1
|
Zbären GA, Kapur M, Meissner SN, Wenderoth N. Inferring occluded projectile motion changes connectivity within a visuo-fronto-parietal network. Brain Struct Funct 2024; 229:1605-1615. [PMID: 38914897 PMCID: PMC11374914 DOI: 10.1007/s00429-024-02815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
Anticipating the behaviour of moving objects in the physical environment is essential for a wide range of daily actions. This ability is thought to rely on mental simulations and has been shown to involve frontoparietal and early visual areas. Yet, the connectivity patterns between these regions during intuitive physical inference remain largely unknown. In this study, participants underwent fMRI while performing a task requiring them to infer the parabolic trajectory of an occluded ball falling under Newtonian physics, and a control task. Building on our previous research showing that when solving the physical inference task, early visual areas encode task-specific and perception-like information about the inferred trajectory, the present study aimed to (i) identify regions that are functionally coupled with early visual areas during the physical inference task, and (ii) investigate changes in effective connectivity within this network of regions. We found that early visual areas are functionally connected to a set of parietal and premotor regions when inferring occluded trajectories. Using dynamic causal modelling, we show that predicting occluded trajectories is associated with changes in effective connectivity within a parieto-premotor network, which may drive internally generated early visual activity in a top-down fashion. These findings offer new insights into the interaction between early visual and frontoparietal regions during physical inference, contributing to our understanding of the neural mechanisms underlying the ability to predict physical outcomes.
Collapse
Affiliation(s)
- Gabrielle Aude Zbären
- Neural Control of Movement Lab, Department of Health Science and technology, ETH Zurich, Zurich, Switzerland.
| | - Manu Kapur
- Professorship for Learning Sciences and Higher Education, ETH Zurich, Zurich, Switzerland
| | - Sarah Nadine Meissner
- Neural Control of Movement Lab, Department of Health Science and technology, ETH Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Science and technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
2
|
Fattori P, De Vitis M, Filippini M, Vaccari FE, Diomedi S, Gamberini M, Galletti C. Visual sensitivity at the service of action control in posterior parietal cortex. Front Physiol 2024; 15:1408010. [PMID: 38841208 PMCID: PMC11151461 DOI: 10.3389/fphys.2024.1408010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
The posterior parietal cortex (PPC) serves as a crucial hub for the integration of sensory with motor cues related to voluntary actions. Visual input is used in different ways along the dorsomedial and the dorsolateral visual pathways. Here we focus on the dorsomedial pathway and recognize a visual representation at the service of action control. Employing different experimental paradigms applied to behaving monkeys while single neural activity is recorded from the medial PPC (area V6A), we show how plastic visual representation can be, matching the different contexts in which the same object is proposed. We also present data on the exchange between vision and arm actions and highlight how this rich interplay can be used to weight different sensory inputs in order to monitor and correct arm actions online. Indeed, neural activity during reaching or reach-to-grasp actions can be excited or inhibited by visual information, suggesting that the visual perception of action, rather than object recognition, is the most effective factor for area V6A. Also, three-dimensional object shape is encoded dynamically by the neural population, according to the behavioral context of the monkey. Along this line, mirror neuron discharges in V6A indicate the plasticity of visual representation of the graspable objects, that changes according to the context and peaks when the object is the target of one's own action. In other words, object encoding in V6A is a visual encoding for action.
