1
|
Tang S, Xiao Z, Lin F, Liang X, Ma X, Wu J, Zhou X, Zhao Q, Gao J, Xiao Q, Ding D. Joint effect of testosterone and neurofilament light chain on cognitive decline in men: The Shanghai Aging Study. Alzheimers Dement 2024; 20:5290-5298. [PMID: 38837321 PMCID: PMC11350006 DOI: 10.1002/alz.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION The association of testosterone and cognitive decline is inconclusive, and its joint effect with neurofilaments light chain (NfL) remains largely unknown. METHODS A total of 581 non-demented older men in the Shanghai Aging Study were included. Blood total testosterone (TT), free testosterone (FT), and NfL were measured at baseline. The relationships between TT, FT, TT/FT-NfL, and cognitive decline were explored by Cox regression models. RESULTS During a median follow-up of 6.7 years, there was an inverse association between TT/FT and cognitive decline (TT, trend p = 0.004, Q1 vs Q4, hazard ratio [HR] = 4.39, 95% confidence interval [CI] = 1.60 to 12.04; FT, trend p = 0.002, Q1 vs Q4, HR = 5.29, 95% CI = 1.50 to 16.89). Compared to participants with high TT/FT-low NfL, those with low TT/FT-high NfL had significantly higher risks of cognitive decline (TT, HR = 5.10, 95% CI = 1.11 to 23.40; FT, HR = 6.14, 95% CI = 1.34 to 28.06). DISCUSSION Our findings suggest that the combination of testosterone and neurodegenerative markers may provide reliable predictive insights into future cognitive decline. HIGHLIGHTS Testosterone is inversely associated with cognitive decline in older men. There is a joint effect of testosterone and NfL on cognitive decline. Sex hormone and neurodegeneration may synergistically contribute to cognitive deterioration.
Collapse
Affiliation(s)
- Shuning Tang
- Department of Preventive Medicine and Health EducationSchool of Public HealthThe Key Laboratory of Public Health Safety of Ministry of EducationFudan UniversityShanghaiChina
| | - Zhenxu Xiao
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Fangting Lin
- Department of Preventive Medicine and Health EducationSchool of Public HealthThe Key Laboratory of Public Health Safety of Ministry of EducationFudan UniversityShanghaiChina
| | - Xiaoniu Liang
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaoxi Ma
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Jie Wu
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Xiaowen Zhou
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| | - Qianhua Zhao
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Junling Gao
- Department of Preventive Medicine and Health EducationSchool of Public HealthThe Key Laboratory of Public Health Safety of Ministry of EducationFudan UniversityShanghaiChina
- Health Communication InstituteFudan UniversityShanghaiChina
| | - Qianyi Xiao
- Department of Preventive Medicine and Health EducationSchool of Public HealthThe Key Laboratory of Public Health Safety of Ministry of EducationFudan UniversityShanghaiChina
- Health Communication InstituteFudan UniversityShanghaiChina
| | - Ding Ding
- Institute of NeurologyHuashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
2
|
Hodes GE, Bangasser D, Sotiropoulos I, Kokras N, Dalla C. Sex Differences in Stress Response: Classical Mechanisms and Beyond. Curr Neuropharmacol 2024; 22:475-494. [PMID: 37855285 PMCID: PMC10845083 DOI: 10.2174/1570159x22666231005090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 10/20/2023] Open
Abstract
Neuropsychiatric disorders, which are associated with stress hormone dysregulation, occur at different rates in men and women. Moreover, nowadays, preclinical and clinical evidence demonstrates that sex and gender can lead to differences in stress responses that predispose males and females to different expressions of similar pathologies. In this curated review, we focus on what is known about sex differences in classic mechanisms of stress response, such as glucocorticoid hormones and corticotrophin-releasing factor (CRF), which are components of the hypothalamicpituitary- adrenal (HPA) axis. Then, we present sex differences in neurotransmitter levels, such as serotonin, dopamine, glutamate and GABA, as well as indices of neurodegeneration, such as amyloid β and Tau. Gonadal hormone effects, such as estrogens and testosterone, are also discussed throughout the review. We also review in detail preclinical data investigating sex differences caused by recentlyrecognized regulators of stress and disease, such as the immune system, genetic and epigenetic mechanisms, as well neurosteroids. Finally, we discuss how understanding sex differences in stress responses, as well as in pharmacology, can be leveraged into novel, more efficacious therapeutics for all. Based on the supporting evidence, it is obvious that incorporating sex as a biological variable into preclinical research is imperative for the understanding and treatment of stress-related neuropsychiatric disorders, such as depression, anxiety and Alzheimer's disease.
