1
|
Liu Y, Wang Y, Xiao Y, Li X, Ruan S, Luo X, Wan X, Wang F, Sun X. Retinal degeneration in mice lacking the cyclic nucleotide-gated channel subunit CNGA1. FASEB J 2021; 35:e21859. [PMID: 34418172 DOI: 10.1096/fj.202101004r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are important mediators in the transduction pathways of rod and cone photoreceptors. Native CNG channels are heterotetramers composed of homologous A and B subunits. Biallelic mutations in CNGA1 or CNGB1 genes result in autosomal recessive retinitis pigmentosa (RP). To investigate the pathogenic mechanism of CNG channel-associated retinal degeneration, we developed a mouse model of CNGA1 knock-out using CRISPR/Cas9 technology. We observed progressive retinal thinning and a concomitant functional deficit in vivo as typical phenotypes for RP. Immunofluorescence and TUNEL staining showed progressive degeneration in rods and cones. Moreover, microglial activation and oxidative stress damage occurred in parallel. RNA-sequencing analysis of the retinae suggested down-regulated synaptic transmission and phototransduction as early as 9 days postnatal, possibly inducing later photoreceptor degeneration. In addition, the down-regulated PI3K-AKT-mTOR pathway indicated upregulation of autophagic process, and chaperone-mediated autophagy was further shown to coincide with the time course of photoreceptor death. Taken together, our studies add to a growing body of research exploring the mechanisms of photoreceptor death during RP progression and provide a novel CNGA1 knockout mouse model for potential development of therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafang Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yushu Xiao
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomeng Li
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shang Ruan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueting Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Fenghua Wang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
2
|
Zhou JW, Zhao M, Rang WL, Zhang XY, Liu ZM, Zhang LR, Wang TX, Wu CT, Cheng XR, Zhou WX. Proteome Profiling Identified Amyloid-β Protein Precursor as a Novel Binding Partner and Modulator of VGLUT1. J Alzheimers Dis 2021; 81:981-1038. [PMID: 33896843 DOI: 10.3233/jad-210117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The toxicity of excessive glutamate release has been implicated in various acute and chronic neurodegenerative conditions. Vesicular glutamate transporters (VGLUTs) are the major mediators for the uptake of glutamate into synaptic vesicles. However, the dynamics and mechanism of this process in glutamatergic neurons are still largely unknown. OBJECTIVE This study aimed to investigate the candidate protein partners of VGLUT1 and their regulatory roles in the vesicles in rat brain. METHODS Pull down assay, co-immunoprecipitation assay, or split-ubiquitin membrane yeast two hybrid screening coupled with nanoRPLC-MS/MS were used to identify the candidate protein partners of VGLUT1 in the vesicles in rat brain. The in vitro and in vivo models were used to test effects of AβPP, Atp6ap2, Gja1, and Synataxin on VGLUT1 expression. RESULTS A total of 255 and 225 proteins and 172 known genes were identified in the pull down assay, co-immunoprecipitation assay, or split-ubiquitin yeast two-hybrid screening respectively. The physiological interactions of SV2A, Syntaxin 12, Gja1, AβPP, and Atp6ap2 to VGLUT1 were further confirmed. Knockdown of Atp6ap2, Gja1, and Synataxin increased VGLUT1 mRNA expression and only knockdown of AβPP increased both mRNA and protein levels of VGLUT1 in PC12 cells. The regulatory function of AβPP on VGLUT1 expression was further confirmed in the in vitro and in vivo models. CONCLUSION These results elucidate that the AβPP and VGLUT1 interacts at vesicular level and AβPP plays a role in the regulation of VGLUT1 expression which is essential for maintaining vesicular activities.
