1
|
Dong T, Wang X, Jia Z, Yang J, Liu Y. Assessing the associations of 1,400 blood metabolites with major depressive disorder: a Mendelian randomization study. Front Psychiatry 2024; 15:1391535. [PMID: 38903637 PMCID: PMC11187323 DOI: 10.3389/fpsyt.2024.1391535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Background and objectives Major Depressive Disorder (MDD) is one of the most prevalent and debilitating health conditions worldwide. Previous studies have reported a link between metabolic dysregulation and MDD. However, evidence for a causal relationship between blood metabolites and MDD is lacking. Methods Using a two-sample bidirectional Mendelian randomization analysis (MR), we assessed the causal relationship between 1,400 serum metabolites and Major Depressive Disorder (MDD). The Inverse Variance Weighted method (IVW) was employed to estimate the causal association between exposures and outcomes. Additionally, MR-Egger regression, weighted median, simple mode, and weighted mode methods were used as supplementary approaches for a comprehensive appraisal of the causality between blood metabolites and MDD. Pleiotropy and heterogeneity tests were also conducted. Lastly, the relevant metabolites were subjected to metabolite function analysis, and a reverse MR was implemented to explore the potential influence of MDD on these metabolites. Results After rigorous screening, we identified 34 known metabolites, 13 unknown metabolites, and 18 metabolite ratios associated with Major Depressive Disorder (MDD). Among all metabolites, 33 were found to have positive associations, and 32 had negative associations. The top five metabolites that increased the risk of MDD were the Arachidonate (20:4n6) to linoleate (18:2n6) ratio, LysoPE(18:0/0:0), N-acetyl-beta-alanine levels, Arachidonate (20:4n6) to oleate to vaccenate (18:1) ratio, Glutaminylglutamine, and Threonine to pyruvate ratio. Conversely, the top five metabolites that decreased the risk of MDD were N6-Acetyl-L-lysine, Oleoyl-linoleoyl-glycerol (18:1 to 18:2) [2] to linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio, Methionine to phosphate ratio, Pregnanediol 3-O-glucuronide, and 6-Oxopiperidine-2-carboxylic acid. Metabolite function enrichment was primarily concentrated in pathways such as Bile Acid Biosynthesis (FDR=0.177), Glutathione Metabolism (FDR=0.177), Threonine, and 2-Oxobutanoate Degradation (FDR=0.177). In addition, enrichment was noted in pathways like Valine, Leucine, and Isoleucine Biosynthesis (p=0.04), as well as Ascorbate and Aldarate Metabolism (p=0.04). Discussion Within a pool of 1,400 blood metabolites, we identified 34 known metabolites and 13 unknown metabolites, as well as 18 metabolite ratios associated with Major Depressive Disorder (MDD). Additionally, three functionally enriched groups and two metabolic pathways were selected. The integration of genomics and metabolomics has provided significant insights for the screening and prevention of MDD.
Collapse
Affiliation(s)
- Tiantian Dong
- Center for External Treatment of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xingxin Wang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhixia Jia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuanxiang Liu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Filipović D, Novak B, Xiao J, Yan Y, Bernardi RE, Turck CW. Chronic fluoxetine treatment in socially-isolated rats modulates the prefrontal cortex synaptoproteome. J Proteomics 2023; 282:104925. [PMID: 37164273 DOI: 10.1016/j.jprot.2023.104925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Exposure to chronic social isolation (CSIS) and synapse dysfunction have been implicated in the etiology of major depressive disorder (MDD). Fluoxetine (Flx) has been widely used to treat MDD, but its mechanisms of action remain elusive. We employed comparative synaptoproteomics to investigate the changes in the levels of proteins and molecular signaling pathways in prefrontal cortical samples of adult male Wistar rats exposed to CSIS, a rat model of depression, and CSIS rats treated with chronic Flx and controls, using liquid chromatography coupled to tandem mass spectrometry. Flx-treated control rats showed a decreased level of proteins involved in vesicle-mediated transport, and a predominantly increased level of exocytosis-associated proteins. CSIS significantly reduced the level of proteins involved in the ATP metabolic process, clathrin-dependent endocytosis, and proteolysis. Flx treatment in CSIS rats stimulated synaptic vesicle trafficking by increasing the regulation of exo/endocytosis-associated proteins, proteins involved in synaptic plasticity including neurogenesis, Cox5a, mitochondria-associated proteins involved in oxidative phosphorylation, and ion transport proteins (Slc8a2, Atp1b2). Flx treatment resulted in an increased synaptic vesicle dynamic, plasticity and mitochondrial functionality, and a suppression of CSIS-induced impairment of these processes. BIOLOGICAL SIGNIFICANCE: Identifying biomarkers of MDD and treatment response is the goal of many