1
|
Fleming B, Edison P, Kenny L. Cognitive impairment after cancer treatment: mechanisms, clinical characterization, and management. BMJ 2023; 380:e071726. [PMID: 36921926 DOI: 10.1136/bmj-2022-071726] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is a debilitating side effect experienced by patients with cancer treated with systemically administered anticancer therapies. With around 19.3 million new cases of cancer worldwide in 2020 and the five year survival rate growing from 50% in 1970 to 67% in 2013, an urgent need exists to understand enduring side effects with severe implications for quality of life. Whereas cognitive impairment associated with chemotherapy is recognized in patients with breast cancer, researchers have started to identify cognitive impairment associated with other treatments such as immune, endocrine, and targeted therapies only recently. The underlying mechanisms are diverse and therapy specific, so further evaluation is needed to develop effective therapeutic interventions. Drug and non-drug management strategies are emerging that target mechanistic pathways or the cognitive deficits themselves, but they need to be rigorously evaluated. Clinically, consistent use of objective diagnostic tools is necessary for accurate diagnosis and clinical characterization of cognitive impairment in patients treated with anticancer therapies. This should be supplemented with clinical guidelines that could be implemented in daily practice. This review summarizes the recent advances in the mechanisms, clinical characterization, and novel management strategies of cognitive impairment associated with treatment of non-central nervous system cancers.
Collapse
Affiliation(s)
- Ben Fleming
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Laura Kenny
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
2
|
Espina JEC, Bagamasbad PD. Synergistic gene regulation by thyroid hormone and glucocorticoid in the hippocampus. VITAMINS AND HORMONES 2021; 118:35-81. [PMID: 35180933 DOI: 10.1016/bs.vh.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hippocampus is considered the center for learning and memory in the brain, and its development and function is greatly affected by the thyroid and stress axes. Thyroid hormone (TH) and glucocorticoids (GC) are known to have a synergistic effect on developmental programs across several vertebrate species, and their effects on hippocampal structure and function are well-documented. However, there are few studies that focus on the processes and genes that are cooperatively regulated by the two hormone axes. Cross-regulation of the thyroid and stress axes in the hippocampus occurs on multiple levels such that TH can regulate the expression of the GC receptor (GR) while GC can modulate tissue sensitivity to TH by controlling the expression of TH receptor (TR) and enzymes involved in TH biosynthesis. Thyroid hormone and GC are also known to synergistically regulate the transcription of genes associated with neuronal function and development. Synergistic gene regulation by TH and GC may occur through the direct, cooperative action of TR and GR on common target genes, or by indirect mechanisms involving gene regulatory cascades activated by TR and GR. In this chapter, we describe the known physiological effects and underlying molecular mechanisms of TH and GC synergistic gene regulation in the hippocampus.
Collapse
Affiliation(s)
- Jose Ezekiel C Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Pia D Bagamasbad
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
3
|
High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metab 2021; 33:923-938.e6. [PMID: 33651981 DOI: 10.1016/j.cmet.2021.02.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Maternal obesity has been reported to be related to neurodevelopmental disorders in the offspring. However, the underlying mechanisms and effective interventions remain unclear. This cross-sectional study with 778 children aged 7-14 years in China indicated that maternal obesity is strongly associated with children's lower cognition and sociality. Moreover, it has been demonstrated that maternal obesity in mice disrupted the behavior and gut microbiome in offspring, both of which were restored by a high-fiber diet in either dams or offspring via alleviating synaptic impairments and microglial maturation defects. Co-housing and feces microbiota transplantation experiments revealed a causal relationship between microbiota and behavioral changes. Moreover, treatment with the microbiota-derived short-chain fatty acids also alleviated the behavioral deficits in the offspring of obese dams. Together, our study indicated that the microbiota-metabolites-brain axis may underlie maternal obesity-induced cognitive and social dysfunctions and that high dietary fiber intake could be a promising intervention.
Collapse
|
4
|
Wang Q, Ge X, Zhang J, Chen L. Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer's disease via inhibition of the miR-375/SIX4 axis. Aging (Albany NY) 2020; 12:23974-23995. [PMID: 33234729 PMCID: PMC7762490 DOI: 10.18632/aging.104079] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Objective: To study the effect of lncRNA WT1-AS on oxidative stress injury (OSI) and apoptosis of neurons in Alzheimer's disease (AD) and its specific mechanisms related to the microRNA-375 (miR-375)/SIX4 axis and WT1 expression. Results: After bioinformatic prediction, WT1-AS was found to be downregulated in Aβ25-35treated SH-SY5Y cells, and WT1-AS overexpression inhibited WT1 expression. WT1 could target miR-375 to promote its expression. miR-375 bound to SIX4, and miR-375 overexpression inhibited SIX4 expression. WT1-AS inhibited OSI and apoptosis, while WT1 and miR-375 overexpression or SIX4 silencing reversed the WT1-AS effect on OSI and apoptosis. In vivo experiments revealed that WT1-AS improved learning/memory abilities and inhibited OSI and apoptosis in AD mice. Conclusion: Overexpression of WT1-AS can inhibit the miR-375/SIX4 axis, OSI and neuronal apoptosis in AD by inhibiting WT1 expression. Methods: Related lncRNAs were identified, and miR-375 downstream targets were predicted. WT1-AS, WT1, miR-375 and SIX4 expression was detected in a cell model induced by Aβ25-35. The binding of WT1 with miR-375 and that of miR-375 with SIX4 were further confirmed. Adenosine triphosphate (ATP), reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and lactate dehydrogenase (LDH) activities, and apoptosis levels were tested after mitochondrial membrane potential observation. Learning/memory abilities and neuronal apoptosis were tested in a mouse model.
