1
|
Mazzaferro S, Whiteman ST, Alcaino C, Beyder A, Sine SM. NACHO and 14-3-3 promote expression of distinct subunit stoichiometries of the α4β2 acetylcholine receptor. Cell Mol Life Sci 2021; 78:1565-1575. [PMID: 32676916 PMCID: PMC7854996 DOI: 10.1007/s00018-020-03592-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to the superfamily of pentameric ligand-gated ion channels, and in neuronal tissues, are assembled from various types of α- and β-subunits. Furthermore, the subunits α4 and β2 assemble in two predominant stoichiometric forms, (α4)2(β2)3 and (α4)3(β2)2, forming receptors with dramatically different sensitivity to agonists and allosteric modulators. However, mechanisms by which the two stoichiometric forms are regulated are not known. Here, using heterologous expression in mammalian cells, single-channel patch-clamp electrophysiology, and calcium imaging, we show that the ER-resident protein NACHO selectively promotes the expression of the (α4)2(β2)3 stoichiometry, whereas the cytosolic molecular chaperone 14-3-3η selectively promotes the expression of the (α4)3(β2)2 stoichiometry. Thus, NACHO and 14-3-3η are potential physiological regulators of subunit stoichiometry, and are potential drug targets for re-balancing the stoichiometry in pathological conditions involving α4β2 nAChRs such as nicotine dependence and epilepsy.
Collapse
Affiliation(s)
- Simone Mazzaferro
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| | - Sara T Whiteman
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Constanza Alcaino
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Arthur Beyder
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
2
|
Larsen HM, Hansen SK, Mikkelsen JD, Hyttel P, Stummann TC. Alpha7 nicotinic acetylcholine receptors and neural network synaptic transmission in human induced pluripotent stem cell-derived neurons. Stem Cell Res 2019; 41:101642. [PMID: 31707211 DOI: 10.1016/j.scr.2019.101642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 01/09/2023] Open
Abstract
The α7 nicotinic acetylcholine receptor has been extensively researched as a target for treatment of cognitive impairment in Alzheimer's disease and schizophrenia. Investigation of the α7 receptor is commonly performed in animals but it is critical to increase the biologically relevance of the model systems to fully capture the physiological role of the α7 receptor in humans. For example most humans, in contrast to animals, express the hybrid gene CHRFAM7A, the product of which modulates α7 receptor activity. In the present study, we used human induced pluripotent stem cell (hiPSC) derived neurons to establish a humanized α7 model. We established a cryobank of neural stem cells (NSCs) that could reproducibly be matured into neurons expressing neuronal markers and CHRNA7 and CHRFAM7A. The neurons responded to NMDA, GABA, and acetylcholine and exhibited synchronized spontaneous calcium oscillations. Gene expression studies and application of a range of α7 positive allosteric modulators (PNU-120595, TQS, JNJ-39393406 and AF58801) together with the α7 agonist PNU-282987 during measurement of intracellular calcium levels demonstrated the presence of functional α7 receptors in matured hiPSC-derived neuronal cultures. Pharmacological α7 activation also resulted in intracellular signaling as measured by ERK 1/2 phosphorylation and c-Fos protein expression. Moreover, PNU-120596 increased the frequency of the spontaneous calcium oscillations demonstrating implication of α7 receptors in human synaptic networks activity. Overall, we show that hiPSC derived neurons are an advanced in vitro model for studying human α7 receptor pharmacology and the involvement of this receptor in cellular processes as intracellular signaling and synaptic transmission.
Collapse
Affiliation(s)
- Hjalte M Larsen
- Stem Cells and Embryology Group, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Susanne K Hansen
- Stem Cells and Embryology Group, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Denmark
| | - Poul Hyttel
- Stem Cells and Embryology Group, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
3
|
Malińska D, Więckowski MR, Michalska B, Drabik K, Prill M, Patalas-Krawczyk P, Walczak J, Szymański J, Mathis C, Van der Toorn M, Luettich K, Hoeng J, Peitsch MC, Duszyński J, Szczepanowska J. Mitochondria as a possible target for nicotine action. J Bioenerg Biomembr 2019; 51:259-276. [PMID: 31197632 PMCID: PMC6679833 DOI: 10.1007/s10863-019-09800-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/19/2019] [Indexed: 12/26/2022]
Abstract
Mitochondria are multifunctional and dynamic organelles deeply integrated into cellular physiology and metabolism. Disturbances in mitochondrial function are involved in several disorders such as neurodegeneration, cardiovascular diseases, metabolic diseases, and also in the aging process. Nicotine is a natural alkaloid present in the tobacco plant which has been well studied as a constituent of cigarette smoke. It has also been reported to influence mitochondrial function both in vitro and in vivo. This review presents a comprehensive overview of the present knowledge of nicotine action on mitochondrial function. Observed effects of nicotine exposure on the mitochondrial respiratory chain, oxidative stress, calcium homeostasis, mitochondrial dynamics, biogenesis, and mitophagy are discussed, considering the context of the experimental design. The potential action of nicotine on cellular adaptation and cell survival is also examined through its interaction with mitochondria. Although a large number of studies have demonstrated the impact of nicotine on various mitochondrial activities, elucidating its mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Dominika Malińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Mariusz R Więckowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Bernadeta Michalska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Karolina Drabik
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Monika Prill
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paulina Patalas-Krawczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jarosław Walczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jędrzej Szymański
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Carole Mathis
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Marco Van der Toorn
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A. (part of Philip Morris International group of companies), Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Jerzy Duszyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Joanna Szczepanowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
4
|
Matta JA, Gu S, Davini WB, Lord B, Siuda ER, Harrington AW, Bredt DS. NACHO Mediates Nicotinic Acetylcholine Receptor Function throughout the Brain. Cell Rep 2018; 19:688-696. [PMID: 28445721 DOI: 10.1016/j.celrep.2017.04.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/22/2017] [Accepted: 04/03/2017] [Indexed: 12/30/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) participate in diverse aspects of brain function and mediate behavioral and addictive properties of nicotine. Neuronal nAChRs derive from combinations of α and β subunits, whose assembly is tightly regulated. NACHO was recently identified as a chaperone for α7-type nAChRs. Here, we find NACHO mediates assembly of all major classes of presynaptic and postsynaptic nAChR tested. NACHO acts at early intracellular stages of nAChR subunit assembly and then synergizes with RIC-3 for receptor surface expression. NACHO knockout mice show profound deficits in binding sites for α-bungarotoxin, epibatidine, and conotoxin MII, illustrating essential roles for NACHO in proper assembly of α7-, α4β2-, and α6-containing nAChRs, respectively. By contrast, GABAA receptors are unaffected consistent with NACHO specifically modulating nAChRs. NACHO knockout mice show abnormalities in locomotor and cognitive behaviors compatible with nAChR deficiency and underscore the importance of this chaperone for physiology and disease associated with nAChRs.
Collapse
Affiliation(s)
- Jose A Matta
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Shenyan Gu
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Weston B Davini
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Brian Lord
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Edward R Siuda
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Anthony W Harrington
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|