1
|
Li X, Qureshi MNI, Laplante DP, Elgbeili G, Jones SL, Long X, Paquin V, Bezgin G, Lussier F, King S, Rosa-Neto P. Atypical brain structure and function in young adults exposed to disaster-related prenatal maternal stress: Project Ice Storm. J Neurosci Res 2023; 101:1849-1863. [PMID: 37732456 DOI: 10.1002/jnr.25246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Studies have shown that prenatal maternal stress (PNMS) affects brain structure and function in childhood. However, less research has examined whether PNMS effects on brain structure and function extend to young adulthood. We recruited women who were pregnant during or within 3 months following the 1998 Quebec ice storm, assessed their PNMS, and prospectively followed-up their children. T1-weighted magnetic resonance imaging (MRI) and resting-state functional MRI were obtained from 19-year-old young adults with (n = 39) and without (n = 65) prenatal exposure to the ice storm. We examined between-group differences in gray matter volume (GMV), surface area (SA), and cortical thickness (CT). We used the brain regions showing between-group GMV differences as seeds to compare between-group functional connectivity. Within the Ice Storm group, we examined (1) associations between PNMS and the atypical GMV, SA, CT, and functional connectivity, and (2) moderation by timing of exposure. Primarily, we found that, compared to Controls, the Ice Storm youth had larger GMV and higher functional connectivity of the anterior cingulate cortex, the precuneus, the left occipital pole, and the right hippocampus; they also had larger CT, but not SA, of the left occipital pole. Within the Ice Storm group, maternal subjective distress during preconception and mid-to-late pregnancy was associated with atypical left occipital pole CT. These results suggest the long-lasting impact of disaster-related PNMS on child brain structure and functional connectivity. Our study also indicates timing-specific effects of the subjective aspect of PNMS on occipital thickness.
Collapse
Affiliation(s)
- Xinyuan Li
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Muhammad Naveed Iqbal Qureshi
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - David P Laplante
- Centre for Child Development and Mental Health, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Sherri Lee Jones
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Xiangyu Long
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vincent Paquin
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gleb Bezgin
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Firoza Lussier
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Suzanne King
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Exposure to War Prior to Conception: Maternal Emotional Distress Forecasts Sex-Specific Child Behavior Problems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073802. [PMID: 35409484 PMCID: PMC8997367 DOI: 10.3390/ijerph19073802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022]
Abstract
Objectives: Exposure to maternal stress during the prenatal period adversely affects child outcomes. Recent investigations have shifted to an even earlier period, the preconception period, to better understand the role of this formative period in human health and disease. We investigated the links between maternal emotional distress following preconception exposure to war, and child outcomes at age 10. Material and Methods: Before becoming pregnant, mothers were exposed to missile bombardment on the north of Israel in the 2006 war. Mothers who conceived within 12 months after the war were recruited and compared to mothers who conceived during the same period but lived in Israel but outside missile range. During the initial assessment, mothers completed a questionnaire on emotional distress. At 10 years of age, mothers and children (N = 68) reported on child socio-emotional outcomes. Results: Multiple regression analyses revealed that, in girls, higher maternal emotional distress following preconception war exposure predicted more internalizing and externalizing behavior problems, and more behavior regulation problems. In boys, maternal emotional distress was not significantly related to outcomes. Conclusion: Maternal emotional distress following preconception exposure to war forecasts sex-specific child behavioral problems as reported by the mother and the child. Though the results warrant cautious interpretation because of the relatively small sample size and differential attrition, our findings add to the small but growing body of research on the consequences of maternal stress exposure prior to conception for the next generation.
