1
|
Sasaki R, Kojima S, Saito K, Otsuru N, Shirozu H, Onishi H. Resting-state functional connectivity involved in tactile orientation processing. Neuroimage 2024; 299:120834. [PMID: 39236853 DOI: 10.1016/j.neuroimage.2024.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Grating orientation discrimination (GOD) is commonly used to assess somatosensory spatial processing. It allows discrimination between parallel and orthogonal orientations of tactile stimuli applied to the fingertip. Despite its widespread application, the underlying mechanisms of GOD, particularly the role of cortico-cortical interactions and local brain activity in this process, remain elusive. Therefore, we aimed to investigate how a specific cortico-cortical network and inhibitory circuits within the primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) contribute to GOD. METHODS In total, 51 healthy young adults were included in our study. We recorded resting-state magnetoencephalography (MEG) and somatosensory-evoked magnetic field (SEF) in participants with open eyes. We converted the data into a source space based on individual structural magnetic resonance imaging. Next, we estimated S1- and S2-seed resting-state functional connectivity (rs-FC) at the alpha and beta bands through resting-state MEG using the amplitude envelope correlation method across the entire brain (i.e., S1/S2-seeds × 15,000 vertices × two frequencies). We assessed the inhibitory response in the S1 and S2 from SEFs using a paired-pulse paradigm. We automatically measured the GOD task in parallel and orthogonal orientations to the index finger, applying various groove widths with a custom-made device. RESULTS We observed a specific association between the GOD threshold (all P < 0.048) and the alpha rs-FC in the S1-superior parietal lobule and S1-adjacent to the parieto-occipital sulcus (i.e., lower rs-FC values corresponded to higher performance). In contrast, no association was observed between the local responses and the threshold. DISCUSSION The results of this study underpin the significance of specific cortico-cortical networks in recognizing variations in tactile stimuli.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Graduate Course of Health and Social Work, Kanagawa University of Human Services, Yokosuka City, Kanagawa, Japan.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, NHO Nishiniigata Chuo Hospital, Niigata City, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
2
|
Le Cong D, Sato D, Ikarashi K, Fujimoto T, Ochi G, Yamashiro K. Effect of whole-hand water flow stimulation on the neural balance between excitation and inhibition in the primary somatosensory cortex. Front Hum Neurosci 2022; 16:962936. [DOI: 10.3389/fnhum.2022.962936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sustained peripheral somatosensory stimulations, such as high-frequency repetitive somatosensory stimulation (HF-RSS) and vibrated stimulation, are effective in altering the balance between excitation and inhibition in the somatosensory cortex (S1) and motor cortex (M1). A recent study reported that whole-hand water flow (WF) stimulation induced neural disinhibition in the M1. Based on previous results, we hypothesized that whole-hand WF stimulation would lead to neural disinhibition in the S1 because there is a strong neural connection between M1 and S1 and aimed to examine whether whole-hand WF stimulation would change the neural balance between excitation and inhibition in the S1. Nineteen healthy volunteers were studied by measuring excitation and inhibition in the S1 before and after each of the four 15-min interventions. The excitation and inhibition in the S1 were assessed using somatosensory evoked potentials (SEPs) and paired-pulse inhibition (PPI) induced by single- and paired-pulse stimulations, respectively. The four interventions were as follows: control, whole-hand water immersion, whole-hand WF, and HF-RSS. The results showed no significant changes in SEPs and PPI following any intervention. However, changes in PPI with an interstimulus interval (ISI) of 30 ms were significantly correlated with the baseline value before whole-hand WF. Thus, the present findings indicated that the whole-hand WF stimulation had a greater decreased neural inhibition in participants with higher neural inhibition in the S1 at baseline. Considering previous results on M1, the present results possibly show that S1 has lower plasticity than M1 and that the duration (15 min) of each intervention may not have been enough to alter the balance of excitation and inhibition in the S1.
Collapse
|
3
|
Pham MV, Saito K, Miyaguchi S, Watanabe H, Ikarashi H, Nagasaka K, Yokota H, Kojima S, Inukai Y, Otsuru N, Onishi H. Changes in excitability and GABAergic neuronal activity of the primary somatosensory cortex after motor learning. Front Neurosci 2022; 16:794173. [PMID: 36203802 PMCID: PMC9530600 DOI: 10.3389/fnins.2022.794173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction It is widely known that motor learning changes the excitability of the primary motor cortex. More recently, it has been shown that the primary somatosensory cortex (S1) also plays an important role in motor learning, but the details have not been fully examined. Therefore, we investigated how motor skill training affects somatosensory evoked potential (SEP) in 30 neurologically healthy subjects. Methods SEP N20/P25_component and N20/P25 SEP paired-pulse depression (SEP-PPD) were assessed before and immediately after complex or simple visuomotor tasks. Results Motor learning was induced more efficiently by the complex visuomotor task than by the simple visuomotor task. Both the N20/P25 SEP amplitude and N20/P25 SEP-PPD increased significantly immediately after the complex visuomotor task, but not after the simple visuomotor task. Furthermore, the altered N20/P25 SEP amplitude was associated with an increase in motor learning efficiency. Conclusion These results suggest that motor learning modulated primary somatosensory cortex excitability.