Collapse
Affiliation(s)
- Quanbao Wang
- Department of Neurology, The People’s Hospital of Linyi City, Linyi 276000, P.R. China
| | - Xiumin Ge
- Department of Neurology, Linyi Mental Health Center, Linyi 276000, P.R. China
| | - Jie Zhang
- Department of Emergency Internal Medicine, The People’s Hospital of Linyi City, Linyi 276000, P.R. China
| | - Licheng Chen
- Department of Neurology, The People’s Hospital of Linyi City, Linyi 276000, P.R. China
| |
Collapse
|
5
|
Grune T. Oxidized protein aggregates: Formation and biological effects. Free Radic Biol Med 2020; 150:120-124. [PMID: 32097679 DOI: 10.1016/j.freeradbiomed.2020.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022]
Abstract
The study of protein aggregates has a long history. While in the first decades until the 80ies of the 20th century only the observation of the presence of such aggregates was reported, later the biochemistry of the formation and the biological effects of theses aggregates were described. This review focusses on the complexity of the biological effects of protein aggregates and its potential role in the aging process.
Collapse
Affiliation(s)
- Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 10785, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| |
Collapse
|
6
|
Bagamasbad PD, Espina JEC, Knoedler JR, Subramani A, Harden AJ, Denver RJ. Coordinated transcriptional regulation by thyroid hormone and glucocorticoid interaction in adult mouse hippocampus-derived neuronal cells. PLoS One 2019; 14:e0220378. [PMID: 31348800 PMCID: PMC6660079 DOI: 10.1371/journal.pone.0220378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 12/04/2022] Open
Abstract
The hippocampus is a well-known target of thyroid hormone (TH; e.g., 3,5,3'-triiodothyronine-T3) and glucocorticoid (GC; e.g., corticosterone-CORT) action. Despite evidence that TH and GC play critical roles in neural development and function, few studies have identified genes and patterns of gene regulation influenced by the interaction of these hormones at a genome-wide scale. In this study we investigated gene regulation by T3, CORT, and T3 + CORT in the mouse hippocampus-derived cell line HT-22. We treated cells with T3, CORT, or T3 + CORT for 4 hr before cell harvest and RNA isolation for microarray analysis. We identified 9 genes regulated by T3, 432 genes by CORT, and 412 genes by T3 + CORT. Among the 432 CORT-regulated genes, there were 203 genes that exhibited an altered CORT response in the presence of T3, suggesting that T3 plays a significant role in modulating CORT-regulated genes. We also found 80 genes synergistically induced, and 73 genes synergistically repressed by T3 + CORT treatment. We performed in silico analysis using publicly available mouse neuronal chromatin immunoprecipitation-sequencing datasets and identified a considerable number of synergistically regulated genes with TH receptor and GC receptor peaks mapping within 1 kb of chromatin marks indicative of hormone-responsive enhancer regions. Functional annotation clustering of synergistically regulated genes reveal the relevance of proteasomal-dependent degradation, neuroprotective effect of growth hormones, and neuroinflammatory responses as key pathways to how TH and GC may coordinately influence learning and memory. Taken together, our transcriptome data represents a promising exploratory dataset for further study of common molecular mechanisms behind synergistic TH and GC gene regulation, and identify specific genes and their role in processes mediated by cross-talk between the thyroid and stress axes in a mammalian hippocampal model system.
Collapse
Affiliation(s)
- Pia D. Bagamasbad
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Jose Ezekiel C. Espina
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
| | - Joseph R. Knoedler
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ariel J. Harden
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Feldmann LK, Le Prieult F, Felzen V, Thal SC, Engelhard K, Behl C, Mittmann T. Proteasome and Autophagy-Mediated Impairment of Late Long-Term Potentiation (l-LTP) after Traumatic Brain Injury in the Somatosensory Cortex of Mice. Int J Mol Sci 2019; 20:ijms20123048. [PMID: 31234472 PMCID: PMC6627835 DOI: 10.3390/ijms20123048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) can lead to impaired cognition and memory consolidation. The acute phase (24–48 h) after TBI is often characterized by neural dysfunction in the vicinity of the lesion, but also in remote areas like the contralateral hemisphere. Protein homeostasis is crucial for synaptic long-term plasticity including the protein degradation systems, proteasome and autophagy. Still, little is known about the acute effects of TBI on synaptic long-term plasticity and protein degradation. Thus, we investigated TBI in a controlled cortical impact (CCI) model in the motor and somatosensory cortex of mice ex vivo-in vitro. Late long-term potentiation (l-LTP) was induced by theta-burst stimulation in acute brain slices after survival times of 1–2 days. Protein levels for the plasticity related protein calcium/calmodulin-dependent protein kinase II (CaMKII) was quantified by Western blots, and the protein degradation activity by enzymatical assays. We observed missing maintenance of l-LTP in the ipsilateral hemisphere, however not in the contralateral hemisphere after TBI. Protein levels of CaMKII were not changed but, interestingly, the protein degradation revealed bidirectional changes with a reduced proteasome activity and an increased autophagic flux in the ipsilateral hemisphere. Finally, LTP recordings in the presence of pharmacologically modified protein degradation systems also led to an impaired synaptic plasticity: bath-applied MG132, a proteasome inhibitor, or rapamycin, an activator of autophagy, both administered during theta burst stimulation, blocked the induction of LTP. These data indicate that alterations in protein degradation pathways likely contribute to cognitive deficits in the acute phase after TBI, which could be interesting for future approaches towards neuroprotective treatments early after traumatic brain injury.
