1
|
Guet-McCreight A, Chameh HM, Mazza F, Prevot TD, Valiante TA, Sibille E, Hay E. In-silico testing of new pharmacology for restoring inhibition and human cortical function in depression. Commun Biol 2024; 7:225. [PMID: 38396202 PMCID: PMC10891083 DOI: 10.1038/s42003-024-05907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Reduced inhibition by somatostatin-expressing interneurons is associated with depression. Administration of positive allosteric modulators of α5 subunit-containing GABAA receptor (α5-PAM) that selectively target this lost inhibition exhibit antidepressant and pro-cognitive effects in rodent models of chronic stress. However, the functional effects of α5-PAM on the human brain in vivo are unknown, and currently cannot be assessed experimentally. We modeled the effects of α5-PAM on tonic inhibition as measured in human neurons, and tested in silico α5-PAM effects on detailed models of human cortical microcircuits in health and depression. We found that α5-PAM effectively recovered impaired cortical processing as quantified by stimulus detection metrics, and also recovered the power spectral density profile of the microcircuit EEG signals. We performed an α5-PAM dose-response and identified simulated EEG biomarker candidates. Our results serve to de-risk and facilitate α5-PAM translation and provide biomarkers in non-invasive brain signals for monitoring target engagement and drug efficacy.
Collapse
Affiliation(s)
- Alexandre Guet-McCreight
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | | - Frank Mazza
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Thomas D Prevot
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application, Toronto, ON, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, ON, Canada
| | - Etienne Sibille
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Effective Perturbations by Phenobarbital on INa, IK(erg), IK(M) and IK(DR) during Pulse Train Stimulation in Neuroblastoma Neuro-2a Cells. Biomedicines 2022; 10:biomedicines10081968. [PMID: 36009515 PMCID: PMC9405590 DOI: 10.3390/biomedicines10081968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Phenobarbital (PHB, Luminal Sodium®) is a medication of the barbiturate and has long been recognized to be an anticonvulsant and a hypnotic because it can facilitate synaptic inhibition in the central nervous system through acting on the γ-aminobutyric acid (GABA) type A (GABAA) receptors. However, to what extent PHB could directly perturb the magnitude and gating of different plasmalemmal ionic currents is not thoroughly explored. In neuroblastoma Neuro-2a cells, we found that PHB effectively suppressed the magnitude of voltage-gated Na+ current (INa) in a concentration-dependent fashion, with an effective IC50 value of 83 µM. The cumulative inhibition of INa, evoked by pulse train stimulation, was enhanced by PHB. However, tefluthrin, an activator of INa, could attenuate PHB-induced reduction in the decaying time constant of INa inhibition evoked by pulse train stimuli. In addition, the erg (ether-à-go-go-related gene)-mediated K+ current (IK(erg)) was also blocked by PHB. The PHB-mediated inhibition on IK(erg) could not be overcome by flumazenil (GABA antagonist) or chlorotoxin (chloride channel blocker). The PHB reduced the recovery of IK(erg) by a two-step voltage protocol with a geometrics-based progression, but it increased the decaying rate of IK(erg), evoked by the envelope-of-tail method. About the M-type K+ currents (IK(M)), PHB caused a reduction of its amplitude, which could not be counteracted by flumazenil or chlorotoxin, and PHB could enhance its cumulative inhibition during pulse train stimulation. Moreover, the magnitude of delayed-rectifier K+ current (IK(DR)) was inhibited by PHB, while the cumulative inhibition of IK(DR) during 10 s of repetitive stimulation was enhanced. Multiple ionic currents during pulse train stimulation were subject to PHB, and neither GABA antagonist nor chloride channel blocker could counteract these PHB-induced reductions. It suggests that these actions might conceivably participate in different functional activities of excitable cells and be independent of GABAA receptors.
