1
|
Qu N, Tian H, De Martino E, Zhang B. Neck Pain: Do We Know Enough About the Sensorimotor Control System? Front Comput Neurosci 2022; 16:946514. [PMID: 35910451 PMCID: PMC9337601 DOI: 10.3389/fncom.2022.946514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Neck pain is a worldwide health problem. Clarifying the etiology and providing effective interventions are challenging for the multifactorial nature of neck pain. As an essential component of cervical spine function, the sensorimotor control system has been extensively studied in both healthy and pathological conditions. Proprioceptive signals generated from cervical structures are crucial to normal cervical functions, and abnormal proprioception caused by neck pain leads to alterations in neural plasticity, cervical muscle recruitment and cervical kinematics. The long-term sensorimotor disturbance and maladaptive neural plasticity are supposed to contribute to the recurrence and chronicity of neck pain. Therefore, multiple clinical evaluations and treatments aiming at restoring the sensorimotor control system and neural plasticity have been proposed. This paper provides a short review on neck pain from perspectives of proprioception, sensorimotor control system, neural plasticity and potential interventions. Future research may need to clarify the molecular mechanism underlying proprioception and pain. The existing assessment methods of cervical proprioceptive impairment and corresponding treatments may need to be systematically reevaluated and standardized. Additionally, new precise motor parameters reflecting sensorimotor deficit and more effective interventions targeting the sensorimotor control system or neural plasticity are encouraged to be proposed.
Collapse
Affiliation(s)
- Ning Qu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - HaoChun Tian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Bin Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Bin Zhang,
| |
Collapse
|
2
|
Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med 2022; 28:260-271. [PMID: 35132264 DOI: 10.1038/s41591-021-01663-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
Abstract
Epidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI. To test this hypothesis, we established a computational framework that informed the optimal arrangement of electrodes on a new paddle lead and guided its neurosurgical positioning. We also developed software supporting the rapid configuration of activity-specific stimulation programs that reproduced the natural activation of motor neurons underlying each activity. We tested these neurotechnologies in three individuals with complete sensorimotor paralysis as part of an ongoing clinical trial ( www.clinicaltrials.gov identifier NCT02936453). Within a single day, activity-specific stimulation programs enabled these three individuals to stand, walk, cycle, swim and control trunk movements. Neurorehabilitation mediated sufficient improvement to restore these activities in community settings, opening a realistic path to support everyday mobility with EES in people with SCI.
Collapse
|
3
|
Nazarian B, Caron-Guyon J, Anton JL, Sein J, Baurberg J, Catz N, Kavounoudias A. A new patterned air-flow device to reveal the network for tactile motion coding using fMRI. J Neurosci Methods 2022; 365:109397. [PMID: 34695454 DOI: 10.1016/j.jneumeth.2021.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Studying brain processes underlying tactile perception induced by natural-like stimulation is challenging yet crucial to closely match real-world situations. NEW METHOD We developed a computer-controlled pneumatic device that allows the delivery of complex airflow patterns on subject's body, through a MR-compatible system fixed on an independent clippable mounting device. The intensity of stimulation as well as the timing of each of the four air channels are completely programmable and independent, allowing the precise control and modularity of the airflow delivery. RESULTS An analysis of signal-to-noise ratio (SNR) measurements did not show any impact of the PAF device on anatomical or functional scan acquisitions. A psychophysical experiment was also performed on 24 volunteers to evaluate the perception of different airflow patterns delivered over the lower part of their face. It revealed that all participants were able to finely discriminate the direction of these leftward to rightward flow motions. The fMRI experiment, which consisted in presenting to 20 participants four different airflow patterns, shed light on the brain network associated with tactile motion perception. A multivariate analysis further showed a specific coding of the different patterns inside this tactile brain network including the primary and secondary somatosensory cortex COMPARISON WITH EXISTING METHOD(S): The Patterned Air-Flow (PAF) is an easy-to-set-up, portable, adaptable device, which can be spatially and temporally modulated to provide complex tactile stimuli. CONCLUSIONS This device will be useful to further explore complex dynamic touch exerted over various body parts and can also be combined with visual or auditory stimulation to study multisensory mechanisms.
