1
|
Sarkar S, Martinez Reyes C, Jensen CM, Gavornik JP. M2 receptors are required for spatiotemporal sequence learning in mouse primary visual cortex. J Neurophysiol 2024; 131:1213-1225. [PMID: 38629848 PMCID: PMC11381118 DOI: 10.1152/jn.00016.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
Acetylcholine is a neurotransmitter that plays a variety of roles in the central nervous system. It was previously shown that blocking muscarinic receptors with a nonselective antagonist prevents a form of experience-dependent plasticity termed "spatiotemporal sequence learning" in the mouse primary visual cortex (V1). Muscarinic signaling is a complex process involving the combined activities of five different G protein-coupled receptors, M1-M5, all of which are expressed in the murine brain but differ from each other functionally and in anatomical localization. Here we present electrophysiological evidence that M2, but not M1, receptors are required for spatiotemporal sequence learning in mouse V1. We show in male mice that M2 is highly expressed in the neuropil in V1, especially in thalamorecipient layer 4, and colocalizes with the soma in a subset of somatostatin-expressing neurons in deep layers. We also show that expression of M2 receptors is higher in the monocular region of V1 than it is in the binocular region but that the amount of experience-dependent sequence potentiation is similar in both regions and that blocking muscarinic signaling after visual stimulation does not prevent plasticity. This work establishes a new functional role for M2-type receptors in processing temporal information and demonstrates that monocular circuits are modified by experience in a manner similar to binocular circuits.NEW & NOTEWORTHY Muscarinic acetylcholine receptors are required for multiple forms of plasticity in the brain and support perceptual functions, but the precise role of the five subtypes (M1-M5) are unclear. Here we show that the M2 receptor is specifically required to encode experience-dependent representations of spatiotemporal relationships in both monocular and binocular regions of mouse V1. This work identifies a novel functional role for M2 receptors in coding temporal information into cortical circuits.
Collapse
Affiliation(s)
- Susrita Sarkar
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Catalina Martinez Reyes
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Cambria M Jensen
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| | - Jeffrey P Gavornik
- Center for Systems Neuroscience, Department of Biology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Sanfeliu C, Bartra C, Suñol C, Rodríguez-Farré E. New insights in animal models of neurotoxicity-induced neurodegeneration. Front Neurosci 2024; 17:1248727. [PMID: 38260026 PMCID: PMC10800989 DOI: 10.3389/fnins.2023.1248727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The high prevalence of neurodegenerative diseases is an unintended consequence of the high longevity of the population, together with the lack of effective preventive and therapeutic options. There is great pressure on preclinical research, and both old and new models of neurodegenerative diseases are required to increase the pipeline of new drugs for clinical testing. We review here the main models of neurotoxicity-based animal models leading to central neurodegeneration. Our main focus was on studying how changes in neurotransmission and neuroinflammation, mainly in rodent models, contribute to harmful processes linked to neurodegeneration. The majority of the models currently in use mimic Parkinson's disease (PD) and Alzheimer's disease (AD), which are the most common neurodegenerative conditions in older adults. AD is the most common age-related dementia, whereas PD is the most common movement disorder with also cases of dementia. Several natural toxins and xenobiotic agents induce dopaminergic neurodegeneration and can reproduce neuropathological traits of PD. The literature analysis of MPTP, 6-OH-dopamine, and rotenone models suggested the latter as a useful model when specific doses of rotenone were administrated systemically to C57BL/6 mice. Cholinergic neurodegeneration is mainly modelled with the toxin scopolamine, which is a useful rodent model for the screening of protective drugs against cognitive decline and AD. Several agents have been used to model neuroinflammation-based neurodegeneration and dementia in AD, including lipopolysaccharide (LPS), streptozotocin, and monomeric C-reactive protein. The bacterial agent LPS makes a useful rodent model for testing anti-inflammatory therapies to halt the development and severity of AD. However, neurotoxin models might be more useful than genetic models for drug discovery in PD but that is not the case in AD where they cannot beat the new developments in transgenic mouse models. Overall, we should work using all available models, either in vivo, in vitro, or in silico, considering the seriousness of the moment and urgency of developing effective drugs.