studies. Contemporary studies have shown that many molecular alterations associated with the pathophysiology of MDD reside within the synapse. As part of this research, a growing importance is the use of proteomics, as monitoring the changes in protein levels enables the identification of (possible) biochemical pathways and processes of importance for the development of depressive-like behavior and the efficacy of antidepressant treatments. We profiled proteomic changes representative of the development of CSIS-induced depressive-like behavior and the antidepressant effects of Flx. Our study has identified synaptosomal proteins and altered molecular pathways that may be potential markers of prefrontal cortical synaptic dysfunction associated with depressive-like behavior, and further clarified the mechanisms of depressive-like behavior and mode of action of Flx. Our findings indicate potential PFC synaptic targets for antidepressant treatment.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
3
|
Filipović D, Novak B, Xiao J, Yan Y, Yeoh K, Turck CW. Chronic Fluoxetine Treatment of Socially Isolated Rats Modulates Prefrontal Cortex Proteome. Neuroscience 2022; 501:52-71. [PMID: 35963583 DOI: 10.1016/j.neuroscience.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Fluoxetine (Flx) is the most commonly used antidepressant to treat major depressive disorder. However, its molecular mechanisms of action are not defined as yet. A comparative proteomic approach was used to identify proteome changes in the prefrontal cortex (PFC) cytosolic and non-synaptic mitochondria (NSM)-enriched fractions of adult male Wistar rats following chronic social isolation (CSIS), a rat model of depression, and Flx treatment in CSIS and control rats, using liquid chromatography online tandem mass spectrometry. Flx reversed CSIS-induced depressive - like behavior according to preference for sucrose and immobility in the forced swim test, indicating its antidepressant effect. Flx treatment in controls led to an increase of the expression of cytosolic proteins involved in the microtubule cytoskeleton and intracellular calcium homeostasis and of enzymes involved in bioenergetic and transmembrane transport in NSM. CSIS downregulated the cytosolic proteins involved in proteasome pathway, and glutathione antioxidative system, and upregulated the expression of enzymes participating in mitochondrial-energy metabolism and transport. The presence of cytochrome c in the cytosol may suggest compromised mitochondrial membrane integrity. Flx treatment in CSIS rats downregulated protein involved in oxidative phosphorylation, such as complex III and manganese superoxide dismutase, and upregulated vesicle-mediated transport and synaptic signaling proteins in the cytosol, and neuronal calcium-binding protein 1 in NSM. Our study identified PFC modulated proteins and affected biochemical pathways that may represent potential markers/targets underlying CSIS-induced depression and effective Flx treatment, and highlights the role of protein systems involved in NSM and various metabolic pathways potentially involved in neuronal plasticity.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karin Yeoh
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
4
|
Liu Y, Hu P, Zheng Z, Zhong D, Xie W, Tang Z, Pan B, Luo J, Zhang W, Wang X. Photoresponsive Vaccine-Like CAR-M System with High-Efficiency Central Immune Regulation for Inflammation-Related Depression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108525. [PMID: 34897839 DOI: 10.1002/adma.202108525] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Increasing evidence suggests that activation of microglia-induced neuroinflammation plays a crucial role in the pathophysiology of depression. Consequently, targeting the central nervous system to reduce neuroinflammation holds great promise for the treatment of depression. However, few drugs can enter the brain via a circulatory route through the blood-brain barrier (BBB) to reach the central nervous system efficiently, which limits the pharmacological treatment for neuropsychiatric diseases. Herein, a light-responsive system named UZPM, consisting of blue-emitting NaYF4 :Yb, Tm@zeolitic-imidazolate framework (UCNP@ZIF-8), photoacid (PA), and melatonin (MT) is developed to address the above issues. Meanwhile, UZPM is introduced into macrophages by functional liposomes fusion and modified with hydroxylamine groups on the cell surface. Aldehyde-modified cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) is used as a chimeric antigen receptor (CAR) targeting group to modify the surface of macrophages by aldehyde/hydroxylamine condensation to precisely target central M1-type microglia (CAR-M-UZPM). Both in vitro and in vivo experiments demonstrate that the CAR-M-UZPM drug delivery system can efficiently penetrate the BBB, targeting centrally activated microglia, and thus, inhibiting the M1-type polarization of microglia, producing continuous vaccine-like anti-inflammatory effects that prevent the occurrence and development of inflammation-related depression.
