1
|
Tseropoulos G, Mehrotra P, Podder AK, Wilson E, Zhang Y, Wang J, Koontz A, Gao NP, Gunawan R, Liu S, Feltri LM, Bronner ME, Andreadis ST. Immobilized NRG1 Accelerates Neural Crest like Cell Differentiation Toward Functional Schwann Cells Through Sustained Erk1/2 Activation and YAP/TAZ Nuclear Translocation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402607. [PMID: 38952126 PMCID: PMC11633358 DOI: 10.1002/advs.202402607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 07/03/2024]
Abstract
Neural Crest cells (NC) are a multipotent cell population that give rise to a multitude of cell types including Schwann cells (SC) in the peripheral nervous system (PNS). Immature SC interact with neuronal axons via the neuregulin 1 (NRG1) ligand present on the neuronal surface and ultimately form the myelin sheath. Multiple attempts to derive functional SC from pluripotent stem cells have met challenges with respect to expression of mature markers and axonal sorting. Here, they hypothesized that sustained signaling from immobilized NRG1 (iNRG1) might enhance the differentiation of NC derived from glabrous neonatal epidermis towards a SC phenotype. Using this strategy, NC derived SC expressed mature markers to similar levels as compared to explanted rat sciatic SC. Signaling studies revealed that sustained NRG1 signaling led to yes-associated protein 1 (YAP) activation and nuclear translocation. Furthermore, NC derived SC on iNRG1 exhibited mature SC function as they aligned with rat dorsal root ganglia (DRG) neurons in an in vitro coculture model; and most notably, aligned on neuronal axons upon implantation in a chick embryo model in vivo. Taken together their work demonstrated the importance of signaling dynamics in SC differentiation, aiming towards development of drug testing platforms for de-myelinating disorders.
Collapse
Affiliation(s)
- Georgios Tseropoulos
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
| | - Pihu Mehrotra
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
| | - Ashis Kumer Podder
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
- Department of PharmacyBrac UniversityDhaka1212Bangladesh
| | - Emma Wilson
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNY14203USA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNY14203USA
| | - Yali Zhang
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNY14203USA
| | - Jianmin Wang
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNY14203USA
| | - Alison Koontz
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCA91126USA
| | - Nan Papili Gao
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
| | - Rudiyanto Gunawan
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
- Center for CellGene and Tissue Engineering (CGTE)University at BuffaloBuffaloNY14260USA
| | - Song Liu
- Department of Biostatistics and BioinformaticsRoswell Park Comprehensive Cancer CenterBuffaloNY14203USA
| | - Laura M. Feltri
- Hunter James Kelly Research InstituteJacobs School of Medicine and Biomedical Sciences StateUniversity of New York at BuffaloBuffaloNY14203USA
- Department of BiochemistryJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNY14203USA
- Department of NeurologyJacobs School of Medicine and Biomedical SciencesState University of New York at BuffaloBuffaloNY14203USA
| | - Marianne E. Bronner
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCA91126USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological EngineeringUniversity at BuffaloBuffaloNY14260USA
- Center for CellGene and Tissue Engineering (CGTE)University at BuffaloBuffaloNY14260USA
- Department of Biomedical EngineeringUniversity at BuffaloBuffaloNY14260USA
- Center of Excellence in Bioinformatics and Life SciencesBuffaloNY14203USA
| |
Collapse
|
2
|
A Multi-Stage Bioprocess for the Expansion of Rodent Skin-Derived Schwann Cells in Computer-Controlled Bioreactors. Int J Mol Sci 2023; 24:ijms24065152. [PMID: 36982227 PMCID: PMC10049355 DOI: 10.3390/ijms24065152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Regenerative therapies for the treatment of peripheral nerve and spinal cord injuries can require hundreds of millions of autologous cells. Current treatments involve the harvest of Schwann cells (SCs) from nerves; however, this is an invasive procedure. Therefore, a promising alternative is using skin-derived Schwann cells (Sk-SCs), in which between 3–5 million cells can be harvested from a standard skin biopsy. However, traditional static planar culture is still inefficient at expanding cells to clinically relevant numbers. As a result, bioreactors can be used to develop reproducible bioprocesses for the large-scale expansion of therapeutic cells. Here, we present a proof-of-concept SC manufacturing bioprocess using rat Sk-SCs. With this integrated process, we were able to simulate a feasible bioprocess, taking into consideration the harvest and shipment of cells to a production facility, the generation of the final cell product, and the cryopreservation and shipment of cells back to the clinic and patient. This process started with 3 million cells and inoculated and expanded them to over 200 million cells in 6 days. Following the harvest and post-harvest cryopreservation and thaw, we were able to maintain 150 million viable cells that exhibited a characteristic Schwann cell phenotype throughout each step of the process. This process led to a 50-fold expansion, producing a clinically relevant number of cells in a 500 mL bioreactor in just 1 week, which is a dramatic improvement over current methods of expansion.