Collapse
Affiliation(s)
- B Nazarian
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - J Caron-Guyon
- Aix Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), Marseille, France
| | - J L Anton
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - J Sein
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - J Baurberg
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - N Catz
- Aix Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), Marseille, France
| | - A Kavounoudias
- Aix Marseille Univ, CNRS, LNC (Laboratoire de Neurosciences Cognitives - UMR 7291), Marseille, France.
| |
Collapse
|
4
|
Naveed Z, Fox HS, Wichman CS, May P, Arcari CM, Meza J, Totusek S, Baccaglini L. Development of a Nomogram-Based Tool to Predict Neurocognitive Impairment Among HIV-positive Charter Participants. Open AIDS J 2021. [DOI: 10.2174/1874613602115010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Despite the widespread use of combination antiretroviral therapy (cART), HIV-associated neurocognitive impairment (NCI) persists in people living with HIV (PLWH). Studies have generated inconsistent results regarding etiological factors for NCI in PLWH. Furthermore, a user-friendly and readily available predictive tool is desirable in clinical practice to screen PLWH for NCI.
Objective:
This study aimed to identify factors associated with NCI using a large and diverse sample of PLWH and build a nomogram based on demographic, clinical, and behavioral variables.
Methods:
We performed Bayesian network analysis using a supervised learning technique with the Markov Blanket (MB) algorithm. Logistic regression was also conducted to obtain the adjusted regression coefficients to construct the nomogram.
Results:
Among 1,307 participants, 21.6% were neurocognitively impaired. During the MB analysis, age provided the highest amount of mutual information (0.0333). Logistic regression also showed that old age (>50 vs. ≤50 years) had the strongest association (OR=2.77, 95% CI=1.99-3.85) with NCI. The highest possible points on the nomogram were 626, translated to a nomogram-predicted probability of NCI to be approximately 0.95. The receiver operating characteristic (ROC) curve's concordance index was 0.75, and the nomogram's calibration plot exhibited an excellent agreement between observed and predicted probabilities.
Conclusion:
The nomogram used variables that can be easily measured in clinical settings and, thus, easy to implement within a clinic or web-interface platform. The nomogram may help clinicians screen for patients with a high probability of having NCI and thus needing a comprehensive neurocognitive assessment for early diagnosis and appropriate management.
Collapse
|
5
|
Coffman CR, Capaday C, Darling WG. Proprioceptive Acuity is Enhanced During Arm Movements Compared to When the Arm is Stationary: A Study of Young and Older Adults. Neuroscience 2021; 466:222-234. [PMID: 33905823 DOI: 10.1016/j.neuroscience.2021.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 11/19/2022]
Abstract
Proprioception in old age is thought to be poorer due to degeneration of the central (CNS) and peripheral nervous systems (PNS). We tested whether community-dwelling older adults (65-83 years) make larger proprioceptive errors than young adults (18-22 years) using a natural reaching task. Subjects moved the right arm to touch the index fingertip to the stationary or moving left index fingertip. The range of locations of the target index fingertip was large, sampling the natural workspace of the human arm. The target arm was moved actively by the subject or passively by the experimenter and reaching arm movements towards the target were made under visual guidance, or with vision blocked (proprioceptive guidance). Subjects did not know the direction or speed of upcoming target hand motion in the passive conditions. Mean 3D distance errors between the right and left index finger tips were small in both groups and only slightly larger when vision was blocked than when allowed, but averaged 2-5 mm larger in older than in younger adults in moving (p = 0.002) and stationary (p = 0.07) conditions, respectively. Variable errors were small and similar in the two groups (p > 0.35). Importantly, clearly larger errors were observed for reaching to the stationary than to the moving index fingertip in both groups, demonstrating that dynamic proprioceptive information during movement permits more accurate localization of the endpoint of the moving arm. This novel finding demonstrates the importance of dynamic proprioceptive information in movement guidance and bimanual coordination.