Collapse
Affiliation(s)
- Manh Van Pham
- Department of Physical Therapy, Hai Duong Medical Technical University, Hai Duong, Vietnam
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
- *Correspondence: Kei Saito,
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
- Division of Physical Therapy and Rehabilitation Medicine, University of Fukui Hospital, Fukui, Japan
| | - Hitomi Ikarashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
4
|
Sasaki R, Watanabe H, Onishi H. Therapeutic benefits of noninvasive somatosensory cortex stimulation on cortical plasticity and somatosensory function: a systematic review. Eur J Neurosci 2022; 56:4669-4698. [PMID: 35804487 DOI: 10.1111/ejn.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Optimal limb coordination requires efficient transmission of somatosensory information to the sensorimotor cortex. The primary somatosensory cortex (S1) is frequently damaged by stroke, resulting in both somatosensory and motor impairments. Noninvasive brain stimulation (NIBS) to the primary motor cortex is thought to induce neural plasticity that facilitates neurorehabilitation. Several studies have also examined if NIBS to the S1 can enhance somatosensory processing as assessed by somatosensory-evoked potentials (SEPs) and improve behavioral task performance, but it remains uncertain if NIBS can reliably modulate S1 plasticity or even whether SEPs can reflect this plasticity. This systematic review revealed that NIBS has relatively minor effects on SEPs or somatosensory task performance, but larger early SEP changes after NIBS can still predict improved performance. Similarly, decreased paired-pulse inhibition in S1 post-NIBS is associated with improved somatosensory performance. However, several studies still debate the role of inhibitory function in somatosensory performance after NIBS in terms of the direction of the change (that, disinhibition or inhibition). Altogether, early SEP and paired-pulse inhibition (particularly inter-stimulus intervals of 30-100 ms) may become useful biomarkers for somatosensory deficits, but improved NIBS protocols are required for therapeutic applications.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Hiraku Watanabe
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
5
|
Saito K, Otsuru N, Inukai Y, Kojima S, Miyaguchi S, Nagasaka K, Onishi H. Effect of Transcranial Electrical Stimulation over the Posterior Parietal Cortex on Tactile Spatial Discrimination Performance. Neuroscience 2022; 494:94-103. [PMID: 35569646 DOI: 10.1016/j.neuroscience.2022.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/23/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
Abstract
The intraparietal sulcus region, which is part of the posterior parietal cortex (PPC), has been shown to play an important role in discriminating object shapes using the fingers. Transcranial random noise stimulation (tRNS) and anodal transcranial pulsed current stimulation (tPCS) are noninvasive strategies widely used to modulate neural activity in cortical regions. Therefore, we investigated the effects of tRNS and anodal tPCS applied to left or right PPC on the tactile discrimination performance of the right index finger in 20 neurologically healthy subjects. A grating orientation task (GOT) was performed before and immediately after delivering tRNS (stimulus frequency 0.1-640 Hz) in Experiment 1 or anodal tPCS (pulse width 50 ms and inter-pulse interval 5 ms) in Experiment 2. Performing tRNS over the right PPC significantly improved discrimination performance on the GOT. Subjects were classified into low and high baseline performance groups. Conducting tRNS over the left PPC significantly reduced the GOT discrimination performance in the high-performance group. By contrast, anodal tPCS delivered to the PPC of the left and right hemispheres had no significant effect on the tactile GOT discrimination performance of the right hand. We show that transcranial electric stimulation over the PPC may improve tactile perception but the effect depends on stimulus modality, parameters, and on the stimulated hemisphere.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Kazuaki Nagasaka
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
6
|
Sakai S, Saito K, Kojima S, Otsuru N, Onishi H. Grating orientation task trial numbers for short- and long-term tactile discrimination learning. J Clin Neurosci 2021; 93:195-199. [PMID: 34656247 DOI: 10.1016/j.jocn.2021.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Perceptual learning generally improves with training intensity, but the number of training trials sufficient for transient and long-term improvement in tactile grating orientation task (GOT) discrimination has not been systematically studied. To define reliable trial numbers for tactile discrimination learning, we compared tactile orientation discrimination performance of the right-finger following 200 and 400 training trials. Fifty-one neurologically healthy subjects were recruited. Tactile spatial acuity for orientation (parallel or orthogonal to the long axis of the finger) across different grating frequencies was assessed before, immediately after, 30 min after, and 24 h after sessions consisting of 200 training trials (50/block × 4 blocks), 400 training trials (50/block × 8 blocks), or no training (sham control). Both the 200- and 400-trial training conditions reduced the grating orientation discrimination threshold at 24 h after training. In contrast, the control condition had no effect on the grating orientation discrimination threshold. There was a negative correlation between the baseline grating orientation discrimination threshold and training-induced change in threshold (improvement) following both 200 and 400 trials. Fewer GOT trials (200) substantially prolong tactile discrimination learning, presumably by promoting the consolidation of the underlying neuroplastic mechanisms. In this widely used perceptual learning paradigm, 200 and 400 training trials appear effective for inducing short-term and long-term perceptual memory.