Collapse
Affiliation(s)
- Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marina De Vitis
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Filippini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), Padova, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Sulpizio V, Fattori P, Pitzalis S, Galletti C. Functional organization of the caudal part of the human superior parietal lobule. Neurosci Biobehav Rev 2023; 153:105357. [PMID: 37572972 DOI: 10.1016/j.neubiorev.2023.105357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Like in macaque, the caudal portion of the human superior parietal lobule (SPL) plays a key role in a series of perceptive, visuomotor and somatosensory processes. Here, we review the functional properties of three separate portions of the caudal SPL, i.e., the posterior parieto-occipital sulcus (POs), the anterior POs, and the anterior part of the caudal SPL. We propose that the posterior POs is mainly dedicated to the analysis of visual motion cues useful for object motion detection during self-motion and for spatial navigation, while the more anterior parts are implicated in visuomotor control of limb actions. The anterior POs is mainly involved in using the spotlight of attention to guide reach-to-grasp hand movements, especially in dynamic environments. The anterior part of the caudal SPL plays a central role in visually guided locomotion, being implicated in controlling leg-related movements as well as the four limbs interaction with the environment, and in encoding egomotion-compatible optic flow. Together, these functions reveal how the caudal SPL is strongly implicated in skilled visually-guided behaviors.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Bencivenga F, Tullo MG, Sulpizio V, Galati G. Interhemispheric interplay between the left and right premotor cortex during grasping as assessed by dynamic causal modelling. Sci Rep 2023; 13:4958. [PMID: 36973324 PMCID: PMC10042845 DOI: 10.1038/s41598-023-31602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Research on the contribution of the ipsilateral hemisphere to unilateral movements, and how it is mediated by transcallosal connections, has so far provided contradictory findings. By using dynamic causal modelling (DCM) and Parametric Empirical Bayes analyses applied to fMRI data, we sought to describe effective connectivity during pantomimed and imagined right-hand grasping within the grasping network, namely the anterior intraparietal sulcus, ventral and dorsal (PMd) premotor cortex, supplementary motor area and primary motor cortex (M1). The two-fold aim of the present work was to explore a) whether right and left parieto-frontal areas show similar connectivity couplings, and b) the interhemispheric dynamics between these regions across the two hemispheres. We detected a network architecture comparable across hemispheres during executed but not imagined grasping movements. Furthermore, during pantomimed grasping the interhemispheric crosstalk was mainly driven by premotor areas: we found an inhibitory influence from the right PMd toward the left premotor and motor areas and excitatory couplings between homologous ventral premotor and supplementary motor regions. Overall, our results support the view that dissociable components of unilateral grasping execution are encoded by a non-lateralized set of brain areas complexly intertwined by interhemispheric dynamics, whereas motor imagery obeys different principles.
Collapse
Affiliation(s)
- Federica Bencivenga
- PhD Program in Behavioral Neuroscience, Department of Psychology, "Sapienza" University of Rome, Rome, Italy.
- Brain Imaging Laboratory, Department of Psychology, "Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Maria Giulia Tullo
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, "Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, "Sapienza" University of Rome, Via Dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
6
|
Bencivenga F, Tullo MG, Maltempo T, von Gal A, Serra C, Pitzalis S, Galati G. Effector-selective modulation of the effective connectivity within frontoparietal circuits during visuomotor tasks. Cereb Cortex 2023; 33:2517-2538. [PMID: 35709758 PMCID: PMC10016057 DOI: 10.1093/cercor/bhac223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research, the functional architecture of the subregions of the dorsal posterior parietal cortex (PPC) involved in sensorimotor processing is far from clear. Here, we draw a thorough picture of the large-scale functional organization of the PPC to disentangle the fronto-parietal networks mediating visuomotor functions. To this aim, we reanalyzed available human functional magnetic resonance imaging data collected during the execution of saccades, hand, and foot pointing, and we combined individual surface-based activation, resting-state functional connectivity, and effective connectivity analyses. We described a functional distinction between a more lateral region in the posterior intraparietal sulcus (lpIPS), preferring saccades over pointing and coupled with the frontal eye fields (FEF) at rest, and a more medial portion (mpIPS) intrinsically correlated to the dorsal premotor cortex (PMd). Dynamic causal modeling revealed feedforward-feedback loops linking lpIPS with FEF during saccades and mpIPS with PMd during pointing, with substantial differences between hand and foot. Despite an intrinsic specialization of the action-specific fronto-parietal networks, our study reveals that their functioning is finely regulated according to the effector to be used, being the dynamic interactions within those networks differently modulated when carrying out a similar movement (i.e. pointing) but with distinct effectors (i.e. hand and foot).