Collapse
Affiliation(s)
- Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Clara Bartra
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- PhD Program in Biotechnology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Suñol
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Rodríguez-Farré
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
3
|
Deniz K, Poleksic M, Sharma A, Wendt L, Sainju R, Fattal D. Accuracy of patient-reported spell duration: A comparative study. Epilepsy Behav 2024; 150:109573. [PMID: 38070407 PMCID: PMC10843722 DOI: 10.1016/j.yebeh.2023.109573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Clinicians rely heavily on patient histories to make medical diagnoses, most of which are inherently subjective and prone to inaccuracies. The aim of this study is to compare the subjective versus objective duration of spells through a retrospective chart review of patients admitted to the epilepsy monitoring unit at our tertiary care medical center. One hundred patients were analyzed. Differences in the accuracy of subjective estimations versus objective duration were compared by age, sex, focal versus generalized, location (frontal versus non-frontal), and spell type (focal aware versus impaired awareness and epileptic versus non-epileptic). Our data show that patients are poor subjective estimators, with 73% of patients overestimating the duration of their spells. We did not find differences in estimated duration by age, sex, seizure location or spell type. A notable exception was patients with generalized convulsive seizures, who accurately reported spell duration to within 17 s. This is likely because these seizures are stereotypical, and patients/family time them. Moreover, patients with non-epileptic spells were worse estimators of their spell duration than those with epileptic spells. In addition, although the prefrontal lobe plays a role in time estimation, we did not find that patients with frontal lobe seizures were worse estimators than those with non-frontal seizures, but invasive monitoring can more precisely localize seizures within areas of the frontal lobe responsible for time estimation. Our data emphasize the importance of not relying solely on patient-reported time estimation in diagnosing and developing treatment plans and instead instructing patients to time their spells.
Collapse
Affiliation(s)
- Kaancan Deniz
- University of Iowa Hospitals and Clinics, Department of Neurology, Iowa City, IA, 52242, USA
| | - Mia Poleksic
- University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Aditi Sharma
- University of Iowa Hospitals and Clinics, Department of Neurology, Iowa City, IA, 52242, USA; Imaging and Neuroscience Center, the University of Utah Hospital, 729 Arapeen Drive, Salt Lake City, UT 84108, USA(2)
| | - Linder Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, IA 52242, USA
| | - Rup Sainju
- University of Iowa Hospitals and Clinics, Department of Neurology, Iowa City, IA, 52242, USA
| | - Deema Fattal
- University of Iowa Hospitals and Clinics, Department of Neurology and Otolaryngology, Iowa City, IA, 52242, USA; Iowa City Veterans Affairs Medical Center, Department of Neurology, Iowa City, IA, 52246, USA.
| |
Collapse
|
4
|
Kaneko S, Niki Y, Yamada K, Nasukawa D, Ujihara Y, Toda K. Systemic injection of nicotinic acetylcholine receptor antagonist mecamylamine affects licking, eyelid size, and locomotor and autonomic activities but not temporal prediction in male mice. Mol Brain 2022; 15:77. [PMID: 36068635 PMCID: PMC9450238 DOI: 10.1186/s13041-022-00959-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/05/2022] [Indexed: 12/26/2022] Open
Abstract
Nicotinic acetylcholine receptors are thought to be associated with a wide range of phenomena, such as movement, learning, memory, attention, and addiction. However, the causal relationship between nicotinic receptor activity and behavior remains unclear. Contrary to the studies that examined the functions of muscarinic acetylcholine receptors, the role of the nicotinic acetylcholine receptors on behavior has not been examined as extensively. Here, we examined the effects of intraperitoneal injection of mecamylamine, a nicotinic acetylcholine receptor antagonist, on the performance of male mice in a head-fixed temporal conditioning task and a free-moving open-field task. The head-fixed experimental setup allowed us to record and precisely quantify the licking response while the mice performed the behavioral task with no external cues. In addition, by combining the utility of the head-fixed experimental design with computer vision analysis based on deep learning algorithms, we succeeded in quantifying the eyelid size of awake mice. In the temporal conditioning task, we delivered a 10% sucrose solution every 10 s using a blunt-tipped needle placed within the licking distance of the mice. After the training, the mice showed increased anticipatory licking toward the timing of sucrose delivery, suggesting that the mice could predict the timing of the reward. Systemic injection of mecamylamine decreased licking behavior and caused eye closure but had no effect on learned conditioned predictive behavior in the head-fixed temporal conditioning task. In addition, the injection of mecamylamine decreased spontaneous locomotor activity in a dose-dependent manner in the free-moving open-field task. The results in the open-field experiments further revealed that the effect of mecamylamine on fecal output and urination, suggesting the effects on autonomic activities. Our achievement of successful eyelid size recording has potential as a useful approach in initial screening for drug discovery. Our study paves a way forward to understanding the role of nicotinic acetylcholine receptors on learning and behavior.
