1
|
Beck MM, Kristensen FT, Abrahamsen G, Spedden ME, Christensen MS, Lundbye-Jensen J. Distinct mechanisms for online and offline motor skill learning across human development. Dev Sci 2024; 27:e13536. [PMID: 38867436 DOI: 10.1111/desc.13536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
The human central nervous system (CNS) undergoes tremendous changes from childhood to adulthood and this may affect how individuals at different stages of development learn new skills. Here, we studied motor skill learning in children, adolescents, and young adults to test the prediction that differences in the maturation of different learning mechanisms lead to distinct temporal patterns of motor learning during practice and overnight. We found that overall learning did not differ between children, adolescents, and young adults. However, we demonstrate that adult-like skill learning is characterized by rapid and large improvements in motor performance during practice (i.e., online) that are susceptible to forgetting and decay over time (i.e., offline). On the other hand, child-like learning exhibits slower and less pronounced improvements in performance during practice, but these improvements are robust against forgetting and lead to gains in performance overnight without further practice. The different temporal dynamics of motor skill learning suggest an engagement of distinct learning mechanisms in the human CNS during development. In conclusion, adult-like skill learning mechanisms favor online improvements in motor performance whereas child-like learning mechanisms favors offline behavioral gains. RESEARCH HIGHLIGHTS: Many essential motor skills, like walking, talking, and writing, are acquired during childhood, and it is colloquially thought that children learn better than adults. We investigated dynamics of motor skill learning in children, adolescents, and young adults. Adults displayed substantial improvements during practice that was susceptible to forgetting over time. Children displayed smaller improvements during practice that were resilient against forgetting. The distinct age-related characteristics of these processes of acquisition and consolidation suggest that skill learning relies on different mechanisms in the immature and mature central nervous system.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | | | - Gitte Abrahamsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
| | | | | | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
2
|
Jespersen L, Maes KM, Ardenkjær-Skinnerup N, Roig M, Bjørndal JR, Beck MM, Lundbye-Jensen J. Acute exercise performed before and after motor practice enhances the positive effects on motor memory consolidation. Neurobiol Learn Mem 2023; 205:107830. [PMID: 37741613 DOI: 10.1016/j.nlm.2023.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/27/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Performing a single bout of exercise can enhance motor learning and long-term retention of motor skills. Parameters such as the intensity and when the exercise bout is performed in relation to skill practice (i.e., timing) likely influence the effectiveness. However, it is still not fully understood how exercise should be administered to maximize its effects and how exercise interacts with distinct components of skill learning. Here, we expand this knowledge by investigating the potential synergistic effects of performing acute exercise both prior to and following motor practice. Sixty-four, able-bodied, young adult male participants practiced a sequential visuomotor accuracy tracking (SVAT) task requiring rapid and accurate force modulation and high levels of precision control using intrinsic hand muscles. The task also contained a repeated pattern of targets that allowed sequence-specific skill improvements. Sequential and non-sequential motor performance was assessed at baseline, immediately after motor practice, and again seven days later. One group performed moderate-intensity exercise before practice (PREMO), a second group performed high-intensity exercise after practice (POSTHI), a third group exercised both before and after practice (PREMO + POSTHI), and a fourth group did not exercise during these periods (CON). Regardless of the exercise condition, acute exercise improved long-term retention of the skill by countering performance decay between experimental sessions (i.e., a 7-day interval). Furthermore, exercising both before and after motor practice led to the greatest improvements in skilled performance over time. We found that the effects of exercise were not specific to the practiced sequence. Namely, the effects of exercise generalized across sequential and non-sequential target positions and orders. This suggests that acute exercise works through mechanisms that promote general aspects of motor memory (e.g., lasting improvements in fast and accurate motor execution). The results demonstrate that various exercise protocols can promote the stabilization and long-term retention of motor skills. This effect can be enhanced when exercise is performed both before and after practice.