Collapse
Affiliation(s)
- Lucia K Feldmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Florie Le Prieult
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Vanessa Felzen
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Serge C Thal
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Kristin Engelhard
- Clinics for Anaesthesiology, UMC of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Christian Behl
- Institute for Pathobiochemistry, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| | - Thomas Mittmann
- Institute for Physiology, UMC of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
8
|
Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity. Int J Mol Sci 2019; 20:ijms20092197. [PMID: 31060234 PMCID: PMC6538995 DOI: 10.3390/ijms20092197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, functional interconnections emerged between synaptic transmission, inflammatory/immune mediators, and central nervous system (CNS) (patho)-physiology. Such interconnections rose up to a level that involves synaptic plasticity, both concerning its molecular mechanisms and the clinical outcomes related to its behavioral abnormalities. Within this context, synaptic plasticity, apart from being modulated by classic CNS molecules, is strongly affected by the immune system, and vice versa. This is not surprising, given the common molecular pathways that operate at the cross-road between the CNS and immune system. When searching for a common pathway bridging neuro-immune and synaptic dysregulations, the two major cell-clearing cell clearing systems, namely the ubiquitin proteasome system (UPS) and autophagy, take center stage. In fact, just like is happening for the turnover of key proteins involved in neurotransmitter release, antigen processing within both peripheral and CNS-resident antigen presenting cells is carried out by UPS and autophagy. Recent evidence unravelling the functional cross-talk between the cell-clearing pathways challenged the traditional concept of autophagy and UPS as independent systems. In fact, autophagy and UPS are simultaneously affected in a variety of CNS disorders where synaptic and inflammatory/immune alterations concur. In this review, we discuss the role of autophagy and UPS in bridging synaptic plasticity with neuro-immunity, while posing a special emphasis on their interactions, which may be key to defining the role of immunity in synaptic plasticity in health and disease.
Collapse
|
9
|
Bjørklund G, Aaseth J, Dadar M, Chirumbolo S. Molecular Targets in Alzheimer’s Disease. Mol Neurobiol 2019; 56:7032-7044. [DOI: 10.1007/s12035-019-1563-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
|
10
|
Loss of Sfrp2 contributes to the neurological disorders related with morphine withdrawal via Wnt/β-catenin signaling. Behav Brain Res 2019; 359:609-618. [PMID: 30291843 DOI: 10.1016/j.bbr.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/19/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022]
Abstract
Morphine administration is a medical problem characterized by compulsive opioid use that causes terrible negative consequences. The exact mechanisms of morphine-induced dependence and morphine withdrawal symptoms remain unclear. Recent studies have revealed that the upregulation of Wnt/β-catenin signaling plays important roles in morphine exposure and morphine withdrawal. Secreted frizzled-related protein 2 (Sfrp2) can prevent the activation of Wnt/β-catenin signaling by competing with the Frizzled receptor for Wnt ligands. We conducted this study aimed to evaluate the effect of iatrogenic trauma induced by stereotactic surgery and the protective effect of stereotaxic Sfrp2 injection on morphine withdrawal symptoms in Male Sprague Dawley (SD) rats. Many techniques including western blot analysis and immunoprecipitation were used. Anxiety-related behaviors, morphine withdrawal syndrome, and dendritic spines were also examined in male SD rats after morphine treatment and stereotaxic injection of Sfrp2. Western blot results suggested that Wnt signaling was activated in the nucleus accumbens of SD rats suffering from morphine withdrawal and that Sfrp2 attenuated the overexpression of Wnt signaling. Similarly, the withdrawal-like symptoms of morphine dependent rats were abrogated by intracerebral Sfrp2 injection. The iatrogenic trauma induced by stereotactic surgery showed no influence on the Wnt signaling and withdrawal-like symptoms. Moreover, the results of Golgi-cox staining and DiI staining indicated that the damage on proximal spine density caused by morphine treatment was restored by intracerebral Sfrp2 injection. Together, the data presented here indicated that Sfrp2 abrogated the neurological disorders and loss of proximal spine related with morphine withdrawal via Wnt/β-catenin signaling.
Collapse
|