Collapse
|
3
|
Yao HK, Guet-McCreight A, Mazza F, Moradi Chameh H, Prevot TD, Griffiths JD, Tripathy SJ, Valiante TA, Sibille E, Hay E. Reduced inhibition in depression impairs stimulus processing in human cortical microcircuits. Cell Rep 2022; 38:110232. [PMID: 35021088 DOI: 10.1016/j.celrep.2021.110232] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/07/2021] [Accepted: 12/16/2021] [Indexed: 12/01/2022] Open
Abstract
Cortical processing depends on finely tuned excitatory and inhibitory connections in neuronal microcircuits. Reduced inhibition by somatostatin-expressing interneurons is a key component of altered inhibition associated with treatment-resistant major depressive disorder (depression), which is implicated in cognitive deficits and rumination, but the link remains to be better established mechanistically in humans. Here we test the effect of reduced somatostatin interneuron-mediated inhibition on cortical processing in human neuronal microcircuits using a data-driven computational approach. We integrate human cellular, circuit, and gene expression data to generate detailed models of human cortical microcircuits in health and depression. We simulate microcircuit baseline and response activity and find a reduced signal-to-noise ratio and increased false/failed detection of stimuli due to a higher baseline activity in depression. We thus apply models of human cortical microcircuits to demonstrate mechanistically how reduced inhibition impairs cortical processing in depression, providing quantitative links between altered inhibition and cognitive deficits.
Collapse
Affiliation(s)
- Heng Kang Yao
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Alexandre Guet-McCreight
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R7, Canada
| | - Frank Mazza
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Thomas D Prevot
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R7, Canada
| | - John D Griffiths
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R7, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Taufik A Valiante
- Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A1; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada; Max Planck-University of Toronto Center for Neural Science and Technology, University of Toronto, Toronto, ON M5S 1A1, Canada; Center for Advancing Neurotechnological Innovation to Application, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Etienne Sibille
- Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R7, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Etay Hay
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON M5T 1R7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada; Department of Psychiatry, University of Toronto, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
4
|
Low-Frequency Stimulation Prevents Kindling-Induced Impairment through the Activation of the Endocannabinoid System. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5526780. [PMID: 34222471 PMCID: PMC8225428 DOI: 10.1155/2021/5526780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/19/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022]
Abstract
Background Cannabinoid system affects memory and has anticonvulsant effects in epileptic models. In the current study, the role of cannabinoid 1 (CB1) receptors was investigated in amelioration of the effects of low-frequency stimulation (LFS) on learning and memory impairments in kindled rats. Methods Electrical stimulation of the hippocampal CA1 area was employed to kindle the animals. LFS was applied to the CA1 area in four trials following the last kindling stimulation. One group of animals received intraperitoneal injection of AM251 (0.1 μg/rat), a CB1 receptor antagonist, before the LFS application. Similarly, CB1 agonist WIN55-212-2 (WIN) was administrated to another group prior to LFS. The Morris water maze (MWM) and the novel object recognition (NOR) tests were executed 48 h after the last kindling stimulation to assess learning and memory. Results Applying LFS in the kindled+LFS group restored learning and memory impairments in the kindled rats. There was a significant difference between the kindled and the kindled+LFS groups in learning and memory. The application of AM251 reduced the LFS effects significantly. Adversely, WIN acted similarly to LFS and alleviated learning and memory deficits in the kindled+WIN group. In addition, WIN did not counteract the LFS enhancing effects in the KLFS+WIN group. Conclusions Improving effects of LFS on learning and memory impairments are mediated through the activation of the endocannabinoid (ECB) system.
Collapse
|
5
|
Godlevsky LS, Shandra OO, Pervak MP, Shandra AA. Diazepam and electrical stimulation of paleocerebellar cortex inhibits seizures in pentylenetetrazol-kindled rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Gharib A, Komaki A, Manoochehri Khoshinani H, Saidijam M, Barkley V, Sarihi A, Mirnajafi-Zadeh J. Intrahippocampal 5-HT 1A receptor antagonist inhibits the improving effect of low-frequency stimulation on memory impairment in kindled rats. Brain Res Bull 2019; 148:109-117. [PMID: 30902574 DOI: 10.1016/j.brainresbull.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 01/10/2023]
Abstract
In addition to its anticonvulsant effect, low frequency stimulation (LFS) improves learning and memory in kindled animals. In the present study, the role of 5-HT1A receptors in mediating LFS' improving effect on spatial learning and memory was investigated in amygdala-kindled rats. Amygdala kindling was conducted in a semi-rapid kindling stimulations (12 stimulations per day) in male Wistar rats. LFS (4 trains of 0.1 ms pulse duration at 1 Hz, 200 pulses, 50-150 μA, at 5 min intervals) was applied after termination of kindling stimulations. NAD-299 (a selective 5-HT1A receptor antagonist; 2.5 and 5 μg/μl) was microinjected into the hippocampal CA1 before applying LFS. The Morris water maze, and novel object recognition tests were conducted after the last kindling stimulation. Hippocampal samples were also prepared, and 5-HT1A receptor gene expression levels were assessed using quantitative RT-PCR. In kindled animals, LFS reduced impairments in spatial learning and memory in the Morris water maze and novel object recognition tests. Microinjection of NAD doses of 5 μg/μl reduced the effects of LFS on learning and memory. The gene expression level of 5-HT1A receptors increased significantly in the hippocampus of amygdala-kindled rats. However, LFS applied after kindling stimulations inhibited this effect. It seems that activation of 5-HT1A receptors in the CA1 field is necessary for LFS' improving effects on spatial learning and memory in kindled animals; although surprisingly, LFS application prevented the elevation in gene expression of 5-HT1A receptors in kindled animals.
