layout of the external environment and to navigate within its boundaries, is closely related to the autobiographical memory domain. It is served by an overlapping brain circuit, centered around the hippocampus (HPC) where the cognitive map index is stored. Apart from the hippocampus, several cortical structures participate in this process. Their relative contribution is a subject of intense research in both humans and animal models. One of the most widely studied regions is the retrosplenial cortex (RSC), an area in the parietal lobe densely interconnected with the hippocampal formation. Several methodological approaches have been established over decades in order to investigate the cortical aspects of memory. One of the most successful techniques is based on the analysis of brain expression patterns of the immediate early genes (IEGs). The common feature of this diverse group of genes is fast upregulation of their mRNA translation upon physiologically relevant stimulus. In the central nervous system they are rapidly triggered by neuronal activity and plasticity during learning. There is a widely accepted consensus that their expression level corresponds to the engagement of individual neurons in the formation of memory trace. Imaging of the IEGs might therefore provide a picture of an emerging memory engram. In this review we present the overview of IEG mapping studies of retrosplenial cortex in rodent models. We begin with classical techniques, immunohistochemical detection of protein and fluorescent in situ hybridization of mRNA. We then proceed to advanced methods where fluorescent genetically encoded IEG reporters are chronically followed in vivo during memory formation. We end with a combination of genetic IEG labelling and optogenetic approach, where the activity of the entire engram is manipulated. We finally present a hypothesis that attempts to unify our current state of knowledge about the function of RSC.
Collapse
Affiliation(s)
- Edyta Balcerek
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Urszula Włodkowska
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093, Warsaw, Poland.
| |
Collapse
|
3
|
Dillingham CM, Milczarek MM, Perry JC, Vann SD. Time to put the mammillothalamic pathway into context. Neurosci Biobehav Rev 2021; 121:60-74. [PMID: 33309908 PMCID: PMC8137464 DOI: 10.1016/j.neubiorev.2020.11.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The medial diencephalon, in particular the mammillary bodies and anterior thalamic nuclei, has long been linked to memory and amnesia. The mammillary bodies provide a dense input into the anterior thalamic nuclei, via the mammillothalamic tract. In both animal models, and in patients, lesions of the mammillary bodies, mammillothalamic tract and anterior thalamic nuclei all produce severe impairments in temporal and contextual memory, yet it is uncertain why these regions are critical. Mounting evidence from electrophysiological and neural imaging studies suggests that mammillothalamic projections exercise considerable distal influence over thalamo-cortical and hippocampo-cortical interactions. Here, we outline how damage to the mammillary body-anterior thalamic axis, in both patients and animal models, disrupts behavioural performance on tasks that relate to contextual ("where") and temporal ("when") processing. Focusing on the medial mammillary nuclei as a possible 'theta-generator' (through their interconnections with the ventral tegmental nucleus of Gudden) we discuss how the mammillary body-anterior thalamic pathway may contribute to the mechanisms via which the hippocampus and neocortex encode representations of experience.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Michal M Milczarek
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - James C Perry
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Seralynne D Vann
- School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
4
|
Barnett S, Parr-Brownlie L, Perry B, Young C, Wicky H, Hughes S, McNaughton N, Dalrymple-Alford J. Anterior thalamic nuclei neurons sustain memory. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100022. [PMID: 36246504 PMCID: PMC9559952 DOI: 10.1016/j.crneur.2021.100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022] Open
Abstract
A hippocampal-diencephalic-cortical network supports memory function. The anterior thalamic nuclei (ATN) form a key anatomical hub within this system. Consistent with this, injury to the mammillary body-ATN axis is associated with examples of clinical amnesia. However, there is only limited and indirect support that the output of ATN neurons actively enhances memory. Here, in rats, we first showed that mammillothalamic tract (MTT) lesions caused a persistent impairment in spatial working memory. MTT lesions also reduced rhythmic electrical activity across the memory system. Next, we introduced 8.5 Hz optogenetic theta-burst stimulation of the ATN glutamatergic neurons. The exogenously-triggered, regular pattern of stimulation produced an acute and substantial improvement of spatial working memory in rats with MTT lesions and enhanced rhythmic electrical activity. Neither behaviour nor rhythmic activity was affected by endogenous stimulation derived from the dorsal hippocampus. Analysis of immediate early gene activity, after the rats foraged for food in an open field, showed that exogenously-triggered ATN stimulation also increased Zif268 expression across memory-related structures. These findings provide clear evidence that increased ATN neuronal activity supports memory. They suggest that ATN-focused gene therapy may be feasible to counter clinical amnesia associated with dysfunction in the mammillary body-ATN axis. The mammillothalamic tract (MTT) supports neural activity in an extended memory system. Optogenetic activation of neurons in the anterior thalamus acutely improves memory after MTT lesions. Rescued memory associates with system-wide neuronal activation and enhanced EEG. Anterior thalamus actively sustains memory and is a feasible therapeutic target.