Collapse
Affiliation(s)
- Jin-Wu Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Man Zhao
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Wen-Liang Rang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhen-Ming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liang-Ren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tong-Xing Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chu-Tse Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Rui Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| | - Wen-Xia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing, China
| |
Collapse
|
3
|
Cheret C, Ganzella M, Preobraschenski J, Jahn R, Ahnert-Hilger G. Vesicular Glutamate Transporters (SLCA17 A6, 7, 8) Control Synaptic Phosphate Levels. Cell Rep 2021; 34:108623. [PMID: 33440152 PMCID: PMC7809625 DOI: 10.1016/j.celrep.2020.108623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 10/27/2022] Open
Abstract
Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate. VGLUTs were originally identified as sodium-dependent transporters of inorganic phosphate (Pi), but the physiological relevance of this activity remains unclear. Heterologous expression of all three VGLUTs greatly augments intracellular Pi levels. Using neuronal models, we show that translocation of VGLUTs to the plasma membrane during exocytosis results in highly increased Pi uptake. VGLUT-mediated Pi influx is counteracted by Pi efflux. Synaptosomes prepared from perinatal VGLUT2-/- mice that are virtually free of VGLUTs show drastically reduced cytosolic Pi levels and fail to import Pi. Glutamate partially competes with sodium (Na+)/Pi (NaPi)-uptake mediated by VGLUTs but does not appear to be transported. A nanobody that blocks glutamate transport by binding to the cytoplasmic domain of VGLUT1 abolishes Pi transport when co-expressed with VGLUT1. We conclude that VGLUTs have a dual function that is essential for both vesicular glutamate loading and Pi restoration in neurons.
Collapse
Affiliation(s)
- Cyril Cheret
- Institute for Integrative Neuroanatomy, Charité, Medical University of Berlin, 10115 Berlin, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany
| | - Julia Preobraschenski
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany.
| | - Gudrun Ahnert-Hilger
- Institute for Integrative Neuroanatomy, Charité, Medical University of Berlin, 10115 Berlin, Germany; Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, and University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Simona F, Zhang H, Voolstra CR. Evidence for a role of protein phosphorylation in the maintenance of the cnidarian-algal symbiosis. Mol Ecol 2019; 28:5373-5386. [PMID: 31693769 PMCID: PMC6972648 DOI: 10.1111/mec.15298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/14/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
The endosymbiotic relationship between cnidarians and photosynthetic dinoflagellate algae provides the foundation of coral reef ecosystems. This essential interaction is globally threatened by anthropogenic disturbance. As such, it is important to understand the molecular mechanisms underpinning the cnidarian–algal association. Here we investigated phosphorylation‐mediated protein signalling as a mechanism of regulation of the cnidarian–algal interaction, and we report on the generation of the first phosphoproteome for the coral model system Aiptasia. Mass spectrometry‐based phosphoproteomics using data‐independent acquisition allowed consistent quantification of over 3,000 phosphopeptides totalling more than 1,600 phosphoproteins across aposymbiotic (symbiont‐free) and symbiotic anemones. Comparison of the symbiotic states showed distinct phosphoproteomic profiles attributable to the differential phosphorylation of 539 proteins that cover a broad range of functions, from receptors to structural and signal transduction proteins. A subsequent pathway enrichment analysis identified the processes of “protein digestion and absorption,” “carbohydrate metabolism,” and “protein folding, sorting and degradation,” and highlighted differential phosphorylation of the “phospholipase D signalling pathway” and “protein processing in the endoplasmic reticulum.” Targeted phosphorylation of the phospholipase D signalling pathway suggests control of glutamate vesicle trafficking across symbiotic compartments, and phosphorylation of the endoplasmic reticulum machinery suggests recycling of symbiosome‐associated proteins. Our study shows for the first time that changes in the phosphorylation status of proteins between aposymbiotic and symbiotic Aiptasia anemones may play a role in the regulation of the cnidarian–algal symbiosis. This is the first phosphoproteomic study of a cnidarian–algal symbiotic association as well as the first application of quantification by data‐independent acquisition in the coral field.