Collapse
Affiliation(s)
- Federica Bencivenga
- Corresponding author: Department of Psychology, “Sapienza” University of Rome, Via dei Marsi 78, 00185 Rome, Italy.
| | | | - Teresa Maltempo
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Alessandro von Gal
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Sabrina Pitzalis
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis 15, 00135 Roma, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Via dei Marsi 78, 00185 Roma, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Via Ardeatina 306/354, 00179 Roma, Italy
| |
Collapse
|
7
|
Breveglieri R, Borgomaneri S, Filippini M, Tessari A, Galletti C, Davare M, Fattori P. Complementary contribution of the medial and lateral human parietal cortex to grasping: a repetitive TMS study. Cereb Cortex 2022; 33:5122-5134. [PMID: 36245221 PMCID: PMC10152058 DOI: 10.1093/cercor/bhac404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dexterous control of our grasping actions relies on the cooperative activation of many brain areas. In the parietal lobe, 2 grasp-related areas collaborate to orchestrate an accurate grasping action: dorsolateral area AIP and dorsomedial area V6A. Single-cell recordings in monkeys and fMRI studies in humans have suggested that both these areas specify grip aperture and wrist orientation, but encode these grasping parameters differently, depending on the context. To elucidate the causal role of phAIP and hV6A, we stimulated these areas, while participants were performing grasping actions (unperturbed grasping). rTMS over phAIP impaired the wrist orientation process, whereas stimulation over hV6A impaired grip aperture encoding. In a small percentage of trials, an unexpected reprogramming of grip aperture or wrist orientation was required (perturbed grasping). In these cases, rTMS over hV6A or over phAIP impaired reprogramming of both grip aperture and wrist orientation. These results represent the first direct demonstration of a different encoding of grasping parameters by 2 grasp-related parietal areas.
Collapse
Affiliation(s)
- Rossella Breveglieri
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Sara Borgomaneri
- University of Bologna Center for studies and research in Cognitive Neuroscience, , 47521 Cesena , Italy
- IRCCS Santa Lucia Foundation , 00179 Rome , Italy
| | - Matteo Filippini
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Alessia Tessari
- University of Bologna Department of Psychology, , 40127 Bologna , Italy
| | - Claudio Galletti
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College London, SE1 1UL London, United Kingdom
| | - Patrizia Fattori
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
- University of Bologna Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), , Bologna , Italy
| |
Collapse
|
8
|
The posterior parietal area V6A: an attentionally-modulated visuomotor region involved in the control of reach-toF-grasp action. Neurosci Biobehav Rev 2022; 141:104823. [PMID: 35961383 DOI: 10.1016/j.neubiorev.2022.104823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
In the macaque, the posterior parietal area V6A is involved in the control of all phases of reach-to-grasp actions: the transport phase, given that reaching neurons are sensitive to the direction and amplitude of arm movement, and the grasping phase, since reaching neurons are also sensitive to wrist orientation and hand shaping. Reaching and grasping activity are corollary discharges which, together with the somatosensory and visual signals related to the same movement, allow V6A to act as a state estimator that signals discrepancies during the motor act in order to maintain consistency between the ongoing movement and the desired one. Area V6A is also able to encode the target of an action because of gaze-dependent visual neurons and real-position cells. Here, we advance the hypothesis that V6A also uses the spotlight of attention to guide goal-directed movements of the hand, and hosts a priority map that is specific for the guidance of reaching arm movement, combining bottom-up inputs such as visual responses with top-down signals such as reaching plans.