Collapse
|
3
|
He Q, Cheng Z, Zhou Q, Tong F, Li Y, Zhou X, Yu M, Ji Y, Ding F. Sensory and motor fibroblasts have different protein expression patterns and exert different growth promoting effects on sensory and motor neurons. Exp Neurol 2023; 361:114314. [PMID: 36586550 DOI: 10.1016/j.expneurol.2022.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Functional reconstruction after peripheral nerve injury depends on the ability of the regenerated sensory and motor axons to re-innervate the suitable target organs. Therefore, it is essential to explore the cellular mechanisms of peripheral nerve-specific regeneration. In a previous study, we found that sensory and motor fibroblasts can guide Schwann cells to migrate towards the same phenotype. In the present paper, we analyzed the different effects of sensory and motor fibroblasts on sensory or motor neurons. The fibroblasts and neurons co-culture assay showed that compared with motor fibroblasts, sensory fibroblasts promote the neurite outgrowth of sensory neurons on a larger scale, and vice versa. Furthermore, a higher proportion of sensory or motor fibroblasts migrated towards their respective (sensory or motor) neurons. Meanwhile, a comparative proteomic approach was applied to obtain the protein expression profiles of sensory and motor fibroblasts. Among a total of 2597 overlapping proteins identified, we counted 148 differentially expressed items, of those 116 had a significantly higher expression in sensory fibroblasts, and 32 had a significantly greater expression in motor fibroblasts. Functional categorization revealed that differentially expressed proteins were involved in regeneration, axon guidance and cytoskeleton organization, all of which might play a critical role in peripheral nerve-specific regeneration. After nerve crush injury, ITB1 protein expression decreased significantly in motor nerves and increased in sensory nerves. In vitro, ITB1 significantly promoted axonal regeneration of sensory neurons, but had no significant effect on motor neurons. Overall, sensory and motor fibroblasts express different proteins and exert different growth promoting effects on sensory and motor neurons. This comparative proteomic database of sensory and motor fibroblasts could provide future directions for in-depth research on peripheral nerve-specific regeneration. Data are available via ProteomeXchange with identifier PXD034827.
Collapse
Affiliation(s)
- Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Zhenghang Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Qiang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Fang Tong
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Yan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Xinyang Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Miaomei Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, JS 226001, China.
| |
Collapse
|
4
|
Chen Z, Shen G, Tan X, Qu L, Zhang C, Ma L, Luo P, Cao X, Yang F, Liu Y, Wang Y, Shi C. ID1/ID3 mediate the contribution of skin fibroblasts to local nerve regeneration through Itga6 in wound repair. Stem Cells Transl Med 2021; 10:1637-1649. [PMID: 34520124 PMCID: PMC8641086 DOI: 10.1002/sctm.21-0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/28/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wound healing requires intricate synchronization of several key processes. Among them, local nerve regeneration is known to be vitally important for proper repair. However, the underlying mechanisms of local nerve regeneration are still unclear. Fibroblasts are one of the key cell types within the skin whose role in local nerve regeneration has not been extensively studied. In our study, we found skin fibroblasts were in tight contact with regenerated nerves during wound healing, while rare interactions were shown under normal circumstances. Moreover, skin fibroblasts surrounding the nerves were shown to be activated and reprogrammed to exhibit neural cell‐like properties by upregulated expressing inhibitor of DNA binding 1 (ID1) and ID3. Furthermore, we identified the regulation of integrin α6 (Itga6) by ID1/ID3 in fibroblasts as the mechanism for axon guidance. Accordingly, transplantation of the ID1/ID3‐overexpressing fibroblasts or topical injection of ID1/ID3 lentivirus significantly promoted local nerve regeneration and wound healing following skin excision or sciatic nerve injury. Therefore, we demonstrated a new role for skin fibroblasts in nerve regeneration following local injury by directly contacting and guiding axon regrowth, which might hold therapeutic potential in peripheral nerve disorders and peripheral neuropathies in relatively chronic refractory wounds.