Collapse
Affiliation(s)
- Shohei Kaneko
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yasuyuki Niki
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Kota Yamada
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
- Japan Society for Promotion of Science, Tokyo, Japan
| | - Daiki Nasukawa
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yusuke Ujihara
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, TN, Memphis, USA
| | - Koji Toda
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Zhang Q, Abdelmotilib H, Larson T, Keomanivong C, Conlon M, Aldridge GM, Narayanan NS. Cortical alpha-synuclein preformed fibrils do not affect interval timing in mice. Neurosci Lett 2021; 765:136273. [PMID: 34601038 DOI: 10.1016/j.neulet.2021.136273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
One hallmark feature of Parkinson's disease (PD) is Lewy body pathology associated with misfolded alpha-synuclein. Previous studies have shown that striatal injection of alpha-synuclein preformed fibrils (PFF) can induce misfolding and aggregation of native alpha-synuclein in a prion-like manner, leading to cell death and motor dysfunction in mouse models. Here, we tested whether alpha-synuclein PFFs injected into the medial prefrontal cortex results in deficits in interval timing, a cognitive task which is disrupted in human PD patients and in rodent models of PD. We injected PFF or monomers of human alpha-synuclein into the medial prefrontal cortex of mice pre-injected with adeno-associated virus (AAV) coding for overexpression of human alpha-synuclein or control protein. Despite notable medial prefrontal cortical synucleinopathy, we did not observe consistent deficits in fixed-interval timing. These results suggest that cortical alpha-synuclein does not reliably disrupt fixed-interval timing.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States.
| | - Hisham Abdelmotilib
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Travis Larson
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Cameron Keomanivong
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Mackenzie Conlon
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | - Georgina M Aldridge
- Department of Neurology, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
6
|
Zhang Q, Weber MA, Narayanan NS. Medial prefrontal cortex and the temporal control of action. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 158:421-441. [PMID: 33785154 DOI: 10.1016/bs.irn.2020.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Across species, the medial prefrontal cortex guides actions in time. This process can be studied using behavioral paradigms such as simple reaction-time and interval-timing tasks. Temporal control of action can be influenced by prefrontal neurotransmitters such as dopamine and acetylcholine and is highly relevant to human diseases such as Parkinson's disease, schizophrenia, and attention-deficit hyperactivity disorder (ADHD). We review evidence that across species, medial prefrontal lesions impair the temporal control of action. We then consider neurophysiological correlates in humans, primates, and rodents that might encode temporal processing and relate to cognitive-control mechanisms. These data have informed brain-stimulation studies in rodents and humans that can compensate for timing deficits. This line of work illuminates basic mechanisms of temporal control of action in the medial prefrontal cortex, which underlies a range of high-level cognitive processing and could contribute to new biomarkers and therapies for human brain diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Matthew A Weber
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | | |
Collapse
|
7
|
Measuring attention in rats with a visual signal detection task: Signal intensity vs. signal duration. Pharmacol Biochem Behav 2020; 199:173069. [PMID: 33144207 DOI: 10.1016/j.pbb.2020.173069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 11/21/2022]
Abstract
Measurement of attentional performance in animal behavioral research allows us to investigate neural mechanisms underlying attentional processes and translate results to better understand human attentional function, dysfunction and drug treatments to reverse dysfunction. One useful method to measure attention in experimental animal studies is to use an operant visual signal detection paradigm, consisting of two levers and the rapid flashing of a cue lamp to signal a reward. In this study, we tested the relative sensitivity of this task when using different variants of the stimulus signal, varying brightness or duration of the light cue. To investigate roles of different neural systems underlying attentional processes, we assessed the sensitivity of attentional performance with these two different cue variations with blockade of muscarinic acetylcholine and NMDA glutamate receptors with scopolamine and MK-801 (dizocilpine). Operant signal detection was tested using a signal light that varied in intensity (0.027, 0.269, 1.22 lx) of the signal light or in a paradigm which varied the duration (0.5 s, 1 s, 2 s) of the signal light. Both methods of assessing attention showed construct validity for producing gradients of accuracy for signal detection; the dimmest cue led to less accurate responding compared to the brighter cues, and the shortest duration led to less accuracy compared to the longer durations. However, the tests differed in their sensitivity to pharmacological disruption. With the duration test, the high dose of MK-801 along with co-exposure of scopolamine and MK-801 caused a significant reduction of hit and rejection accuracy. Conversely, the intensity variation test did not show significant differences as a function of drug exposures. These data suggest that changes in signal duration, rather than signal intensity, during operant signal detection may have higher sensitivity to detecting drug effects and be a more useful technique for examining pharmacological interventions on attentional behavior and performance.