Collapse
Affiliation(s)
- Christopher R Coffman
- Department of Health and Human Physiology Motor Control Laboratory, University of Iowa 225 S Grand Ave, Iowa City, IA 52242 United States
| | - Charles Capaday
- Department of Health and Human Physiology Motor Control Laboratory, University of Iowa 225 S Grand Ave, Iowa City, IA 52242 United States
| | - Warren G Darling
- Department of Health and Human Physiology Motor Control Laboratory, University of Iowa 225 S Grand Ave, Iowa City, IA 52242 United States.
| |
Collapse
|
6
|
Contribution of muscle proprioception to limb movement perception and proprioceptive decline with ageing. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
The impact of movement sonification on haptic perception changes with aging. Sci Rep 2021; 11:5124. [PMID: 33664345 PMCID: PMC7933169 DOI: 10.1038/s41598-021-84581-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/08/2021] [Indexed: 12/04/2022] Open
Abstract
Combining multisensory sources is crucial to interact with our environment, especially for older people who are facing sensory declines. Here, we examined the influence of textured sounds on haptic exploration of artificial textures in healthy younger and older adults by combining a tactile device (ultrasonic display) with synthetized textured sounds. Participants had to discriminate simulated textures with their right index while they were distracted by three disturbing, more or less textured sounds. These sounds were presented as a real-time auditory feedback based on finger movement sonification and thus gave the sensation that the sounds were produced by the haptic exploration. Finger movement velocity increased across both groups in presence of textured sounds (Rubbing or Squeaking) compared to a non-textured (Neutral) sound. While young adults had the same discrimination threshold, regardless of the sound added, the older adults were more disturbed by the presence of the textured sounds with respect to the Neutral sound. Overall, these findings suggest that irrelevant auditory information was taken into account by all participants, but was appropriately segregated from tactile information by young adults. Older adults failed to segregate auditory information, supporting the hypothesis of general facilitation of multisensory integration with aging.
Collapse
|
8
|
Kröger S, Watkins B. Muscle spindle function in healthy and diseased muscle. Skelet Muscle 2021; 11:3. [PMID: 33407830 PMCID: PMC7788844 DOI: 10.1186/s13395-020-00258-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Almost every muscle contains muscle spindles. These delicate sensory receptors inform the central nervous system (CNS) about changes in the length of individual muscles and the speed of stretching. With this information, the CNS computes the position and movement of our extremities in space, which is a requirement for motor control, for maintaining posture and for a stable gait. Many neuromuscular diseases affect muscle spindle function contributing, among others, to an unstable gait, frequent falls and ataxic behavior in the affected patients. Nevertheless, muscle spindles are usually ignored during examination and analysis of muscle function and when designing therapeutic strategies for neuromuscular diseases. This review summarizes the development and function of muscle spindles and the changes observed under pathological conditions, in particular in the various forms of muscular dystrophies.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| | - Bridgette Watkins
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Landelle C, Anton JL, Nazarian B, Sein J, Gharbi A, Felician O, Kavounoudias A. Functional brain changes in the elderly for the perception of hand movements: A greater impairment occurs in proprioception than touch. Neuroimage 2020; 220:117056. [PMID: 32562781 DOI: 10.1016/j.neuroimage.2020.117056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/28/2022] Open
Abstract
Unlike age-related brain changes linked to motor activity, neural alterations related to self-motion perception remain unknown. Using fMRI data, we investigated age-related changes in the central processing of somatosensory information by inducing illusions of right-hand rotations with specific proprioceptive and tactile stimulation. Functional connectivity during resting-state (rs-FC) was also compared between younger and older participants. Results showed common sensorimotor activations in younger and older adults during proprioceptive and tactile illusions, but less deactivation in various right frontal regions and the precuneus were found in the elderly. Older participants exhibited a less-lateralized pattern of activity across the primary sensorimotor cortices (SM1) in the proprioceptive condition only. This alteration of the interhemispheric balance correlated with declining individual performance in illusion velocity perception from a proprioceptive, but not a tactile, origin. By combining task-related data, rs-FC and behavioral performance, this study provided consistent results showing that hand movement perception was altered in the elderly, with a more pronounced deterioration of the proprioceptive system, likely due to the breakdown of inhibitory processes with aging. Nevertheless, older people could benefit from an increase in internetwork connectivity to overcome this kinesthetic decline.