Collapse
Affiliation(s)
- Zelin Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Gufang Shen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Langfan Qu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Xiaohui Cao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Fan Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Yunsheng Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Qu WR, Zhu Z, Liu J, Song DB, Tian H, Chen BP, Li R, Deng LX. Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res 2021; 16:93-98. [PMID: 32788452 PMCID: PMC7818858 DOI: 10.4103/1673-5374.286956] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peripheral nerve injury (PNI) is common and, unlike damage to the central nervous system injured nerves can effectively regenerate depending on the location and severity of injury. Peripheral myelinating glia, Schwann cells (SCs), interact with various cells in and around the injury site and are important for debris elimination, repair, and nerve regeneration. Following PNI, Wallerian degeneration of the distal stump is rapidly initiated by degeneration of damaged axons followed by morphologic changes in SCs and the recruitment of circulating macrophages. Interaction with fibroblasts from the injured nerve microenvironment also plays a role in nerve repair. The replication and migration of injury-induced dedifferentiated SCs are also important in repairing the nerve. In particular, SC migration stimulates axonal regeneration and subsequent myelination of regenerated nerve fibers. This mobility increases SC interactions with other cells in the nerve and the exogenous environment, which influence SC behavior post-injury. Following PNI, SCs directly and indirectly interact with other SCs, fibroblasts, and macrophages. In addition, the inter- and intracellular mechanisms that underlie morphological and functional changes in SCs following PNI still require further research to explain known phenomena and less understood cell-specific roles in the repair of the injured peripheral nerve. This review provides a basic assessment of SC function post-PNI, as well as a more comprehensive evaluation of the literature concerning the SC interactions with macrophages and fibroblasts that can influence SC behavior and, ultimately, repair of the injured nerve.
Collapse
Affiliation(s)
- Wen-Rui Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Zhu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jun Liu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - De-Biao Song
- Department of Emergency and Critical Medicine, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bing-Peng Chen
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Jo BG, Kim SH, Namgung U. Vagal afferent fibers contribute to the anti-inflammatory reactions by vagus nerve stimulation in concanavalin A model of hepatitis in rats. Mol Med 2020; 26:119. [PMID: 33272194 PMCID: PMC7713005 DOI: 10.1186/s10020-020-00247-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Background Increasing number of studies provide evidence that the vagus nerve stimulation (VNS) dampens inflammation in peripheral visceral organs. However, the effects of afferent fibers of the vagus nerve (AFVN) on anti-inflammation have not been clearly defined. Here, we investigate whether AFVN are involved in VNS-mediated regulation of hepatic production of proinflammatory cytokines. Methods An animal model of hepatitis was generated by intraperitoneal (i.p.) injection of concanavalin A (ConA) into rats, and electrical stimulation was given to the hepatic branch of the vagus nerve. AFVN activity was regulated by administration of capsaicin (CAP) or AP-5/CNQX and the vagotomy at the hepatic branch of the vagus nerve (hVNX). mRNA and protein expression in target tissues was analyzed by RT-PCR, real-time PCR, western blotting and immunofluorescence staining. Hepatic immune cells were analyzed by flow cytometry. Results TNF-α, IL-1β, and IL-6 mRNAs and proteins that were induced by ConA in the liver macrophages were significantly reduced by the electrical stimulation of the hepatic branch of the vagus nerve (hVNS). Alanine transaminase (ALT) and aspartate transaminase (AST) levels in serum and the number of hepatic CD4+ and CD8+ T cells were increased by ConA injection and downregulated by hVNS. CAP treatment deteriorated transient receptor potential vanilloid 1 (TRPV1)-positive neurons and increased caspase-3 signals in nodose ganglion (NG) neurons. Concomitantly, CAP suppressed choline acetyltransferase (ChAT) expression that was induced by hVNS in DMV neurons of ConA-injected animals. Furthermore, hVNS-mediated downregulation of TNF-α, IL-1β, and IL-6 expression was hampered by CAP treatment and similarly regulated by hVNX and AP-5/CNQX inhibition of vagal feedback loop pathway in the brainstem. hVNS elevated the levels of α7 nicotinic acetylcholine receptors (α7 nAChR) and phospho-STAT3 (Tyr705; pY-STAT3) in the liver, and inhibition of AFVN activity by CAP, AP-5/CNQX and hVNX or the pharmacological blockade of hepatic α7 nAChR decreased STAT3 phosphorylation. Conclusions Our data indicate that the activity of AFVN contributes to hepatic anti-inflammatory responses mediated by hVNS in ConA model of hepatitis in rats.
Collapse
Affiliation(s)
- Byung Gon Jo
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Seung-Hyung Kim
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Institute of Bioscience and Integrative Medicine, Daejeon University, Daehak-ro 62, Daejeon, 34520, South Korea.