Collapse
Affiliation(s)
| | - Debra Bangasser
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications NCSR “Demokritos”, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
4
|
Jeanneteau F. Stress and the risk of Alzheimer dementia: Can deconstructed engrams be rebuilt? J Neuroendocrinol 2023; 35:e13235. [PMID: 36775895 DOI: 10.1111/jne.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The exact neuropathological mechanism by which the dementia process unfolds is under intense scrutiny. The disease affects about 38 million people worldwide, 70% of which are clinically diagnosed with Alzheimer's disease (AD). If the destruction of synapses essential for learning, planning and decision-making is part of the problem, must the restoration of previously lost synapses be part of the solution? It is plausible that neuronal capacity to restitute information corresponds with the adaptive capacity of its connectivity reserve. A challenge will be to promote the functional connectivity that can compensate for the lost one. This will require better clarification of the remodeling of functional connectivity during the progression of AD dementia and its reversal upon experimental treatment. A major difficulty is to promote the neural pathways that are atrophied in AD dementia while suppressing others that are bolstered. Therapeutic strategies should aim at scaling functional connectivity to a just balance between the atrophic and hypertrophic systems. However, the exact factors that can help reach this objective are still unclear. Similarities between the effects of chronic stress and some neuropathological mechanisms underlying AD dementia support the idea that common components deserve prime attention as therapeutic targets.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de génomique fonctionnelle, Université de Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
5
|
Liu H, Wang G, Zhao J, Hu J, Mu Y, Gu W. Association of skin autofluorescence with depressive symptoms and the severity of depressive symptoms: The prospective REACTION study. Psychoneuroendocrinology 2023; 154:106285. [PMID: 37148715 DOI: 10.1016/j.psyneuen.2023.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
AIM Millions of people are afflicted by depression, a highly prevalent mental illness with increased morbidity and mortality. Advanced glycation end-products (AGEs) are potential risk factors for depression. We aimed to investigate the correlation of AGEs with depressive symptoms and the severity of depressive symptoms. METHODS This study was nested in the prospective REACTION (Risk Evaluation of cAncers in Chinese diabeTic Individuals) study and included 4420 eligible participants. skin autofluorescence (SAF) was used to measure skin AGEs. Depressive symptoms were evaluated by the Self-Rating Depression Scale (SDS). Multiple logistic regression analysis was used to assess the association of AGEs with depressive symptoms and the severity of depressive symptoms. RESULTS Logistic analysis showed a significantly positive relationship between quartiles of SAF-AGEs and the risk of depressive symptoms with the OR [95% confidence interval (CI), p value] of 1.24 (95% CI: 1.03-1.50, p = 0.022), 1.39 (95% CI: 1.15-1.68, p = 0.001) and 1.57 (95% CI: 1.28-1.91, p < 0.001) for multivariable-adjusted model respectively. And SAF-AGEs were associated with the severity of depressive symptoms with the multivariable-adjusted OR (95% CI, p value) of 1.06 (95% CI:0.79-1.43, p = 0.681), 1.47 (95% CI: 1.08-1.99, p = 0.014), and 1.54 (95% CI: 1.12-2.11, p = 0.008) respectively. Stratified analyses showed that SAF-AGEs were significantly associated with the severity of depressive symptoms only in females, overweight people, individuals with hypertension, and those without diabetes and insomnia. CONCLUSIONS The present study showed that a higher SAF-AGEs level was associated with depressive symptoms and the severity of depressive symptoms.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guoqi Wang
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jian Zhao
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jia Hu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yiming Mu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Weijun Gu
- Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Cui SS, Jiang QW, Chen SD. Sex difference in biological change and mechanism of Alzheimer’s disease: from macro- to micro-landscape. Ageing Res Rev 2023; 87:101918. [PMID: 36967089 DOI: 10.1016/j.arr.2023.101918] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/16/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and numerous studies reported a higher prevalence and incidence of AD among women. Although women have longer lifetime, longevity does not wholly explain the higher frequency and lifetime risk in women. It is important to understand sex differences in AD pathophysiology and pathogenesis, which could provide foundation for future clinical AD research. Here, we reviewed the most recent and relevant literature on sex differences in biological change of AD from macroscopical neuroimaging to microscopical pathologic change (neuronal degeneration, synaptic dysfunction, amyloid-beta and tau accumulation). We also discussed sex differences in cellular mechanisms related to AD (neuroinflammation, mitochondria dysfunction, oxygen stress, apoptosis, autophagy, blood-brain-barrier dysfunction, gut microbiome alteration, bulk and single cell/nucleus omics) and possible causes underlying these differences including sex-chromosome, sex hormone and hypothalamic-pituitary- adrenal (HPA) axis effects.