Collapse
Affiliation(s)
- Alireza Gharib
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamed Manoochehri Khoshinani
- Department of Molecular Medicine and Genetics, School of Medicine, Hamedan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamedan University of Medical Sciences, Hamadan, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Esmaeilpour K, Sheibani V, Shabani M, Mirnajafi-Zadeh J. Low frequency electrical stimulation has time dependent improving effect on kindling-induced impairment in long-term potentiation in rats. Brain Res 2017; 1668:20-27. [DOI: 10.1016/j.brainres.2017.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
|
8
|
Wu G, Wang L, Hong Z, Ren S, Zhou F. Hippocampal low-frequency stimulation inhibits afterdischarge and increases GABA (A) receptor expression in amygdala-kindled pharmacoresistant epileptic rats. Neurol Res 2017; 39:733-743. [PMID: 28502217 DOI: 10.1080/01616412.2017.1325120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Guofeng Wu
- Department of Neurology, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
- Department of Neurology, Affiliated Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Likun Wang
- Department of Neurology, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Zhen Hong
- Department of Neurology, Affiliated Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Siying Ren
- Department of Neurology, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Feng Zhou
- Department of Neurology, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
9
|
Wozny TA, Lipski WJ, Alhourani A, Kondylis ED, Antony A, Richardson RM. Effects of hippocampal low-frequency stimulation in idiopathic non-human primate epilepsy assessed via a remote-sensing-enabled neurostimulator. Exp Neurol 2017; 294:68-77. [PMID: 28495218 DOI: 10.1016/j.expneurol.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 04/28/2017] [Accepted: 05/06/2017] [Indexed: 01/06/2023]
Abstract
Individuals with pharmacoresistant epilepsy remain a large and under-treated patient population. Continued technologic advancements in implantable neurostimulators have spurred considerable research efforts directed towards the development of novel antiepileptic stimulation therapies. However, the lack of adequate preclinical experimental platforms has precluded a detailed understanding of the differential effects of stimulation parameters on neuronal activity within seizure networks. In order to chronically monitor seizures and the effects of stimulation in a freely-behaving non-human primate with idiopathic epilepsy, we employed a novel simultaneous video-intracranial EEG recording platform using a state-of-the-art sensing-enabled, rechargeable clinical neurostimulator with real-time seizure detection and wireless data streaming capabilities. Using this platform, we were able to characterize the electrographic and semiologic features of the focal-onset, secondarily generalizing tonic-clonic seizures stably expressed in this animal. A series of acute experiments exploring low-frequency (2Hz) hippocampal stimulation identified a pulse width (150μs) and current amplitude (4mA) combination which maximally suppressed local hippocampal activity. These optimized stimulation parameters were then delivered to the seizure onset-side hippocampus in a series of chronic experiments. This long-term testing revealed that the suppressive effects of low-frequency hippocampal stimulation 1) diminish when delivered continuously but are maintained when stimulation is cycled on and off, 2) are dependent on circadian rhythms, and 3) do not necessarily confer seizure protective effects.
Collapse
Affiliation(s)
- Thomas A Wozny
- Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Witold J Lipski
- Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Ahmad Alhourani
- Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Efstathios D Kondylis
- Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Arun Antony
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States; University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA 15213, United States
| | - R Mark Richardson
- Brain Modulation Lab, Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States; University of Pittsburgh Comprehensive Epilepsy Center, Pittsburgh, PA 15213, United States; University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, United States.
| |
Collapse
|
10
|
Schulze-Bonhage A. Brain stimulation as a neuromodulatory epilepsy therapy. Seizure 2017; 44:169-175. [DOI: 10.1016/j.seizure.2016.10.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
|