Collapse
|
8
|
Emmons E, Tunes-Chiuffa G, Choi J, Bruce RA, Weber MA, Kim Y, Narayanan NS. Temporal Learning Among Prefrontal and Striatal Ensembles. Cereb Cortex Commun 2020; 1:tgaa058. [PMID: 34296121 PMCID: PMC8152894 DOI: 10.1093/texcom/tgaa058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 01/22/2023] Open
Abstract
Behavioral flexibility requires the prefrontal cortex and striatum, but it is unclear if these structures play similar or distinct roles in adapting to novel circumstances. Here, we investigate neuronal ensembles in the medial frontal cortex (MFC) and the dorsomedial striatum (DMS) during one form of behavioral flexibility: learning a new temporal interval. We studied corticostriatal neuronal activity as rodents trained to respond after a 12-s fixed interval (FI12) learned to respond at a shorter 3-s fixed interval (FI3). On FI12 trials, we found that a key form of temporal processing—time-related ramping activity—decreased in the MFC but did not change in the DMS as animals learned to respond at a shorter interval. However, while MFC and DMS ramping was stable with successive days of two-interval performance, temporal decoding by DMS ensembles improved on FI3 trials. Finally, when comparing FI12 versus FI3 trials, we found that more DMS neurons than MFC neurons exhibited differential interval-related activity early in two-interval performance. These data suggest that the MFC and DMS play distinct roles during temporal learning and provide insight into corticostriatal circuits.
Collapse
Affiliation(s)
- Eric Emmons
- Department of Psychiatry, Yale University, New Haven, CT 06515, USA
| | | | - Jeeyu Choi
- School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - R Austin Bruce
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Matthew A Weber
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Youngcho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
9
|
Gür E, Duyan YA, Arkan S, Karson A, Balcı F. Interval timing deficits and their neurobiological correlates in aging mice. Neurobiol Aging 2020; 90:33-42. [PMID: 32220513 DOI: 10.1016/j.neurobiolaging.2020.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/27/2020] [Accepted: 02/22/2020] [Indexed: 11/24/2022]
Abstract
Age-related neurobiological and cognitive alterations suggest that interval timing (as a related function) is also altered in aging, which can, in turn, disrupt timing-dependent functions. We investigated alterations in interval timing with aging and accompanying neurobiological changes. We tested 4-6, 10-12, and 18-20 month-old mice on the dual peak interval procedure. Results revealed a specific deficit in the termination of timed responses (stop-times). The decision processes contributed more to timing variability (vs. clock/memory process) in the aged mice. We observed age-dependent reductions in the number of dopaminergic neurons in the VTA and SNc, cholinergic neurons in the medial septum/diagonal band (MS/DB) complex, and density of dopaminergic axon terminals in the DLS/DMS. Negative correlations were found between the number of dopaminergic neurons in the VTA and stop times, and the number of cholinergic neurons in MS/DB complex and the acquisition of stop times. Our results point at age-dependent changes in the decisional components of interval timing and the role of dopaminergic and cholinergic functions in these behavioral alterations.
Collapse
Affiliation(s)
- Ezgi Gür
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Yalçın Akın Duyan
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Sertan Arkan
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey; Kocaeli University, Physiology Department, Umuttepe Campus, Kocaeli, Turkey
| | - Ayşe Karson
- Kocaeli University, Physiology Department, Umuttepe Campus, Kocaeli, Turkey
| | - Fuat Balcı
- Timing and Decision-Making Laboratory, Department of Psychology, Koç University, Istanbul, Turkey; Koç University Research Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|