Collapse
Affiliation(s)
- Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, P. R. China
| | - Ping Hu
- Institute of Translational Medicine, School of Life Sciences, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhiheng Zheng
- Institute of Life Science, School of Life Sciences, Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330088, P. R. China
| | - Da Zhong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Weichang Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Zhibo Tang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| | - Bingxing Pan
- Institute of Life Science, School of Life Sciences, Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330088, P. R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, P. R. China
| | - Wenhua Zhang
- Institute of Life Science, School of Life Sciences, Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330088, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330088, P. R. China
| |
Collapse
|
5
|
Uehara T, Kurachi M, Kondo T, Abe H, Itoh H, Sumiyoshi T, Suzuki M. Apocynin-Tandospirone Derivatives Suppress Methamphetamine-Induced Hyperlocomotion in Rats with Neonatal Exposure to Dizocilpine. J Pers Med 2022; 12:jpm12030366. [PMID: 35330366 PMCID: PMC8951253 DOI: 10.3390/jpm12030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Accumulating evidence implicates oxidative stress as a potential pathophysiological mechanism of schizophrenia. Accordingly, we synthesized new chemicals using apocynin and tandospirone as lead compounds (A-2, A-3 and A-4). These novel compounds decreased reactive oxygen species (ROS) concentrations in vitro and reversed decreases in glutathione levels in the medial prefrontal cortex of rats transiently exposed to MK-801, an N-methyl-d-aspartate receptor antagonist, in the neonatal period. To determine whether A-2, A-3 and A-4 show behavioral effects associated with antipsychotic properties, the effects of these compounds on methamphetamine (MAP)-induced locomotor and vertical activity were examined in the model rats. A-2 and A-3, administered for 14 days around the puberty period, ameliorated MAP-induced hyperlocomotion in MK-801-treated rats in the post-puberty period, while A-4 suppressed MAP-induced vertical activity. These findings indicate that apocynin-tandospirone derivatives present anti-dopaminergic effects and may alleviate psychotic symptoms of schizophrenia.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, Uchinada 920-0293, Japan
- Correspondence: ; Tel.: +81-76-286-2211 (ext. 3437); Fax: +81-76-286-3341
| | - Masayoshi Kurachi
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.K.); (H.I.); (M.S.)
| | - Takashi Kondo
- Center for Low-Temperature Plasma Sciences, Nagoya University, Nagoya 464-8603, Japan;
| | - Hitoshi Abe
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan;
| | - Hiroko Itoh
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.K.); (H.I.); (M.S.)
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan; (M.K.); (H.I.); (M.S.)
| |
Collapse
|
6
|
The anti-inflammatory role of SSRI and SNRI in the treatment of depression: a review of human and rodent research studies. Inflammopharmacology 2020; 29:75-90. [PMID: 33164143 DOI: 10.1007/s10787-020-00777-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
RATIONALE Depression has the topmost prevalence of all psychiatric diseases. It is characterized by a high recurrence rate, disability, and numerous and mostly unclear pathogenic mechanisms. Besides the monoamine or the neurotrophic hypothesis of depression, the inflammatory mechanism has begun to be supported by more and more evidence. At the same time, the current knowledge about the standard treatment of choice, the selective serotonin reuptake inhibitors (SSRIs) and serotonin and noradrenaline reuptake inhibitors (SNRIs), is expanding rapidly, adding more features to the initial ones. OBJECTIVES This review summarizes the in vivo anti-inflammatory effects of SSRIs and SNRIs in the treatment of depression and outlines the particular mechanisms of these effects for each drug separately. In addition, we provide an overview of the inflammation-related theory of depression and the underlying mechanisms. RESULTS SSRIs and SNRIs decrease the neuroinflammation through multiple mechanisms including the reduction of blood or tissue cytokines or regulating complex inflammatory pathways: nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), inflammasomes, Toll-like receptor 4 (TLR4), peroxisome proliferator-activated receptor gamma (PPARγ). Also, SSRIs and SNRIs show these effects in association with an antidepressant action. CONCLUSIONS SSRIs and SNRIs have an anti-neuroinflammatory role which might contribute the antidepressant effect.