Collapse
|
9
|
Michalowski B, Buchwald M, Klichowski M, Ras M, Kroliczak G. Action goals and the praxis network: an fMRI study. Brain Struct Funct 2022; 227:2261-2284. [PMID: 35731447 PMCID: PMC9418102 DOI: 10.1007/s00429-022-02520-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/30/2022] [Indexed: 01/09/2023]
Abstract
The praxis representation network (PRN) of the left cerebral hemisphere is typically linked to the control of functional interactions with familiar tools. Surprisingly, little is known about the PRN engagement in planning and execution of tool-directed actions motivated by non-functional but purposeful action goals. Here we used functional neuroimaging to perform both univariate and multi-voxel pattern analyses (MVPA) in 20 right-handed participants who planned and later executed, with their dominant and non-dominant hands, disparate grasps of tools for different goals, including: (1) planning simple vs. demanding functional grasps of conveniently vs. inconveniently oriented tools with an intention to immediately use them, (2) planning simple—but non-functional—grasps of inconveniently oriented tools with a goal to pass them to a different person, (3) planning reaching movements directed at such tools with an intention to move/push them with the back of the hand, and (4) pantomimed execution of the earlier planned tasks. While PRN contributed to the studied interactions with tools, the engagement of its critical nodes, and/or complementary right hemisphere processing, was differently modulated by task type. E.g., planning non-functional/structural grasp-to-pass movements of inconveniently oriented tools, regardless of the hand, invoked the left parietal and prefrontal nodes significantly more than simple, non-demanding functional grasps. MVPA corroborated decoding capabilities of critical PRN areas and some of their right hemisphere counterparts. Our findings shed new lights on how performance of disparate action goals influences the extraction of object affordances, and how or to what extent it modulates the neural activity within the parieto-frontal brain networks.
Collapse
Affiliation(s)
- Bartosz Michalowski
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - Mikolaj Buchwald
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - Michal Klichowski
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland.,Learning Laboratory, Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Maciej Ras
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - Gregory Kroliczak
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Wydział Psychologii i Kognitywistyki UAM, ul. Szamarzewskiego 89, 60-568, Poznan, Poland.
| |
Collapse
|
10
|
Knights E, Smith FW, Rossit S. The role of the anterior temporal cortex in action: evidence from fMRI multivariate searchlight analysis during real object grasping. Sci Rep 2022; 12:9042. [PMID: 35662252 PMCID: PMC9167815 DOI: 10.1038/s41598-022-12174-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022] Open
Abstract
Intelligent manipulation of handheld tools marks a major discontinuity between humans and our closest ancestors. Here we identified neural representations about how tools are typically manipulated within left anterior temporal cortex, by shifting a searchlight classifier through whole-brain real action fMRI data when participants grasped 3D-printed tools in ways considered typical for use (i.e., by their handle). These neural representations were automatically evocated as task performance did not require semantic processing. In fact, findings from a behavioural motion-capture experiment confirmed that actions with tools (relative to non-tool) incurred additional processing costs, as would be suspected if semantic areas are being automatically engaged. These results substantiate theories of semantic cognition that claim the anterior temporal cortex combines sensorimotor and semantic content for advanced behaviours like tool manipulation.
Collapse
Affiliation(s)
- Ethan Knights
- School of Psychology, University of East Anglia, Norwich, UK
| | - Fraser W Smith
- School of Psychology, University of East Anglia, Norwich, UK
| | | |
Collapse
|
11
|
Ras M, Wyrwa M, Stachowiak J, Buchwald M, Nowik AM, Kroliczak G. Complex tools and motor-to-mechanical transformations. Sci Rep 2022; 12:8041. [PMID: 35577883 PMCID: PMC9110343 DOI: 10.1038/s41598-022-12142-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/27/2022] [Indexed: 12/24/2022] Open
Abstract
The ability to use complex tools is thought to depend on multifaceted motor-to-mechanical transformations within the left inferior parietal lobule (IPL), linked to cognitive control over compound actions. Here we show using neuroimaging that demanding transformations of finger movements into proper mechanical movements of functional parts of complex tools invoke significantly the right rather than left rostral IPL, and bilateral posterior-to-mid and left anterior intraparietal sulci. These findings emerged during the functional grasp and tool-use programming phase. The expected engagement of left IPL was partly revealed by traditional region-of-interest analyses, and further modeling/estimations at the hand-independent level. Thus, our results point to a special role of right IPL in supporting sensory-motor spatial mechanisms which enable an effective control of fingers in skillful handling of complex tools. The resulting motor-to-mechanical transformations involve dynamic hand-centered to target-centered reference frame conversions indispensable for efficient interactions with the environment.