Collapse
|
5
|
Dillingham CM, Milczarek MM, Perry JC, Frost BE, Parker GD, Assaf Y, Sengpiel F, O'Mara SM, Vann SD. Mammillothalamic Disconnection Alters Hippocampocortical Oscillatory Activity and Microstructure: Implications for Diencephalic Amnesia. J Neurosci 2019; 39:6696-6713. [PMID: 31235646 PMCID: PMC6703878 DOI: 10.1523/jneurosci.0827-19.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/13/2023] Open
Abstract
Diencephalic amnesia can be as debilitating as the more commonly known temporal lobe amnesia, yet the precise contribution of diencephalic structures to memory processes remains elusive. Across four cohorts of male rats, we used discrete lesions of the mammillothalamic tract to model aspects of diencephalic amnesia and assessed the impact of these lesions on multiple measures of activity and plasticity within the hippocampus and retrosplenial cortex. Lesions of the mammillothalamic tract had widespread indirect effects on hippocampocortical oscillatory activity within both theta and gamma bands. Both within-region oscillatory activity and cross-regional synchrony were altered. The network changes were state-dependent, displaying different profiles during locomotion and paradoxical sleep. Consistent with the associations between oscillatory activity and plasticity, complementary analyses using several convergent approaches revealed microstructural changes, which appeared to reflect a suppression of learning-induced plasticity in lesioned animals. Together, these combined findings suggest a mechanism by which damage to the medial diencephalon can impact upon learning and memory processes, highlighting an important role for the mammillary bodies in the coordination of hippocampocortical activity.SIGNIFICANCE STATEMENT Information flow within the Papez circuit is critical to memory. Damage to ascending mammillothalamic projections has consistently been linked to amnesia in humans and spatial memory deficits in animal models. Here we report on the changes in hippocampocortical oscillatory dynamics that result from chronic lesions of the mammillothalamic tract and demonstrate, for the first time, that the mammillary bodies, independently of the supramammillary region, contribute to frequency modulation of hippocampocortical theta oscillations. Consistent with the associations between oscillatory activity and plasticity, the lesions also result in a suppression of learning-induced plasticity. Together, these data support new functional models whereby mammillary bodies are important for coordinating hippocampocortical activity rather than simply being a relay of hippocampal information as previously assumed.
Collapse
Affiliation(s)
- Christopher M Dillingham
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Michal M Milczarek
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - James C Perry
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Bethany E Frost
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Greg D Parker
- EMRIC, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Yaniv Assaf
- George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801, and
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff CF10 3AT, United Kingdom,
| |
Collapse
|
6
|
Wolff M, Vann SD. The Cognitive Thalamus as a Gateway to Mental Representations. J Neurosci 2019; 39:3-14. [PMID: 30389839 PMCID: PMC6325267 DOI: 10.1523/jneurosci.0479-18.2018] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 01/16/2023] Open
Abstract
Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories researching different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurological conditions reinforces the need to better understand the role of this region in cognition.
Collapse
Affiliation(s)
- Mathieu Wolff
- Centre National de la Recherche Scientifique, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France,
- University of Bordeaux, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France, and
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
7
|
Dalrymple-Alford JC, Perry BAL. Lesions of the mammillothalamic tract and anterior thalamic nuclei: Response to Vann and Nelson (2018). Hippocampus 2018; 28:694-697. [PMID: 29742808 DOI: 10.1002/hipo.22963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 11/11/2022]
Affiliation(s)
- John C Dalrymple-Alford
- Department of Psychology, New Zealand Brain Research Institute, University of Canterbury and Brain Research New Zealand, Christchurch, 8041, New Zealand
| | - Brook A L Perry
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, United Kingdom
| |
Collapse
|
8
|
Vann SD, Nelson AJD. Anterior thalamic nuclei lesions have a greater impact than mammillothalamic tract lesions on the extended hippocampal system: A reply. Hippocampus 2018; 28:691-693. [PMID: 29671918 DOI: 10.1002/hipo.22953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
|
9
|
Vann SD. Lesions within the head direction system reduce retrosplenial c-fos expression but do not impair performance on a radial-arm maze task. Behav Brain Res 2018; 338:153-158. [PMID: 29079513 PMCID: PMC5701769 DOI: 10.1016/j.bbr.2017.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/13/2017] [Accepted: 10/20/2017] [Indexed: 11/15/2022]
Abstract
The lateral mammillary nuclei are a central structure within the head direction system yet there is still relatively little known about how these nuclei contribute to spatial performance. In the present study, rats with selective neurotoxic lesions of the lateral mammillary nuclei were tested on a working memory task in a radial-arm maze. This task requires animals to distinguish between eight radially-oriented arms and remember which arms they have entered within a session. Even though it might have been predicted that this task would heavily tax the head direction system, the lesion rats performed equivalently to their surgical controls on this task; no deficit emerged even when the task was made more difficult by rotating the maze mid-way through testing in order to reduce reliance on intramaze cues. Rats were subsequently tested in the dark to increase the use of internally generated direction cues but the lesion rats remained unimpaired. In contrast, the lateral mammillary nuclei lesions were found to decrease retrosplenial c-Fos levels. These results would suggest that the head direction system is not required for the acquisition of the standard radial-arm maze task. It would also suggest that small decreases in retrosplenial c-Fos are not sufficient to produce behavioural impairments.