Collapse
|
7
|
Stanisavljević A, Perić I, Gass P, Inta D, Lang UE, Borgwardt S, Filipović D. Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation. Brain Res Bull 2020; 163:95-108. [DOI: 10.1016/j.brainresbull.2020.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
|
8
|
Rappeneau V, Wilmes L, Touma C. Molecular correlates of mitochondrial dysfunctions in major depression: Evidence from clinical and rodent studies. Mol Cell Neurosci 2020; 109:103555. [PMID: 32979495 DOI: 10.1016/j.mcn.2020.103555] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent stress-related mental disorders worldwide. Several biological mechanisms underlying the pathophysiology of MDD have been proposed, including endocrine disturbances, neurotransmitter deficits, impaired neuronal plasticity, and more recently, mitochondrial dysfunctions. In this review, we provide an overview of relevant molecular correlates of mitochondrial dysfunction in MDD, based on findings from clinical studies and stress-induced rodent models. We also compare differences and similarities between the phenotypes of MDD patients and animal models. Our analysis of the literature reveals that both MDD and stress are associated, in humans and animals, with changes in mitochondrial biogenesis, redox imbalance, increased oxidative damages of cellular macromolecules, and apoptosis. Yet, a considerable amount of conflicting data exist and therefore, the translation of findings from clinical and preclinical research to novel therapies for MDD remains complex. Further studies are needed to advance our understanding of the molecular networks and biological mechanisms involving mitochondria in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany.
| | - Lars Wilmes
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| | - Chadi Touma
- Department of Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
9
|
The effect of voluntary wheel running on the antioxidant status is dependent on sociability conditions. Pharmacol Biochem Behav 2020; 198:173018. [PMID: 32827504 PMCID: PMC7438373 DOI: 10.1016/j.pbb.2020.173018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
Voluntary wheel running is widely used as a physical activity (PA) model in rodents, but most studies investigate the beneficial effects of this intervention in socially isolated mice. Social isolation stress (SIS) is associated with vulnerability to oxidative stress and reduced mitochondrial activity. Thus, the aim of this study was to investigate the effects of free access to a running wheel for 21 days on the various markers of the cellular redox/antioxidant status as well as mitochondrial function of mice subjected to SIS or maintained in groups of 3 in the homecage. SIS increased thiobarbituric acid reactive substance (TBARS) levels in the cerebral cortex, and PA intervention was not able to reverse such alteration. PA reduced TBARS levels in the liver of grouped mice and gastrocnemius of socially isolated mice. PA increased nonprotein thiol (NPSH) levels in the cerebral cortex of grouped mice. Furthermore, socially isolated mice presented lower glutathione peroxidase (GPx) activity in the cerebellum and gastrocnemius, and glutathione reductase (GR) activity in the cerebral cortex and liver. By contrast, SIS induced higher GPx activity in the cerebral cortex and heart. PA reduced GPx (cerebral cortex) and GR (cerebral cortex and liver) activities of socially isolated mice. SIS caused higher activity of mitochondrial complexes I and II in the cerebral cortex, and the PA paradigm was not able to alter this effect. Interestingly, the PA produced antidepressant-like effect at both SIS and control groups. In conclusion, the results showed the influence of SIS for the effects of PA on the antioxidant status, but not on the mitochondrial function and emotionality. PA intervention produces antioxidant responses dependent on sociability conditions. SIS induces mitochondria function and antioxidant defense abnormalities. Running produces antidepressant-like behavior and does not change the ambulation. The distance travelled on the running wheel is correlated with immobility time in the TST. The lipoperoxidation index is negatively correlated with time spent on the running wheel.