Collapse
Affiliation(s)
- M Ras
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - M Wyrwa
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - J Stachowiak
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - M Buchwald
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - A M Nowik
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, ul. Szamarzewskiego 89, 60-568, Poznan, Poland
| | - G Kroliczak
- Action and Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, ul. Szamarzewskiego 89, 60-568, Poznan, Poland.
| |
Collapse
|
12
|
Di Marco S, Sulpizio V, Bellagamba M, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Pitzalis S. Multisensory integration in cortical regions responding to locomotion-related visual and somatomotor signals. Neuroimage 2021; 244:118581. [PMID: 34543763 DOI: 10.1016/j.neuroimage.2021.118581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
During real-world locomotion, in order to be able to move along a path or avoid an obstacle, continuous changes in self-motion direction (i.e. heading) are needed. Control of heading changes during locomotion requires the integration of multiple signals (i.e., visual, somatomotor, vestibular). Recent fMRI studies have shown that both somatomotor areas (human PEc [hPEc], human PE [hPE], primary somatosensory cortex [S-I]) and egomotion visual regions (cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) respond to either leg movements and egomotion-compatible visual stimulations, suggesting a role in the analysis of both visual attributes of egomotion and somatomotor signals with the aim of guiding locomotion. However, whether these regions are able to integrate egomotion-related visual signals with somatomotor inputs coming from leg movements during heading changes remains an open question. Here we used a combined approach of individual functional localizers and task-evoked activity by fMRI. In thirty subjects we first localized three egomotion areas (CSv, pCi, PIC) and three somatomotor regions (S-I, hPE, hPEc). Then, we tested their responses in a multisensory integration experiment combining visual and somatomotor signals relevant to locomotion in congruent or incongruent trials. We used an fMR-adaptation paradigm to explore the sensitivity to the repeated presentation of these bimodal stimuli in the six regions of interest. Results revealed that hPE, S-I and CSv showed an adaptation effect regardless of congruency, while PIC, pCi and hPEc showed sensitivity to congruency. PIC exhibited a preference for congruent trials compared to incongruent trials. Areas pCi and hPEc exhibited an adaptation effect only for congruent and incongruent trials, respectively. PIC, pCi and hPEc sensitivity to the congruency relationship between visual (locomotion-compatible) cues and (leg-related) somatomotor inputs suggests that these regions are involved in multisensory integration processes, likely in order to guide/adjust leg movements during heading changes.
Collapse
Affiliation(s)
- Sara Di Marco
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Valentina Sulpizio
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Martina Bellagamba
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Psychology, "Sapienza" University of Rome, Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Teresa Maltempo
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| |
Collapse
|
13
|
Maltempo T, Pitzalis S, Bellagamba M, Di Marco S, Fattori P, Galati G, Galletti C, Sulpizio V. Lower visual field preference for the visuomotor control of limb movements in the human dorsomedial parietal cortex. Brain Struct Funct 2021; 226:2989-3005. [PMID: 33738579 PMCID: PMC8541995 DOI: 10.1007/s00429-021-02254-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Visual cues coming from the lower visual field (VF) play an important role in the visual guidance of upper and lower limb movements. A recently described region situated in the dorsomedial parietal cortex, area hPEc (Pitzalis et al. in NeuroImage 202:116092, 2019), might have a role in integrating visually derived information with somatomotor signals to guide limb interaction with the environment. In macaque, it has been demonstrated that PEc receives visual information mostly from the lower visual field but, to date, there has been no systematic investigation of VF preference in the newly defined human homologue of macaque area PEc (hPEc). Here we examined the VF preferences of hPEc while participants performed a visuomotor task implying spatially directed delayed eye-, hand- and foot-movements towards different spatial locations within the VF. By analyzing data as a function of the different target locations towards which upcoming movements were planned (and then executed), we observed the presence of asymmetry in the vertical dimension of VF in area hPEc, being this area more strongly activated by limb movements directed towards visual targets located in the lower compared to the upper VF. This result confirms the view, first advanced in macaque monkey, that PEc is involved in processing visual information to guide body interaction with the external environment, including locomotion. We also observed a contralateral dominance for the lower VF preference in the foot selective somatomotor cortex anterior to hPEc. This result might reflect the role of this cortex (which includes areas PE and S-I) in providing highly topographically organized signals, likely useful to achieve an appropriate foot posture during locomotion.