Collapse
Affiliation(s)
- Caroline Landelle
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jean-Luc Anton
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Bruno Nazarian
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Julien Sein
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone - UMR 7289), Marseille, France
| | - Ali Gharbi
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France
| | - Olivier Felician
- Aix Marseille Univ, INSERM, INS (Institut des Neurosciences des Systèmes - UMR1106), Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France.
| |
Collapse
|
10
|
Altered visuomotor integration in complex regional pain syndrome. Behav Brain Res 2020; 397:112922. [PMID: 32971196 DOI: 10.1016/j.bbr.2020.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022]
Abstract
During self-guided movements, we optimise performance by combining sensory and self-motion cues optimally, based on their reliability. Discrepancies between such cues and problems in combining them are suggested to underlie some pain conditions. Therefore, we examined whether visuomotor integration is altered in twenty-two participants with upper or lower limb complex regional pain syndrome (CRPS) compared to twenty-four controls. Participants located targets that appeared in the unaffected (CRPS) / dominant (controls) or affected (CRPS) / non-dominant (controls) side of space, using the hand of their unaffected/dominant or affected/non-dominant side of the body. For each side of space and each hand, participants located the target using visual information and no movement (vision only condition), an unseen pointing movement (self-motion only condition), or a visually-guided pointing movement (visuomotor condition). In all four space-by-hand conditions, controls reduced their variability in the visuomotor compared to the vision and self-motion only conditions and in line with a model prediction for optimal integration. Participants with CRPS showed similar evidence of cue combination in two of the four conditions. However, they had better-than-optimal integration for the unaffected hand in the affected space. Furthermore, they did not integrate optimally for the hand of the affected side of the body in unaffected space, but instead relied on the visual information. Our results suggest that people with CRPS can optimally integrate visual and self-motion cues under some conditions, despite lower reliability of self-motion cues, and use different strategies to controls.
Collapse
|
11
|
Landelle C, Sein J, Anton JL, Nazarian B, Felician O, Kavounoudias A. The aging brain: A set of functional MRI data acquired at rest and during exposure to tactile or muscle proprioceptive stimulation in healthy young and older volunteers. Data Brief 2020; 31:105939. [PMID: 32671149 PMCID: PMC7339028 DOI: 10.1016/j.dib.2020.105939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022] Open
Abstract
There is a growing interest in understanding functional brain decline with aging. The dataset provides raw anatomical and functional images recorded in a group of 20 young volunteers and in another group of 19 older volunteers during a 10-minute period of resting state followed by four consecutive task-related runs. During each task-related run, the participants were exposed to two types of sensory stimulation: a tactile stimulation consisting in a textured-disk rotation under the palm of their right hand or a muscle proprioceptive stimulation consisting in a mechanical vibration applied to the muscle tendon of their wrist abductor. These two stimulations are known to evoke illusory sensations of hand movement, while the hand remains actually still. Therefore, the dataset is meant to be used to assess age-related functional brain changes during the perception of hand movements based on muscle proprioception or touch individually. It also allows to explore any structural changes or functional resting connectivity alteration with aging. The dataset is a supplement to the research findings in the paper ‘Functional brain changes in the elderly for the perception of hand movements: a greater impairment occurs in proprioception than touch published in NeuroImage.