Collapse
|
3
|
Maternal stress prior to conception impairs memory and decreases right dorsal hippocampal volume and basilar spine density in the prefrontal cortex of adult male offspring. Behav Brain Res 2022; 416:113543. [PMID: 34425182 DOI: 10.1016/j.bbr.2021.113543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Chronic parental stress impacts offspring functioning throughout life. Chronic variable stress prior to conception impairs offspring development in terms of behavior, neuroanatomy, and neurobiology. Previously, our lab demonstrated that even a consistent stressor experienced by the sire or the dam shapes offspring development beginning in early life. Here, we show how consistent maternal stress prior to conception influences the brain and behavior of offspring in adolescence and adulthood. Female Long-Evans rats were exposed to elevated platform stress twice daily for 27 consecutive days immediately prior to mating with non-stressed males. Male and female offspring were assessed in the open field and elevated plus maze in adolescence, and open field, elevated plus maze, Whishaw tray reaching, and Morris water task in adulthood. Offspring were then euthanized, and their brains were stained with Golgi-Cox solution and then examined for dendritic spine density and hippocampal volume. Major findings include deficits in spatial memory, decreased medial prefrontal cortex spine density, and reduced right dorsal hippocampal volume in male offspring only. This work illustrates that the effects of consistent maternal stress prior to conception are lifelong and highly sexually dimorphic.
Collapse
|
4
|
Jenkins S, Harker A, Gibb R. Distinct sex-dependent effects of maternal preconception nicotine and enrichment on the early development of rat offspring brain and behavior. Neurotoxicol Teratol 2022; 91:107062. [PMID: 34998861 DOI: 10.1016/j.ntt.2021.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Developmental nicotine exposure is harmful to offspring. Whereas much is known about the consequences of prenatal nicotine exposure, relatively little is understood about how maternal preconception nicotine impacts the next generation. Positive experiences, such as environmental enrichment/complexity, have considerable potential to improve developmental outcomes and even treat and prevent drug addiction. Therefore, the current study sought to identify how maternal exposure to moderate levels of nicotine prior to conception impacts offspring development, and if the presumably negative consequence of nicotine could be reversed by concurrent exposure to an enriched environment. We treated female Long Evans rats with nicotine in their drinking water (15 mg nicotine salt/L) for seven weeks while residing in either standard or enriched conditions. Both experiences occurred exclusively prior to mating. Nicotine exposure reduced dam fertility by ~20% (p = .06). Females reared their own litters, and offspring were tested in two assessments of early development: negative geotaxis and open field. Offspring were euthanized at weaning (P21), and their brains were processed with Golgi-Cox solution to allow quantification of dendritic spine density. Results indicate that neither maternal nicotine or enrichment had an impact on maternal care, but male offspring were impaired at negative geotaxis due to maternal nicotine, female offspring showed altered open field exploration due to maternal enrichment, and offspring of both sexes had increased spine density in OFC due to maternal enrichment. Therefore, this experiment provides novel insights into the unique, sex-dependent consequences of maternal preconception nicotine and enrichment on the early development of rat behavior and brain.
Collapse
Affiliation(s)
- Serena Jenkins
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Allonna Harker
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| | - Robbin Gibb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Dr W, Lethbridge, AB T1K 3M4, Canada.
| |
Collapse
|
5
|
Tokariev A, Breakspear M, Videman M, Stjerna S, Scholtens LH, van den Heuvel MP, Cocchi L, Vanhatalo S. Impact of In Utero Exposure to Antiepileptic Drugs on Neonatal Brain Function. Cereb Cortex 2021; 32:2385-2397. [PMID: 34585721 PMCID: PMC9157298 DOI: 10.1093/cercor/bhab338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
In utero brain development underpins brain health across the lifespan but is vulnerable to physiological and pharmacological perturbation. Here, we show that antiepileptic medication during pregnancy impacts on cortical activity during neonatal sleep, a potent indicator of newborn brain health. These effects are evident in frequency-specific functional brain networks and carry prognostic information for later neurodevelopment. Notably, such effects differ between different antiepileptic drugs that suggest neurodevelopmental adversity from exposure to antiepileptic drugs and not maternal epilepsy per se. This work provides translatable bedside metrics of brain health that are sensitive to the effects of antiepileptic drugs on postnatal neurodevelopment and carry direct prognostic value.