Collapse
Affiliation(s)
- Fabia Simona
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
5
|
Zhang XM, François U, Silm K, Angelo MF, Fernandez-Busch MV, Maged M, Martin C, Bernard V, Cordelières FP, Deshors M, Pons S, Maskos U, Bemelmans AP, Wojcik SM, El Mestikawy S, Humeau Y, Herzog E. A proline-rich motif on VGLUT1 reduces synaptic vesicle super-pool and spontaneous release frequency. eLife 2019; 8:50401. [PMID: 31663854 PMCID: PMC6861006 DOI: 10.7554/elife.50401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/27/2019] [Indexed: 12/29/2022] Open
Abstract
Glutamate secretion at excitatory synapses is tightly regulated to allow for the precise tuning of synaptic strength. Vesicular Glutamate Transporters (VGLUT) accumulate glutamate into synaptic vesicles (SV) and thereby regulate quantal size. Further, the number of release sites and the release probability of SVs maybe regulated by the organization of active-zone proteins and SV clusters. In the present work, we uncover a mechanism mediating an increased SV clustering through the interaction of VGLUT1 second proline-rich domain, endophilinA1 and intersectin1. This strengthening of SV clusters results in a combined reduction of axonal SV super-pool size and miniature excitatory events frequency. Our findings support a model in which clustered vesicles are held together through multiple weak interactions between Src homology three and proline-rich domains of synaptic proteins. In mammals, VGLUT1 gained a proline-rich sequence that recruits endophilinA1 and turns the transporter into a regulator of SV organization and spontaneous release.
Collapse
Affiliation(s)
- Xiao Min Zhang
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France.,Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Urielle François
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Kätlin Silm
- Neuroscience Paris Seine NPS, Université Pierre et Marie Curie INSERM U1130 CNRS UMR8246, Paris, France
| | - Maria Florencia Angelo
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Maria Victoria Fernandez-Busch
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Mona Maged
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Christelle Martin
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Véronique Bernard
- Neuroscience Paris Seine NPS, Université Pierre et Marie Curie INSERM U1130 CNRS UMR8246, Paris, France
| | - Fabrice P Cordelières
- Bordeaux Imaging Center, Université de Bordeaux, CNRS UMS 3420, INSERM US4, Bordeaux, France
| | - Melissa Deshors
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Stéphanie Pons
- Institut Pasteur, CNRS UMR 3571, Unité NISC, Paris, France
| | - Uwe Maskos
- Institut Pasteur, CNRS UMR 3571, Unité NISC, Paris, France
| | - Alexis Pierre Bemelmans
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de laRecherche Fondamentale (DRF), Institut de Biologie François Jacob (IBFJ), MolecularImaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Salah El Mestikawy
- Neuroscience Paris Seine NPS, Université Pierre et Marie Curie INSERM U1130 CNRS UMR8246, Paris, France.,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| | - Etienne Herzog
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience CNRS UMR 5297, Bordeaux, France
| |
Collapse
|
6
|
Noya SB, Colameo D, Brüning F, Spinnler A, Mircsof D, Opitz L, Mann M, Tyagarajan SK, Robles MS, Brown SA. The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 2019; 366:366/6462/eaav2642. [DOI: 10.1126/science.aav2642] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Neurons have adapted mechanisms to traffic RNA and protein into distant dendritic and axonal arbors. Taking a biochemical approach, we reveal that forebrain synaptic transcript accumulation shows overwhelmingly daily rhythms, with two-thirds of synaptic transcripts showing time-of-day–dependent abundance independent of oscillations in the soma. These transcripts formed two sharp temporal and functional clusters, with transcripts preceding dawn related to metabolism and translation and those anticipating dusk related to synaptic transmission. Characterization of the synaptic proteome around the clock demonstrates the functional relevance of temporal gating for synaptic processes and energy homeostasis. Unexpectedly, sleep deprivation completely abolished proteome but not transcript oscillations. Altogether, the emerging picture is one of a circadian anticipation of messenger RNA needs in the synapse followed by translation as demanded by sleep-wake cycles.
Collapse
Affiliation(s)
- Sara B. Noya
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - David Colameo
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Franziska Brüning
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andrea Spinnler
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Dennis Mircsof
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Lennart Opitz
- Functional Genomics Center Zurich, University of Zurich–Eidgenosissche Technische Hochschule, Zurich, Switzerland
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Shiva K. Tyagarajan
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Maria S. Robles
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
| | - Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| |
Collapse
|