| |
Collapse
|
7
|
Fernandez A, Drozd MM, Thümmler S, Dor E, Capovilla M, Askenazy F, Bardoni B. Childhood-Onset Schizophrenia: A Systematic Overview of Its Genetic Heterogeneity From Classical Studies to the Genomic Era. Front Genet 2019; 10:1137. [PMID: 31921276 PMCID: PMC6930680 DOI: 10.3389/fgene.2019.01137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Childhood-onset schizophrenia (COS), a very rare and severe chronic psychiatric condition, is defined by an onset of positive symptoms (delusions, hallucinations and disorganized speech or behavior) before the age of 13. COS is associated with other neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit and hyperactivity disorder. Copy number variations (CNVs) represent well documented neurodevelopmental disorder risk factors and, recently, de novo single nucleotide variations (SNVs) in genes involved in brain development have also been implicated in the complex genetic architecture of COS. Here, we aim to review the genetic changes (CNVs and SNVs) reported for COS, going from previous studies to the whole genome sequencing era. We carried out a systematic review search in PubMed using the keywords “childhood(early)-onset schizophrenia(psychosis)” and “genetic(s) or gene(s) or genomic(s)” without language and date limitations. The main inclusion criteria are COS (onset before 13 years old) and all changes/variations at the DNA level (CNVs or SNVs). Thirty-six studies out of 205 met the inclusion criteria. Cytogenetic abnormalities (n = 72, including 66 CNVs) were identified in 16 autosomes and 2 sex chromosomes (X, Y), some with a higher frequency and clinical significance than others (e.g., 2p16.3, 3q29, 15q13.3, 22q11.21 deletions; 2p25.3, 3p25.3 and 16p11.2 duplications). Thirty-one single nucleotide mutations in genes principally involved in brain development and/or function have been found in 12 autosomes and one sex chromosome (X). We also describe five SNVs in X-linked genes inherited from a healthy mother, arguing for the X-linked recessive inheritance hypothesis. Moreover, ATP1A3 (19q13.2) is the only gene carrying more than one SNV in more than one patient, making it a strong candidate for COS. Mutations were distributed in various chromosomes illustrating the genetic heterogeneity of COS. More than 90% of CNVs involved in COS are also involved in ASD, supporting the idea that there may be genetic overlap between these disorders. Different mutations associated with COS are probably still unknown, and pathogenesis might also be explained by the association of different genetic variations (two or more CNVs or CNVs and SNVs) as well as association with early acquired brain lesions such as infection, hypoxia, or early childhood trauma.
Collapse
Affiliation(s)
- Arnaud Fernandez
- University Department of Child and Adolescent Psychiatry, Children's, Hospitals of NICE CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France.,Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Malgorzata Marta Drozd
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Susanne Thümmler
- University Department of Child and Adolescent Psychiatry, Children's, Hospitals of NICE CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France
| | - Emmanuelle Dor
- University Department of Child and Adolescent Psychiatry, Children's, Hospitals of NICE CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Florence Askenazy
- University Department of Child and Adolescent Psychiatry, Children's, Hospitals of NICE CHU-Lenval, Nice, France.,CoBTek, Université Côte d'Azur, Nice, France
| | - Barbara Bardoni
- Université Côte d'Azur, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France.,Université Côte d'Azur, INSERM, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
8
|
Endo T, Kadoya K, Kawamura D, Iwasaki N. Evidence for cell-contact factor involvement in neurite outgrowth of dorsal root ganglion neurons stimulated by Schwann cells. Exp Physiol 2019; 104:1447-1454. [PMID: 31294871 DOI: 10.1113/ep087634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/08/2019] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Although the factors secreted from Schwann cells that promote axonal growth in the peripheral nervous system have been well studied, the effect of cell-contact factors on Schwann cells remains to be determined. What is the main finding and its importance? This study demonstrates that Schwann cells stimulate neurite outgrowth by direct contact with neurites and by secreting factors. Notably, the effect of cell-contact factors in neurite outgrowth is comparable to that of secreted factors, indicating that the identification of cell surface molecules on Schwann cells that promote neurite outgrowth could lead to development of a new therapy for peripheral nervous system injury. ABSTRACT Schwann cells (SCs) play a variety of roles in the regeneration process after injury to the peripheral nervous system. The factors secreted from SCs that promote axonal growth have been well studied. However, the involvement of cell-contact factors on SCs remains to be determined. Here, we demonstrate a significant contribution of a cell-contact mechanism in the effect of SCs on promotion of neuronal outgrowth. Neurite outgrowth of adult sensory neurons from dorsal root ganglia was quantified during co-culture with adult SCs. Direct contact of SCs with neurons was eliminated by culturing SCs on an insert placed in the same well; this resulted in a 51% reduction in the length of neurite outgrowth. In addition, when dorsal root ganglion neurons were cultured on sparsely seeded SCs, neurons that made contact with SCs on their neurites had 118% longer neurites than neurons that lacked contacts with SCs. Collectively, these findings provide evidence that SCs stimulate neurite outgrowth via direct contact with neurites in addition to secreting factors. The identification of cell surface molecules on SCs that promote neurite outgrowth could lead to development of a new therapy for peripheral nervous system injury.
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Ken Kadoya
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Daisuke Kawamura
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|