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian-Wen Jiang
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng-Di Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
7
|
Zhu DY, Lu J, Xu R, Yang JZ, Meng XR, Ou-Yang XN, Yan QY, Nie RF, Zhao T, Chen YD, Lu Y, Zhang YN, Li WJ, Shen X. FX5, a non-steroidal glucocorticoid receptor antagonist, ameliorates diabetic cognitive impairment in mice. Acta Pharmacol Sin 2022; 43:2495-2510. [PMID: 35260821 PMCID: PMC9525278 DOI: 10.1038/s41401-022-00884-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/06/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetic cognitive impairment (DCI) is a common diabetic complication characterized by learning and memory deficits. In diabetic patients, hyperactivated hypothalamic-pituitary-adrenal (HPA) axis leads to abnormal increase of glucocorticoids (GCs), which causes the damage of hippocampal neurons and cognitive impairment. In this study we investigated the cognition-improving effects of a non-steroidal glucocorticoid receptor (GR) antagonist 5-chloro-N-[4-chloro-3-(trifluoromethyl) phenyl]thiophene-2-sulfonamide (FX5) in diabetic mice. Four weeks after T1DM or T2DM was induced, the mice were administered FX5 (20, 40 mg·kg-1·d-1, i.g.) for 8 weeks. Cognitive impairment was assessed in open field test, novel object recognition test, Y-maze test, and Morris water maze test. We showed that FX5 administration significantly ameliorated the cognitive impairments in both type 1 and 2 diabetic mice. Similar cognitive improvement was observed in diabetic mice following brain GR-specific knockdown by injecting AAV-si-GR. Moreover, AAV-si-GR injection occluded the cognition-improving effects of FX5, suggesting that FX5 functioning as a non-steroidal GR antagonist. In PA-treated primary neurons (as DCI model in vitro), we demonstrated that FX5 (2, 5, 10 μM) dose-dependently ameliorated synaptic impairment via upregulating GR/BDNF/TrkB/CREB pathway, protected against neuronal apoptosis through repressing GR/PI3K/AKT/GSK3β-mediated tauopathy and subsequent endoplasmic reticulum stress. In LPS-treated primary microglia, FX5 dose-dependently inhibited inflammation through GR/NF-κB/NLRP3/ASC/Caspase-1 pathway. These beneficial effects were also observed in the hippocampus of diabetic mice following FX5 administration. Collectively, we have elucidated the mechanisms underlying the beneficial effects of non-steroidal GR antagonist FX5 on DCI and highlighted the potential of FX5 in the treatment of the disease.
Collapse
Affiliation(s)
- Dan-Yang Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan-Zhen Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiang-Rui Meng
- Faculty of Art and Science, Queens University, Kingston, ON, K7L 3N6, Canada
| | - Xing-Nan Ou-Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiu-Ying Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui-Fang Nie
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi-di Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yi-Nan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wen-Jun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica and State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
8
|
Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. Aging, testosterone, and neuroplasticity: friend or foe? Rev Neurosci 2022; 34:247-273. [PMID: 36017670 DOI: 10.1515/revneuro-2022-0033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/03/2022] [Indexed: 11/15/2022]
Abstract
Neuroplasticity or neural plasticity implicates the adaptive potential of the brain in response to extrinsic and intrinsic stimuli. The concept has been utilized in different contexts such as injury and neurological disease. Neuroplasticity mechanisms have been classified into neuroregenerative and function-restoring processes. In the context of injury, neuroplasticity has been defined in three post-injury epochs. Testosterone plays a key yet double-edged role in the regulation of several neuroplasticity alterations. Research has shown that testosterone levels are affected by numerous factors such as age, stress, surgical procedures on gonads, and pharmacological treatments. There is an ongoing debate for testosterone replacement therapy (TRT) in aging men; however, TRT is more useful in young individuals with testosterone deficit and more specific subgroups with cognitive dysfunction. Therefore, it is important to pay early attention to testosterone profile and precisely uncover its harms and benefits. In the present review, we discuss the influence of environmental factors, aging, and gender on testosterone-associated alterations in neuroplasticity, as well as the two-sided actions of testosterone in the nervous system. Finally, we provide practical insights for further study of pharmacological treatments for hormonal disorders focusing on restoring neuroplasticity.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,USERN Office, Babol University of Medical Sciences, 47176 47745 Babol, Iran.,Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, 76169 13555 Kerman, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, 14197 33151 Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14176 13151 Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 14197 33151 Tehran, Iran