Collapse
Affiliation(s)
- Anton Tokariev
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia.,School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mari Videman
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Department of Pediatric Neurology, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Susanna Stjerna
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lianne H Scholtens
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands.,Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Luca Cocchi
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sampsa Vanhatalo
- Baby Brain Activity Center (BABA), Department of Clinical Neurophysiology, New Children's Hospital, HUS Imaging, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Torabi R, Jenkins S, Harker A, Whishaw IQ, Gibb R, Luczak A. A Neural Network Reveals Motoric Effects of Maternal Preconception Exposure to Nicotine on Rat Pup Behavior: A New Approach for Movement Disorders Diagnosis. Front Neurosci 2021; 15:686767. [PMID: 34354562 PMCID: PMC8329707 DOI: 10.3389/fnins.2021.686767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Neurodevelopmental disorders can stem from pharmacological, genetic, or environmental causes and early diagnosis is often a key to successful treatment. To improve early detection of neurological motor impairments, we developed a deep neural network for data-driven analyses. The network was applied to study the effect of maternal nicotine exposure prior to conception on 10-day-old rat pup motor behavior in an open field task. Female Long-Evans rats were administered nicotine (15 mg/L) in sweetened drinking water (1% sucralose) for seven consecutive weeks immediately prior to mating. The neural network outperformed human expert designed animal locomotion measures in distinguishing rat pups born to nicotine exposed dams vs. control dams (87 vs. 64% classification accuracy). Notably, the network discovered novel movement alterations in posture, movement initiation and a stereotypy in "warm-up" behavior (repeated movements along specific body dimensions) that were predictive of nicotine exposure. The results suggest novel findings that maternal preconception nicotine exposure delays and alters offspring motor development. Similar behavioral symptoms are associated with drug-related causes of disorders such as autism spectrum disorder and attention-deficit/hyperactivity disorder in human children. Thus, the identification of motor impairments in at-risk offspring here shows how neuronal networks can guide the development of more accurate behavioral tests to earlier diagnose symptoms of neurodevelopmental disorders in infants and children.
Collapse
Affiliation(s)
| | | | | | | | | | - Artur Luczak
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
7
|
D'avila LF, Dias VT, Milanesi LH, Roversi K, Trevizol F, Maurer LH, Emanuelli T, Burger ME, Segat HJ. Interesterified fat consumption since gestation decreases striatal dopaminergic targets levels and gdnf impairing locomotion of adult offspring. Toxicol Lett 2020; 339:23-31. [PMID: 33359558 DOI: 10.1016/j.toxlet.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/29/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022]
Abstract
Interesterified fat (IF) currently substitutes the hydrogenated vegetable fat (HVF) in processed foods. However, the IF consumption impact on the central nervous system (CNS) has been poorly studied. The current study investigated connections between IF chronic consumption and locomotor impairments in early life period and adulthood of rats and access brain molecular targets related to behavior changes in adulthood offspring. During pregnancy and lactation, female rats received soybean oil (SO) or IF and their male pups received the same maternal supplementation from weaning until adulthood. Pups' motor ability and locomotor activity in adulthood were evaluated. In the adult offspring striatum, dopaminergic targets, glial cell line-derived neurotrophic factor (GDFN) and lipid profile were quantified. Pups from IF supplementation group presented impaired learning concerning complex motor skill and sensorimotor behavior. The same animals showed decreased locomotion in adulthood. Moreover, IF group showed decreased immunoreactivity of all dopaminergic targets evaluated and GDNF, along with important changes in FA composition in striatum. This study shows that the brain modifications induce by IF consumption resulted in impaired motor control in pups and decreased locomotion in adult animals. Other studies about health damages induced by IF consumption may have a contribution from our current outcomes.
Collapse
Affiliation(s)
- Lívia Ferraz D'avila
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Verônica Tironi Dias
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Laura Hautrive Milanesi
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Karine Roversi
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Fabíola Trevizol
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Luana Haselein Maurer
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Tatiana Emanuelli
- Programa de Pós-graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Marilise Escobar Burger
- Programa de Pós-graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil; Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| | - Hecson Jesser Segat
- Departamento de Patologia, Universidade Federal de Santa Maria (UFSM), RS, Brazil.
| |
Collapse
|