Collapse
Affiliation(s)
- Saki Sakai
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.
| | - Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.
| |
Collapse
|
7
|
Kojima S, Otsuru N, Miyaguchi S, Yokota H, Nagasaka K, Saito K, Inukai Y, Shirozu H, Onishi H. The intervention of mechanical tactile stimulation modulates somatosensory evoked magnetic fields and cortical oscillations. Eur J Neurosci 2021; 53:3433-3446. [PMID: 33772899 DOI: 10.1111/ejn.15209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
The different cortical activity evoked by a mechanical tactile stimulus depends on tactile stimulus patterns, which demonstrates that simple stimuli (i.e., global synchronous stimulation the stimulus area) activate the primary somatosensory cortex alone, whereas complex stimuli (i.e., stimulation while moving in the stimulus area) activate not only the primary somatosensory cortex but also the primary motor area. Here, we investigated whether the effects of a repetitive mechanical tactile stimulation (MS) on somatosensory evoked magnetic fields (SEFs) and cortical oscillations depend on MS patterns. This single-blinded study included 15 healthy participants. Two types interventions of MS lasting 20 min were used: a repetitive global tactile stimulation (RGS) was used to stimulate the finger by using 24 pins installed on a finger pad, whereas a sequential stepwise displacement tactile stimulation (SSDS) was used to stimulate the finger by moving a row of six pins between the left and right sides on the finger pad. Each parameter was measured pre- and post-intervention. The P50m amplitude of the SEF was increased by RGS and decreased by SSDS. The modulation of P50m was correlated with its amplitude before RGS and with the modulation of beta band oscillation at the resting state after SSDS. This study showed that the effects of a 20-min MS on SEFs and cortical oscillations depend on mechanical tactile stimulus patterns. Moreover, our results offer potential for the modulation of tactile functions and selection of stimulation patterns according to cortical states.
Collapse
Affiliation(s)
- Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Kazuaki Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, Nishi-Niigata Chuo National Hospital, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata-City, Niigata, Japan
| |
Collapse
|
8
|
Saito K, Otsuru N, Yokota H, Inukai Y, Miyaguchi S, Kojima S, Onishi H. α-tACS over the somatosensory cortex enhances tactile spatial discrimination in healthy subjects with low alpha activity. Brain Behav 2021; 11:e02019. [PMID: 33405361 PMCID: PMC7994706 DOI: 10.1002/brb3.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Spontaneous oscillations in the somatosensory cortex, especially of the alpha (8 - 14 Hz) and gamma (60 - 80 Hz) frequencies, affect tactile perception; moreover, these oscillations can be selectively modulated by frequency-matched transcranial alternating current stimulation (tACS) on the basis of ongoing oscillatory brain activity. To examine whether tACS can actually improve tactile perception via alpha and gamma modulation, we measured the effects of 10-Hz and 70-Hz tACS (α- and γ-tACS) on the left somatosensory cortex on right-finger tactile spatial orientation discrimination, and the associations between performance changes and individual alpha and gamma activities. METHODS Fifteen neurologically healthy subjects were recruited into this study. Electroencephalography (EEG) was performed before the first day, to assess the normal alpha- and gamma-activity levels. A grating orientation discrimination task was performed before and during 10-Hz and 70-Hz tACS. RESULTS The 10-Hz tACS protocol decreased the grating orientation discrimination threshold, primarily in subjects with low alpha event-related synchronization (ERS). In contrast, the 70-Hz tACS had no effect on the grating orientation discrimination threshold. CONCLUSIONS This study showed that 10-Hz tACS can improve tactile orientation discrimination in subjects with low alpha activity. Alpha-frequency tACS may help identify the contributions of these oscillations to other neurophysiological and pathological processes.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hirotake Yokota
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
9
|
Watanabe H, Kojima S, Otsuru N, Onishi H. The Repetitive Mechanical Tactile Stimulus Intervention Effects Depend on Input Methods. Front Neurosci 2020; 14:393. [PMID: 32410954 PMCID: PMC7198832 DOI: 10.3389/fnins.2020.00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiraku Watanabe
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- *Correspondence: Hiraku Watanabe,