Collapse
Affiliation(s)
- Caroline Landelle
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), 3 place Victor Hugo 13331, Marseille, France
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Julien Sein
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone – UMR 7289), Marseille, France
| | - Jean-Luc Anton
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone – UMR 7289), Marseille, France
| | - Bruno Nazarian
- Aix Marseille Univ, CNRS, Centre IRM-INT@CERIMED (Institut des Neurosciences de la Timone – UMR 7289), Marseille, France
| | - Olivier Felician
- Aix Marseille Univ, INSERM, INS (Institut des Neurosciences des Systèmes - UMR1106), Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), 3 place Victor Hugo 13331, Marseille, France
- Corresponding author.
| |
Collapse
|
12
|
Asahara R, Ishii K, Okamoto I, Sunami Y, Hamada H, Kataoka T, Ohshita W, Watanabe T, Matsukawa K. Increased oxygenation in the non‐contracting forearm muscle during contralateral skilful hand movement. Exp Physiol 2020; 105:950-965. [DOI: 10.1113/ep088194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Ryota Asahara
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
- Automotive Human Factors Research Center National Institute of Advanced Industrial Science and Technology Ibaraki Japan
| | - Kei Ishii
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
- Automotive Human Factors Research Center National Institute of Advanced Industrial Science and Technology Ibaraki Japan
| | - Izumi Okamoto
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Yuki Sunami
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Tsuyoshi Kataoka
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Wakana Ohshita
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Tae Watanabe
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| | - Kanji Matsukawa
- Department of Integrative Physiology, Graduate School of Biomedical and Health Sciences Hiroshima University Hiroshima Japan
| |
Collapse
|
13
|
Beaulieu LD, Schneider C, Massé-Alarie H, Ribot-Ciscar E. A new method to elicit and measure movement illusions in stroke by means of muscle tendon vibration: the Standardized Kinesthetic Illusion Procedure (SKIP). Somatosens Mot Res 2020; 37:28-36. [PMID: 31973656 DOI: 10.1080/08990220.2020.1713739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Muscle tendon vibration (MTV) strongly activates muscle spindles and can evoke kinaesthetic illusions. Although potentially relevant for sensorimotor rehabilitation in stroke, MTV is scarcely used in clinical practice, likely because of the absence of standardised procedures to elicit and characterise movement illusions. This work developed and validated a Standardised Kinaesthetic Illusion Procedure (SKIP) to favour the use of MTV-induced illusions in clinical settings.Materials and methods: SKIP scores were obtained in 15 individuals with chronic stroke and 18 age- and gender-matched healthy counterparts. A further 13 healthy subjects were tested to provide more data with the general population. MTV was applied over the Achilles tendon and SKIP scoring system characterised the clearness and direction of the illusions of ankle dorsiflexion movements.Results: All healthy and stroke participants perceived movement illusions. SKIP scores on the paretic side were significantly lower compared to the non paretic and healthy. Illusions were less clear and sometimes in unexpected directions with the impaired ankle, but still possible to elicit in the presence of sensorimotor deficits.Conclusions: SKIP represents an ancillary and potentially useful clinical method to elicit and characterise illusions of movements induced by MTV. SKIP could be relevant to further assess the processing of proprioceptive afferents in stroke and their potential impact on motor control and recovery. It may be used to guide therapy and improve sensorimotor recovery. Future work is needed to investigate the metrological properties of our method (reliability, responsiveness, etc.), and also the neurophysiological underpinnings of MTV-induced illusions.