Collapse
Affiliation(s)
- Seralynne D Vann
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
10
|
Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing. Neurobiol Learn Mem 2018; 147:90-119. [DOI: 10.1016/j.nlm.2017.11.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
|
11
|
Powell AL, Hindley E, Nelson AJD, Davies M, Amin E, Aggleton JP, Vann SD. Lesions of retrosplenial cortex spare immediate-early gene activity in related limbic regions in the rat. Brain Neurosci Adv 2018; 2:2398212818811235. [PMID: 32166157 PMCID: PMC7058225 DOI: 10.1177/2398212818811235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022] Open
Abstract
The retrosplenial cortex forms part of a network of cortical and subcortical structures that have particular importance for spatial learning and navigation in rodents. This study examined how retrosplenial lesions affect activity in this network by visualising the expression of the immediate-early genes c-fos and zif268 after exposure to a novel location. Groups of rats with extensive cytotoxic lesions (areas 29 and 30) and rats with lesions largely confined to area 30 (dysgranular cortex) were compared with their respective control animals for levels of c-fos expression measured by immunohistochemistry. These cortical lesions had very limited effects on distal c-fos activity. Evidence of a restricted reduction in c-fos activity was seen in the septal dentate gyrus (superior blade) but not in other hippocampal and parahippocampal subareas, nor in the anterior cingulate and prelimbic cortices. Related studies examined zif268 activity in those cases with combined area 29 and 30 lesions. The only clear evidence for reduced zif268 activity following retrosplenial cell loss came from the septal CA3 area. The confined impact of retrosplenial tissue loss is notable as, by the same immediate-early gene measures, retrosplenial cortex is itself highly sensitive to damage in related limbic areas, showing a marked c-fos and zif268 hypoactivity across all of its subareas. This asymmetry in covert pathology may help to explain the apparent disparity between the severity of learning deficits after retrosplenial cortex lesions and after lesions in either the hippocampus or the anterior thalamic nuclei.
Collapse
Affiliation(s)
- Anna L Powell
- School of Psychology, Cardiff University, Cardiff, UK
| | - Emma Hindley
- School of Psychology, Cardiff University, Cardiff, UK
| | | | - Moira Davies
- School of Psychology, Cardiff University, Cardiff, UK
| | - Eman Amin
- School of Psychology, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
12
|
Perry BAL, Mercer SA, Barnett SC, Lee J, Dalrymple-Alford JC. Anterior thalamic nuclei lesions have a greater impact than mammillothalamic tract lesions on the extended hippocampal system. Hippocampus 2017; 28:121-135. [DOI: 10.1002/hipo.22815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Brook A. L. Perry
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Stephanie A. Mercer
- Department of Biochemistry; University of Otago; Dunedin
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Sophie C. Barnett
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Jungah Lee
- Department of Psychology; University of Canterbury; Christchurch New Zealand
| | - John C. Dalrymple-Alford
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
- New Zealand Brain Research Institute; Christchurch New Zealand
| |
Collapse
|
13
|
Mammillothalamic and Mammillotegmental Tracts as New Targets for Dementia and Epilepsy Treatment. World Neurosurg 2017; 110:133-144. [PMID: 29129763 DOI: 10.1016/j.wneu.2017.10.168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Recently, neuromodulation through deep brain stimulation (DBS) has appeared as a new surgical procedure in the treatment of some types of dementia and epilepsy. The mammillothalamic and mammillotegmental tracts are involved among the new targets. To our knowledge, a review article focused specifically on these mammillary body efferents is lacking in the medical literature. Their contribution to memory is, regrettably, often overlooked. METHODS A review of the relevant literature was conducted. RESULTS There is evidence that mammillary bodies can contribute to memory independently from hippocampal formation, but the mechanism is not yet known. Recent studies in animals have provided evidence for the specific roles of these mammillary body efferents in regulating memory independently. In animal studies, it has been shown that the disruption of the mammillothalamic tract inhibits seizures and that electrical stimulation of the mammillary body or mammillothalamic tract raises the seizure threshold. In humans, DBS targeting the mammillary body through the mammillothalamic tract or the stimulation of the anterior thalamic nucleus, especially in the areas closely related to the mammillothalamic tract, has been found effective in patients with medically refractory epilepsy. Nonetheless, little knowledge exists on the functional anatomy of the mammillary body efferents, and their role in the exact mechanism of epileptogenic activity and in the memory function of the human brain. CONCLUSIONS A comprehensive knowledge of the white matter anatomy of the mammillothalamic and mammillotegmental tracts is crucial since they have emerged as new DBS targets in the treatment of various disorders including dementia and epilepsy.
Collapse
|