Collapse
Affiliation(s)
- Lasse Jespersen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark.
| | - Katrine Matlok Maes
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark
| | - Nicoline Ardenkjær-Skinnerup
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory, Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Montreal Center for Interdisciplinary Research in Rehabilitation, Laval, Quebec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jonas Rud Bjørndal
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark
| | - Mikkel Malling Beck
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise & Sports, University of Copenhagen, Nørre Allé 51, DK2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Højberg LM, Lundbye-Jensen J, Wienecke J. Visuomotor skill learning in young adults with Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 138:104535. [PMID: 37210919 DOI: 10.1016/j.ridd.2023.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Individuals with Down syndrome (DS) have impaired general motor skills compared to typically developed (TD) individuals. AIMS To gain knowledge on how young adults with DS learn and retain new motor skills. METHODS AND PROCEDURES A DS-group (mean age = 23.9 ± 3 years, N = 11), and an age-matched TD-group (mean age 22.8 ± 1.8, N = 14) were recruited. The participants practiced a visuomotor accuracy tracking task (VATT) in seven blocks (10.6 min). Online and offline effects of practice were assessed based on tests of motor performance at baseline immediate and 7-day retention. OUTCOMES AND RESULTS The TD-group performed better than the DS-group on all blocks (all P < 0.001). Both groups improved VATT-performance online from baseline to immediate retention, (all P < 0.001) with no difference in online effect between groups. A significant between-group difference was observed in the offline effect (∆TD - ∆DS, P = 0.04), as the DS-group's performance at 7-day retention was equal to their performance at immediate retention (∆DS, P > 0.05), whereas an offline decrease in performance was found in the TD-group (∆TD, P < 0.001). CONCLUSIONS AND IMPLICATIONS Visuomotor pinch force accuracy is lower for adults with DS compared to TD. However, adults with DS display significant online improvements in performance with motor practice similar to changes observed for TD. Additionally, adults with DS demonstrate offline consolidation following motor learning leading to significant retention effects.
Collapse
Affiliation(s)
- Laurits Munk Højberg
- Movement & Neuroscience, Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Wienecke
- Movement & Neuroscience, Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
4
|
Norup M, Bjørndal JR, Nielsen AL, Wiegel P, Lundbye-Jensen J. Dynamic motor practice improves movement accuracy, force control and leads to increased corticospinal excitability compared to isometric motor practice. Front Hum Neurosci 2023; 16:1019729. [PMID: 36684837 PMCID: PMC9849878 DOI: 10.3389/fnhum.2022.1019729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
The central nervous system has a remarkable ability to plan motor actions, to predict and monitor the sensory consequences during and following motor actions and integrate these into future actions. Numerous studies investigating human motor learning have employed tasks involving either force control during isometric contractions or position control during dynamic tasks. To our knowledge, it remains to be elucidated how motor practice with an emphasis on position control influences force control and vice versa. Furthermore, it remains unexplored whether these distinct types of motor practice are accompanied by differential effects on corticospinal excitability. In this study, we tested motor accuracy and effects of motor practice in a force or position control task allowing wrist flexions of the non-dominant hand in the absence of online visual feedback. For each trial, motor performance was quantified as errors (pixels) between the displayed target and the movement endpoint. In the main experiment, 46 young adults were randomized into three groups: position control motor practice (PC), force control motor practice (FC), and a resting control group (CON). Following assessment of baseline motor performance in the position and force control tasks, intervention groups performed motor practice with, augmented visual feedback on performance. Motor performance in both tasks was assessed following motor practice. In a supplementary experiment, measures of corticospinal excitability were obtained in twenty additional participants by application of transcranial magnetic stimulation to the primary motor cortex hot spot of the flexor carpi radialis muscle before and following either position or force control motor practice. Following motor practice, accuracy in the position task improved significantly more for PC compared to FC and CON. For the force control task, both the PC and FC group improved more compared to CON. The two types of motor practice thus led to distinct effects including positive between-task transfer accompanying dynamic motor practice The results of the supplementary study demonstrated an increase in corticospinal excitability following dynamic motor practice compared to isometric motor practice. In conclusion, dynamic motor practice improves movement accuracy, and force control and leads to increased corticospinal excitability compared to isometric motor practice.