Collapse
|
10
|
Stanisavljević A, Perić I, Bernardi RE, Gass P, Filipović D. Clozapine increased c-Fos protein expression in several brain subregions of socially isolated rats. Brain Res Bull 2019; 152:35-44. [PMID: 31299320 DOI: 10.1016/j.brainresbull.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Abstract
Chronic social stress and/or pharmacological treatments differentially modulate the expression of c-Fos, a marker of neuronal activity, in subregions of the rat brain. Here, we examined the effect of the atypical antipsychotic Clozapine (Clz) (20 mg/kg/day for 3 weeks) on the neuronal activation pattern of c-Fos protein expression in stress-relevant brain subregions of adult male Wistar rats exposed to chronic social isolation (CSIS: 3 weeks), an animal model of depression and schizophrenia, and controls. The protein expression of c-Fos was also used to map neuronal populations in brain subregions activated by CSIS alone. Subregions which showed significantly increased c-Fos protein expression following CSIS included the retrosplenial cortex (RSC), (subregions:RSC granular cortex, c region (RSGc) and dysgranular (RSD)), dentate gyrus, dorsal (DGd), paraventricular thalamic nucleus, posterior part (PVP), lateral (LA)/basolateral (BL) complex of amygdala, caudate putamen (CPu) and accumbens nucleus, shell (AcbSh). Increases in c-Fos protein expression in the RSGc, RSD, DGd, PVP, LA/BL complex of amygdala and striatum (CPu, Acb Core (AcbC) and AcbSh) following Clz treatment in controls were found. Clz applied simultaneously with CSIS modulated neuronal activity in CPu, AcbC and AcbSh subregions compared to CSIS alone, increasing c-Fos protein expression. Furthermore, Clz revealed synergistic effects with CSIS in the CA1d and PVP. These identified neural circuits reflect brain subregions activated following CSIS and/or Clz administration. These data further contribute to the understanding of the effectiveness of Clz in the modulation of brain subregion activation in response to CSIS.
Collapse
Affiliation(s)
- Andrijana Stanisavljević
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, 11001 Belgrade, Serbia
| | - Ivana Perić
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, 11001 Belgrade, Serbia
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim 68159, Germany
| | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, 11001 Belgrade, Serbia.
| |
Collapse
|
11
|
Todorović N, Mićić B, Schwirtlich M, Stevanović M, Filipović D. Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats. Neuroscience 2018; 396:24-35. [PMID: 30448452 DOI: 10.1016/j.neuroscience.2018.11.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Dysregulation of GABAergic system is becoming increasingly associated with depression, psychiatric disorder that imposes severe clinical, social and economic burden. Special attention is paid to the fast-spiking parvalbumin-positive (PV+) interneurons, GABAergic neurons which are highly susceptible to redox dysregulation and oxidative stress and implicated in a variety of psychiatric diseases. Here we analyzed the number of PV+ and cleaved caspase-3-positive (CC3+) cells in the rat medial prefrontal cortical (mPFC) subregions following chronic social isolation (CSIS), an animal model of depression and schizophrenia. Also, we examined potential protective effects of antidepressant fluoxetine (FLX) and atypical antipsychotic clozapine (CLZ) on the number of these cells in mPFC subregions, when applied parallel with CSIS in doses that correspond to therapeutically effective ones in patients. Immunofluorescence analysis revealed decreased number of PV+ cells in cingulate cortex area 1, prelimbic area (PrL), infralimbic area (IL) and dorsal peduncular cortex of the mPFC in isolated rats, which coincided with depressive- and anxiety-like behaviors. In addition, CSIS-induced increase in the number of CC3+ cells was detected in aforementioned subregions of mPFC. Treatments with either FLX or CLZ prevented behavioral changes, decrease in PV+ and increase in CC3+ cell numbers in PrL and IL subregions in isolated rats. These results indicate the importance of intact GABAergic signaling in these areas for resistance against CSIS-induced behavioral changes, as well as subregion-specific protective effects of FLX and CLZ in mPFC of CSIS rats.
Collapse
Affiliation(s)
- Nevena Todorović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Bojana Mićić
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia; University of Belgrade, Faculty of Biology, Belgrade, Serbia; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dragana Filipović
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinča", University of Belgrade, Serbia. http://www.vinca.rs
| |
Collapse
|
12
|
Mello BSF, Chaves Filho AJM, Custódio CS, Cordeiro RC, Miyajima F, de Sousa FCF, Vasconcelos SMM, de Lucena DF, Macedo D. Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression. J Neuroimmunol 2018; 320:133-142. [DOI: 10.1016/j.jneuroim.2018.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
|
13
|
Chronic Treatment with Fluoxetine or Clozapine of Socially Isolated Rats Prevents Subsector-Specific Reduction of Parvalbumin Immunoreactive Cells in the Hippocampus. Neuroscience 2018; 371:384-394. [DOI: 10.1016/j.neuroscience.2017.12.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
|
14
|
Todorović N, Filipović D. The antidepressant- and anxiolytic-like effects of fluoxetine and clozapine in chronically isolated rats involve inhibition of hippocampal TNF-α. Pharmacol Biochem Behav 2017; 163:57-65. [DOI: 10.1016/j.pbb.2017.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023]
|