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
10
|
Modulation of inhibitory function in the primary somatosensory cortex and temporal discrimination threshold induced by acute aerobic exercise. Behav Brain Res 2019; 377:112253. [PMID: 31550485 DOI: 10.1016/j.bbr.2019.112253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 11/22/2022]
Abstract
Acute aerobic exercise beneficially affects brain function. The effect of acute aerobic exercise on the inhibitory mechanism of the primary somatosensory cortex (S1) and somatosensory function remains unclear. We investigated whether acute aerobic exercise modulates S1 inhibitory function and somatosensory function. In Experiment 1, we measured somatosensory evoked potentials (SEP) and paired-pulse inhibition (PPI) in 15 healthy right-handed participants. The right median nerve underwent electrical stimulation (ES). Interstimulus intervals were 5 ms, 30 ms, and 100 ms. In Experiment 2, we assessed the somatosensory function by using a somatosensory temporal discrimination task. Single or paired ES was applied to the distal phalanx of the right index finger. Both the experiments involved three sessions: 20 min of moderate-intensity exercise, 30 min of low-intensity exercise, and 30 min of seated rest. Before and after each session, PPI and somatosensory temporal discrimination task performance were measured. The N20 latency was significantly shortened immediately after moderate exercise. The SEP amplitude was not modulated in any session. The PPI at 30 ms (PPI_30ms) significantly decreased 20 min after moderate exercise, whereas the PPI at 5 ms (PPI_5ms) and PPI at 100 ms (PPI_100ms) did not change. The 50% and 75% thresholds and reaction time did not improve in any session. We found negative relationships between the change in PPI_5ms and the change in the 75% threshold under low-intensity exercise condition. Thus, acute aerobic exercise modulated S1 inhibitory function depending on exercise intensity. The exercise-induced change in PPI was associated with the change in temporal discrimination.
Collapse
|
11
|
Saito K, Otsuru N, Inukai Y, Miyaguchi S, Yokota H, Kojima S, Sasaki R, Onishi H. Comparison of transcranial electrical stimulation regimens for effects on inhibitory circuit activity in primary somatosensory cortex and tactile spatial discrimination performance. Behav Brain Res 2019; 375:112168. [PMID: 31442547 DOI: 10.1016/j.bbr.2019.112168] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 11/27/2022]
Abstract
Transcranial electrical stimulation (tES) can be used to modulate inhibitory circuits in primary somatosensory cortex, resulting in improved somatosensory function. However, efficacy may depend on the specific stimulus modality and patterns. For instance, transcranial alternating current stimulation (tACS), transcranial random noise stimulation (tRNS), and transcranial pulsed current stimulation (tPCS) were found to stably and effectively modulate neuronal excitability, while anodal transcranial direct current stimulation (tDCS) appeared less effective overall but with substantial response heterogeneity among subjects. Therefore, we compared the effects of tES applied to primary somatosensory cortex on somatosensory evoked potential paired-pulse depression (SEP-PPD) and tactile discrimination performance in 17 neurologically healthy subjects. In Experiment 1, somatosensory evoked potential N20/P25_SEP-PPD, N20_SEP-PPD, and P25_SEP-PPD responses were assessed before and immediately after anodal tDCS, tACS (stimulation frequency, 140 Hz), tRNS (stimulation frequency, 0.1-640 Hz), anodal tPCS (pulse width, 50 ms; inter-pulse interval, 5 ms), and sham stimulation applied to primary somatosensory cortex. In Experiment 2, a grating orientation task (GOT) was performed before and immediately after the same anodal tDCS, tRNS, anodal tPCS, and sham stimulation regimens. Anodal tDCS and anodal tPCS decreased N20_SEP-PPD, and tRNS increased the first N20 SEP amplitude. Furthermore, tRNS and anodal tPCS decreased GOT discrimination threshold (improved performance). These results suggest that tRNS and anodal tPCS can improve sensory perception by modulating neuronal activity in primary somatosensory cortex.
Collapse
Affiliation(s)
- Kei Saito
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Naofumi Otsuru
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Yasuto Inukai
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Shota Miyaguchi
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Hirotake Yokota
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| | - Hideaki Onishi
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata, Niigata, 950-3198, Japan.
| |
Collapse
|