| |
Collapse
|
9
|
Ankul Singh S, Chitra V. The role of plant-based products in the prevention of neurological complications. Drug Metab Lett 2022; 15:DML-EPUB-122520. [PMID: 35422230 DOI: 10.2174/1872312815666220413095159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/13/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurological complications are most likely to be fatal and cause loss of ability to function or care for self. These include Alzheimer's disease and cognitive impairment. The main aim of the review is to determine the effects of various drugs and their cognitive risk with the need to opt for herbal therapy as an adjuvant in treating neurological conditions like Alzheimer's disease with lesser-known side effects. The Methodology: Involved a detailed literature survey which was performed through an online database, such as Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. The study included randomized trials and original research conducted by herbal supplements on animal models to assess expression of upregulation of signalling pathways. Various studies involved in treating dementia, neurological disorders, Alzheimer disease, cognitive dysfunction were included. RESULTS Found that various studies involved plant-based products were showing improvement in prevention of disease and signalling pathways with lesser-known side effects. CONCLUSION It was observed that plant-based products play a major role in the prevention of neurological complications. Herbal medicines could most suitably prevent Alzheimer's risk with less known side effects in contrast with the existing treatment patterns. However, to improve the utility of herbal medicines, more evidences from in vitro, in vivo, and clinical trials need to be addressed.
Collapse
Affiliation(s)
- Ankul Singh S
- SRM College of Pharmacy, SRM IST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Chitra V
- SRM College of Pharmacy, SRM IST, Kattankulathur, Kancheepuram, Tamil Nadu, India
| |
Collapse
|
10
|
Wang B, Sun X, Wang J, Deng X, Lin Y, Liu F, Dong R, Lin X, Bi Y. Potential Value of Cerebrospinal Fluid Progranulin in the Identification of Postoperative Delirium in Geriatrics Patients Undergoing Knee Replacement: The Perioperative Neurocognitive Disorder and Biomarker LifestylE Study. Front Aging Neurosci 2022; 13:772795. [PMID: 35069175 PMCID: PMC8770335 DOI: 10.3389/fnagi.2021.772795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: The aim of this study was to investigate whether progranulin (PGRN) levels in cerebrospinal fluid (CSF) were associated with postoperative delirium (POD) in geriatric patients undergoing knee replacement. Method: A total of 600 Han Chinese patients aged 65–90 years and who underwent unilateral total knee arthroplasty were included in the Perioperative Neurocognitive Disorder And Biomarker LifestylE (PNDABLE) study from June 2020 to November 2020. All participants were assessed using the Confusion Assessment Method and the Memorial Delirium Assessment Scale on postoperative days 1–7 (or before discharge) by an anesthesiologist. CSF PGRN and CSF biomarkers of POD were measured by ELISA. We analyzed the risk and protective factors of POD using the multivariate logistic regression, and the associations between CSF PGRN and CSF biomarkers of POD using multiple linear regression. We also explored whether the influence of CSF PGRN on POD was mediated by POD core pathology in linear regression models. Results: Postoperative delirium incidence was 9.7% (53/545). There were significant differences in preoperative CSF PGRN between patients with POD and non-POD (NPOD). As for CSF biomarkers, CSF Aβ40, T-tau, and P-tau were risk factors for POD, while CSF PGRN, Aβ42, and Aβ42/Aβ40 were protective factors for POD, as shown by the multivariate logistic regression analysis. CSF PGRN was positively associated with CSF Aβ42 and was negatively associated with CSF Aβ40, T-tau, and P-tau in patients with POD. We found that the AUC was 0.795 (95% CI = 0.706, 0.867) for PGRN between POD and NPOD groups. We found the influence of CSF PGRN on POD was mediated by POD core pathology. The effect was considered partial mediation with the proportion of mediation varying from 44.92 to 62.07%. Conclusion: Cerebrospinal fluid PGRN may be a reasonably good prognostic factor for POD development. Overall, amyloid pathology and tau protein might partially mediate the influence of PGRN on POD. Clinical Trial Registration:www.clinicaltrials.gov, identifier ChiCTR2000033439.