Collapse
Affiliation(s)
- Malene Norup
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark,Department of Midwifery, Physiotherapy, Occupational Therapy and Psychomotor Therapy, Faculty of Health, University College Copenhagen, Copenhagen, Denmark,*Correspondence: Malene Norup,
| | - Jonas Rud Bjørndal
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| | - August Lomholt Nielsen
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Wiegel
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Exercise Effects on Motor Skill Consolidation and Intermuscular Coherence Depend on Practice Schedule. Brain Sci 2022; 12:brainsci12040436. [PMID: 35447968 PMCID: PMC9030594 DOI: 10.3390/brainsci12040436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiorespiratory or aerobic exercise immediately after practice of an upper-extremity motor skill task can facilitate skill consolidation, as demonstrated by enhanced performances at 24 h and 7-day retention tests. The purpose of this study was to examine the effect of acute cardiorespiratory exercise on motor skill consolidation when skill practice involved low and high levels of contextual interference introduced through repetitive and interleaved practice schedules, respectively. Forty-eight young healthy adults were allocated to one of four groups who performed either repetitive or interleaved practice of a pinch grip motor sequence task, followed by either a period of seated rest or a bout of high-intensity interval cycling. At pre- and post-practice and 24 h and 7-day retention tests, we assessed motor skill performance and β-band (15–35 Hz) intermuscular coherence using surface electromyography (EMG) collected from the abductor pollicis brevis and first dorsal interosseous. At the 7-day retention test, off-line consolidation was enhanced in the cardiorespiratory exercise relative to the rest group, but only among individuals who performed interleaved motor skill practice (p = 0.02). Similarly, at the 7-day retention test, β-band intermuscular coherence increased to a greater extent in the exercise group than in the rest group for those who performed interleaved practice (p = 0.02). Under the present experimental conditions, cardiorespiratory exercise preferentially supported motor skill consolidation and change in intermuscular coherence when motor skill practice involved higher rather than lower levels of contextual interference.
Collapse
|
6
|
Bonuzzi GMG, Torriani-Pasin C. Cardiovascular exercise and motor learning in non-disabled individuals: A systematic review with a behavioral emphasis. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-65742022005221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
Acute and Chronic Exercise Effects on Human Memory: What We Know and Where to Go from Here. J Clin Med 2021; 10:jcm10214812. [PMID: 34768329 PMCID: PMC8584999 DOI: 10.3390/jcm10214812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/03/2021] [Indexed: 01/23/2023] Open
Abstract
Although the acquisition, storage, and retrieval of memories was once thought to happen within a single memory system with multiple processes operating on it, it is now believed that memory is comprised of both distinct and interacting brain systems [...].
Collapse
|
8
|
Differential Influence of the Dorsal Premotor and Primary Somatosensory Cortex on Corticospinal Excitability during Kinesthetic and Visual Motor Imagery: A Low-Frequency Repetitive Transcranial Magnetic Stimulation Study. Brain Sci 2021; 11:brainsci11091196. [PMID: 34573217 PMCID: PMC8465986 DOI: 10.3390/brainsci11091196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Consistent evidence suggests that motor imagery involves the activation of several sensorimotor areas also involved during action execution, including the dorsal premotor cortex (dPMC) and the primary somatosensory cortex (S1). However, it is still unclear whether their involvement is specific for either kinesthetic or visual imagery or whether they contribute to motor activation for both modalities. Although sensorial experience during motor imagery is often multimodal, identifying the modality exerting greater facilitation of the motor system may allow optimizing the functional outcomes of rehabilitation interventions. In a sample of healthy adults, we combined 1 Hz repetitive transcranial magnetic stimulation (rTMS) to suppress neural activity of the dPMC, S1, and primary motor cortex (M1) with single-pulse TMS over M1 for measuring cortico-spinal excitability (CSE) during kinesthetic and visual motor imagery of finger movements as compared to static imagery conditions. We found that rTMS over both dPMC and S1, but not over M1, modulates the muscle-specific facilitation of CSE during kinesthetic but not during visual motor imagery. Furthermore, dPMC rTMS suppressed the facilitation of CSE, whereas S1 rTMS boosted it. The results highlight the differential pattern of cortico-cortical connectivity within the sensorimotor system during the mental simulation of the kinesthetic and visual consequences of actions.