Collapse
Affiliation(s)
- Louis-David Beaulieu
- Biomechanical and Neurophysiological Research Lab in neuro-musculo-skelettal Rehabilitation (BioNR Lab, Université du Québec à Chicoutimi, Chicoutimi, Canada
| | - Cyril Schneider
- Noninvasive Stimulation Laboratory, Research Center - Neuroscience Division and Department Rehabilitation, CHU de Québec-Université Laval, Quebec City, Canada
| | - Hugo Massé-Alarie
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Université Laval, Quebec City, Canada
| | - Edith Ribot-Ciscar
- Laboratoire de Neurosciences Sensorielles et Cognitives, Aix Marseille Univ, CNRS, LNSC, Marseille, France
| |
Collapse
|
14
|
Goodman R, Manson GA, Tremblay L. Age-related Differences in Sensorimotor Transformations for Visual and/or Somatosensory Targets: Planning or Execution? Exp Aging Res 2020; 46:128-138. [DOI: 10.1080/0361073x.2020.1716153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Rachel Goodman
- Perceptual-Motor Behaviour Laboratory, Centre for Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Gerome A. Manson
- Perceptual-Motor Behaviour Laboratory, Centre for Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Luc Tremblay
- Perceptual-Motor Behaviour Laboratory, Centre for Motor Control, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
García-Piqueras J, García-Mesa Y, Cárcaba L, Feito J, Torres-Parejo I, Martín-Biedma B, Cobo J, García-Suárez O, Vega JA. Ageing of the somatosensory system at the periphery: age-related changes in cutaneous mechanoreceptors. J Anat 2019; 234:839-852. [PMID: 30924930 DOI: 10.1111/joa.12983] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
Decline of tactile sensation associated with ageing depends on modifications in skin and both central and peripheral nervous systems. At present, age-related changes in the periphery of the somatosensory system, particularly concerning the effects on mechanoreceptors, remain unknown. Here we used immunohistochemistry to analyse the age-dependent changes in Meissner's and Pacinian corpuscles as well as in Merkel cell-neurite complexes. Moreover, variations in the neurotrophic TrkB-BDNF system and the mechanoprotein Piezo2 (involved in maintenance of cutaneous mechanoreceptors and light touch, respectively) were evaluated. The number of Meissner's corpuscles and Merkel cells decreased progressively with ageing. Meissner's corpuscles were smaller, rounded in morphology and located deeper in the dermis, and signs of corpuscular denervation were found in the oldest subjects. Pacinian corpuscles generally showed no relevant age-related alterations. Reduced expression of Piezo2 in the axon of Meissner's corpuscles and in Merkel cells was observed in old subjects, as well was a decline in the BDNF-TrkB neurotrophic system. This study demonstrates that cutaneous Meissner's corpuscles and Merkel cell-neurite complexes (and less evidently Pacinian corpuscles) undergo morphological and size changes during the ageing process, as well as a reduction in terms of density. Furthermore, the mechanoprotein Piezo2 and the neurotrophic TrkB-BDNF system are reduced in aged corpuscles. Taken together, these alterations might explain part of the impairment of the somatosensory system associated with ageing.
Collapse
Affiliation(s)
- Jorge García-Piqueras
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Yolanda García-Mesa
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Lucia Cárcaba
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Jorge Feito
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain.,Servicio de Anatomía Patológica, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Isidro Torres-Parejo
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Benjamín Martín-Biedma
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, Oviedo, Spain.,Instituto Asturiano de Odontología, Oviedo, Spain
| | - Olivia García-Suárez
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Grupo SINPOS Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
16
|
Seeing Your Foot Move Changes Muscle Proprioceptive Feedback. eNeuro 2019; 6:eN-NWR-0341-18. [PMID: 30923738 PMCID: PMC6437656 DOI: 10.1523/eneuro.0341-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023] Open
Abstract
Multisensory effects are found when the input from single senses combines, and this has been well researched in the brain. Presently, we examined in humans the potential impact of visuo-proprioceptive interactions at the peripheral level, using microneurography, and compared it with a similar behavioral task. We used a paradigm where participants had either proprioceptive information only (no vision) or combined visual and proprioceptive signals (vision). We moved the foot to measure changes in the sensitivity of single muscle afferents, which can be altered by the descending fusimotor drive. Visual information interacted with proprioceptive information, where we found that for the same passive movement, the response of muscle afferents increased when the proprioceptive channel was the only source of information, as compared with when visual cues were added, regardless of the attentional level. Behaviorally, when participants looked at their foot moving, they more accurately judged differences between movement amplitudes, than in the absence of visual cues. These results impact our understanding of multisensory interactions throughout the nervous system, where the information from different senses can modify the sensitivity of peripheral receptors. This has clinical implications, where future strategies may modulate such visual signals during sensorimotor rehabilitation.
Collapse
|