Collapse
Affiliation(s)
- Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiujie Sun
- Department of Nursing, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Jiahan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiyuan Deng
- Department of Anesthesiology, Dalian Medical University, Dalian, China
| | - Yanan Lin
- Department of Anesthesiology, Weifang Medical University, Weifang, China
| | - Fanghao Liu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Rui Dong
- Department of Anesthesiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Yanlin Bi,
| |
Collapse
|
11
|
Achard V, Ceyzériat K, Tournier BB, Frisoni GB, Garibotto V, Zilli T. Biomarkers to Evaluate Androgen Deprivation Therapy for Prostate Cancer and Risk of Alzheimer's Disease and Neurodegeneration: Old Drugs, New Concerns. Front Oncol 2022; 11:734881. [PMID: 34970480 PMCID: PMC8712866 DOI: 10.3389/fonc.2021.734881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Androgen deprivation therapy (ADT) is a standard treatment for prostate cancer patients, routinely used in the palliative or in the curative setting in association with radiotherapy. Among the systemic long-term side effects of ADT, growing data suggest a potentially increased risk of dementia/Alzheimer’s disease in prostate cancer patients treated with hormonal manipulation. While pre-clinical data suggest that androgen ablation may have neurotoxic effects due to Aβ accumulation and increased tau phosphorylation in small animal brains, clinical studies have measured the impact of ADT on long-term cognitive function, with conflicting results, and studies on biological changes after ADT are still lacking. The aim of this review is to report on the current evidence on the association between the ADT use and the risk of cognitive impairment in prostate cancer patients. We will focus on the contribution of Alzheimer’s disease biomarkers, namely through imaging, to investigate potential ADT-induced brain modifications. The evidence from these preliminary studies shows brain changes in gray matter volume, cortical activation and metabolism associated with ADT, however with a large variability in biomarker selection, ADT duration and cognitive outcome. Importantly, no study investigated yet biomarkers of Alzheimer’s disease pathology, namely amyloid and tau. These preliminary data emphasize the need for larger targeted investigations.
Collapse
Affiliation(s)
- Vérane Achard
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Kelly Ceyzériat
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland.,Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Giovanni B Frisoni
- Memory Clinic, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals and Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
12
|
CHANGES IN CORTICOSTEROCYTES OF THE ZONA RETICULARIS AND СHROMAFFIN CELLS OF THE ADRENAL GLAND IN RATS DURING THE INHIBITION OF TESTOSTERONE SYNTHESIS. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-4-82-241-245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zaręba-Kozioł M, Bartkowiak-Kaczmarek A, Roszkowska M, Bijata K, Figiel I, Halder AK, Kamińska P, Müller FE, Basu S, Zhang W, Ponimaskin E, Włodarczyk J. S-Palmitoylation of Synaptic Proteins as a Novel Mechanism Underlying Sex-Dependent Differences in Neuronal Plasticity. Int J Mol Sci 2021; 22:ijms22126253. [PMID: 34200797 PMCID: PMC8230572 DOI: 10.3390/ijms22126253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Although sex differences in the brain are prevalent, the knowledge about mechanisms underlying sex-related effects on normal and pathological brain functioning is rather poor. It is known that female and male brains differ in size and connectivity. Moreover, those differences are related to neuronal morphology, synaptic plasticity, and molecular signaling pathways. Among different processes assuring proper synapse functions are posttranslational modifications, and among them, S-palmitoylation (S-PALM) emerges as a crucial mechanism regulating synaptic integrity. Protein S-PALM is governed by a family of palmitoyl acyltransferases, also known as DHHC proteins. Here we focused on the sex-related functional importance of DHHC7 acyltransferase because of its S-PALM action over different synaptic proteins as well as sex steroid receptors. Using the mass spectrometry-based PANIMoni method, we identified sex-dependent differences in the S-PALM of synaptic proteins potentially involved in the regulation of membrane excitability and synaptic transmission as well as in the signaling of proteins involved in the structural plasticity of dendritic spines. To determine a mechanistic source for obtained sex-dependent changes in protein S-PALM, we analyzed synaptoneurosomes isolated from DHHC7-/- (DHHC7KO) female and male mice. Our data showed sex-dependent action of DHHC7 acyltransferase. Furthermore, we revealed that different S-PALM proteins control the same biological processes in male and female synapses.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Matylda Roszkowska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Krystian Bijata
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Anup Kumar Halder
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Paulina Kamińska
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
| | - Franziska E. Müller
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadvapur University, Kolkata 700032, India; (A.K.H.); (S.B.)
| | - Weiqi Zhang
- Department of Mental Health, University of Münster, Albert-Schweitzer-Campus 1/A9, 48149 Munster, Germany;
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany; (F.E.M.); (E.P.)
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteur Str. 3, 02-093 Warsaw, Poland; (A.B.-K.); (M.R.); (K.B.); (I.F.); (P.K.)
- Correspondence: (M.Z.-K.); (J.W.)
| |
Collapse
|