Collapse
|
9
|
Holman SR, Staines WR. The effect of acute aerobic exercise on the consolidation of motor memories. Exp Brain Res 2021; 239:2461-2475. [PMID: 34114077 DOI: 10.1007/s00221-021-06148-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/03/2021] [Indexed: 11/27/2022]
Abstract
Acute aerobic exercise performed prior to training may assist with motor skill acquisition through enhancement of motor cortical plasticity. In addition, high-intensity exercise performed after training improves retention, although the mechanisms of this are unclear. We hypothesized that acute continuous moderate-intensity exercise performed post-motor training would also assist with motor skill retention and that this behavioral change would be positively correlated with neural markers of training-related cortical adaptation. Participants [n = 33; assigned to an exercise (EXE) or control (CON) group] completed a single visuomotor training session using bilateral wrist movements while movement-related cortical potentials (MRCPs) were collected. After motor training, the EXE group exercised for 20 min [70% of heart rate reserve (HRR)] and the CON group read for the same amount of time. Both groups completed two post-training tests after exercise/rest: 10 min and ~ 30 min once heart rate returned to resting level in EXE. Retention and transfer tests were both completed 1 and 7 days later. MRCPs measured training-related neural adaptations during the first visit and motor performance was assessed as time and trajectory to the target. The EXE group had better performance than CON at retention (significant 7 days post-training). MRCP amplitudes increased from early to late motor training and this amplitude change was correlated with motor performance at retention. Results suggest that moderate-intensity exercise post-motor training helps motor skill retention and that there may be a relationship with motor training-related cortical adaptations that is enhanced with post-motor training exercise.
Collapse
Affiliation(s)
- Sarah R Holman
- Department of Kinesiology, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada
| | - W Richard Staines
- Department of Kinesiology, University of Waterloo, 200 University Ave. W, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
10
|
Exercise Reduces Competition between Procedural and Declarative Memory Systems. eNeuro 2020; 7:ENEURO.0070-20.2020. [PMID: 32616624 PMCID: PMC7405072 DOI: 10.1523/eneuro.0070-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Abstract
The neural systems that govern declarative and procedural memory processing do not always operate independently. Direct evidence of competition between these two memory systems in humans is supported by studies showing that performing a declarative learning task immediately after motor skill learning can disrupt procedural memory and abolish the off-line gains in skill performance obtained during consolidation. The aim of the present study was to extend recent investigations demonstrating that the exposure to a brief bout of cardiovascular exercise can protect procedural memory by enhancing postpractice consolidation. We used an experimental paradigm designed to assess whether exercise can also protect procedural memory consolidation from interference induced with declarative learning. The implicit acquisition of a serial reaction time task (SRTT) was tested after a 6-h waked-filled period. Participants who were exposed to a non-learning vowel counting (VC) task following the practice of the SRTT exhibited successful procedural memory consolidation and significant off-line gains in skill performance. Confirming that declarative memory processes can interfere with procedural memory consolidation, off-line gains in motor skill performance were suppressed when the performance of the VC task was replaced with a word list (WL) task requiring declarative learning. Performing a bout of cardiovascular exercise after the SRTT protected the newly formed procedural memory from the interference produced by the WL task. Protection was evidenced by a return of significant off-line gains in skill performance after the waked-filled period. Exercise optimizes the utilization of neural resources reducing interference between procedural and declarative memory systems.
Collapse
|