Collapse
Affiliation(s)
- Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Martina Bellagamba
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy. .,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. .,Department of Psychology, "Sapienza" University of Rome, Via dei Marsi 78, 00185, Rome, Italy.
| |
Collapse
|
14
|
Bencivenga F, Sulpizio V, Tullo MG, Galati G. Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach. Neuroimage 2021; 230:117806. [PMID: 33524574 DOI: 10.1016/j.neuroimage.2021.117806] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022] Open
Abstract
The parieto-frontal circuit underlying grasping, which requires the serial involvement of the anterior intraparietal area (aIPs) and the ventral premotor cortex (PMv), has been recently extended enlightening the role of the dorsal premotor cortex (PMd). The supplementary motor area (SMA) has been also suggested to encode grip force for grasping actions; furthermore, both PMd and SMA are known to play a crucial role in motor imagery. Here, we aimed at assessing the dynamic couplings between left aIPs, PMv, PMd, SMA and primary motor cortex (M1) by comparing executed and imagined right-hand grasping, using Dynamic Causal Modelling (DCM) and Parametrical Empirical Bayes (PEB) analyses. 24 subjects underwent an fMRI exam (3T) during which they were asked to perform or imagine a grasping movement visually cued by photographs of commonly used objects. We tested whether the two conditions a) exert a modulatory effect on both forward and feedback couplings among our areas of interest, and b) differ in terms of strength and sign of these parameters. Results of the real condition confirmed the serial involvement of aIPs, PMv and M1. PMv also exerted a positive influence on PMd and SMA, but received an inhibitory feedback only from PMd. Our results suggest that a general motor program for grasping is planned by the aIPs-PMv circuit; then, PMd and SMA encode high-level features of the movement. During imagery, the connection strength from aIPs to PMv was weaker and the information flow stopped in PMv; thus, a less complex motor program was planned. Moreover, results suggest that SMA and PMd cooperate to prevent motor execution. In conclusion, the comparison between execution and imagery reveals that during grasping premotor areas dynamically interplay in different ways, depending on task demands.
Collapse
Affiliation(s)
- Federica Bencivenga
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Maria Giulia Tullo
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
15
|
Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Serra C, Sulpizio V, Pitzalis S. Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 2021; 137:74-92. [PMID: 33607346 DOI: 10.1016/j.cortex.2020.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
During locomotion, leg movements define the direction of walking (forward or backward) and the path one is taking (straight or curved). These aspects of locomotion produce characteristic visual motion patterns during movement. Here, we tested whether cortical regions responding to either egomotion-compatible visual motion, or leg movements, or both, are sensitive to these locomotion-relevant aspects of visual motion. We compared a curved path (typically the visual feedback of a changing direction of movement in the environment) to a linear path for simulated forward and backward motion in an event-related fMRI experiment. We used an individual surface-based approach and two functional localizers to define (1) six egomotion-related areas (V6+, V3A, intraparietal motion area [IPSmot], cingulate sulcus visual area [CSv], posterior cingulate area [pCi], posterior insular cortex [PIC]) using the flow field stimulus and (2) three leg-related cortical regions (human PEc [hPEc], human PE [hPE] and primary somatosensory cortex [S-I]) using a somatomotor task. Then, we extracted the response from all these regions with respect to the main event-related fMRI experiment, consisting of passive viewing of an optic flow stimulus, simulating a forward or backward direction of self-motion in either linear or curved path. Results showed that some regions have a significant preference for the curved path motion (hPEc, hPE, S-I, IPSmot) or a preference for the forward motion (V3A), while other regions have both a significant preference for the curved path motion and for the forward compared to backward motion (V6+, CSv, pCi). We did not find any significant effects of the present stimuli in PIC. Since controlling locomotion mainly means controlling changes of walking direction in the environment during forward self-motion, such a differential functional profile among these cortical regions suggests that they play a differentiated role in the visual guidance of locomotion.
Collapse
Affiliation(s)
- Sara Di Marco
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Markus Lappe
- Institute for Psychology, University of Muenster, Muenster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Teresa Maltempo
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Chiara Serra
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Valentina Sulpizio
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy; Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|