1
|
Lee MM, McGrath LM, Stoodley CJ. Cerebellar Neuromodulation Impacts Reading Fluency in Young Adults. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:736-756. [PMID: 39175787 PMCID: PMC11338301 DOI: 10.1162/nol_a_00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/20/2023] [Indexed: 08/24/2024]
Abstract
The cerebellum is traditionally associated with the control of coordinated movement, but ample evidence suggests that the cerebellum also supports cognitive processing. Consistent with this, right-lateralized posterolateral cerebellar regions are engaged during a range of reading and reading-related tasks, but the specific role of the cerebellum during reading tasks is not clear. Based on the cerebellar contribution to automatizing movement, it has been hypothesized that the cerebellum is specifically involved in rapid, fluent reading. We aimed to determine whether the right posterolateral cerebellum is a specific modulator of reading fluency or whether cerebellar modulation is broader, also impacting reading accuracy, rapid automatized naming, and general processing speed. To do this, we examined the effect of transcranial direct current stimulation (tDCS) targeting the right posterolateral cerebellum (lobules VI/VII) on single-word reading fluency, reading accuracy, rapid automatized naming, and processing speed. Young adults with typical reading development (n = 25; 15 female sex assigned at birth, 10 male sex assigned at birth, aged 18-28 years [M = 19.92 ± 2.04 years]) completed the reading and cognitive measures after 20 min of 2 mA anodal (excitatory), cathodal (inhibitory), or sham tDCS in a within-subjects design. Linear mixed effects models indicated that cathodal tDCS decreased single-word reading fluency scores (d = -0.36, p < 0.05) but did not significantly affect single-word reading accuracy, rapid automatized naming, or general processing speed measures. Our results suggest that the right posterolateral cerebellum is involved in reading fluency, consistent with a broader role of the cerebellum in fast, fluent cognition.
Collapse
Affiliation(s)
- Marissa M. Lee
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, USA
- Department of Neuroscience, American University, Washington, DC, USA
| | | | | |
Collapse
|
2
|
Haihambo N, Li M, Ma Q, Baeken C, Deroost N, Baetens K, Van Overwalle F. Exciting the social butterfly: Anodal cerebellar transcranial direct current stimulation modulates neural activation during predictive social mentalizing. Int J Clin Health Psychol 2024; 24:100480. [PMID: 39055855 PMCID: PMC11269293 DOI: 10.1016/j.ijchp.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has emerged as a promising tool for enhancing social cognition. The posterior cerebellum, which is part of the mentalizing network, has been implicated in social processes. In our combined tDCS-fMRI study, we investigated the effects of offline anodal cerebellar tDCS on activation in the cerebellum during social action prediction. Forty-one participants were randomly assigned to receive either anodal (2 mA) or sham (0 mA) stimulation over the midline of the posterior cerebellum for 20 min. Twenty minutes post stimulation, participants underwent a functional MRI scan to complete a social action prediction task, during which they had to correctly order randomly presented sentences that described either actions of social agents (based on their personality traits) or events of objects (based on their characteristics). As hypothesized, our results revealed that participants who received anodal cerebellar tDCS exhibited increased activation in the posterior cerebellar Crus 2 and lobule IX, and in key cerebral mentalizing areas, including the medial prefrontal cortex, temporo-parietal junction, and precuneus. Contrary to our hypotheses, participants who received anodal stimulation demonstrated faster responses to non-social objects compared to social agents, while sham participants showed no significant differences. We did not find a significant relationship between electric field magnitude, neural activation and behavioral outcomes. These findings suggest that tDCS targeting the posterior cerebellum selectively enhances activation in social mentalizing areas, while only facilitating behavioral performance of non-social material, perhaps because of a ceiling effect due to familiarity with social processing.
Collapse
Affiliation(s)
- Naem Haihambo
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Centre for Human Brain Health, University of Birmingham, Bochum, Germany
- Social Neuroscience, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Medicine, Ruhr University Bochum, Germany
| | - Meijia Li
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
- Language Pathology and Brain Science MEG Lab, School of Communication Sciences, Beijing Language and Culture University, Beijing, China
| | - Qianying Ma
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent Experimental, Ghent University, Ghent 9000, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Chris Baeken
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Belgium
| |
Collapse
|
3
|
Ciricugno A, Ferrari C, Battelli L, Cattaneo Z. A chronometric study of the posterior cerebellum's function in emotional processing. Curr Biol 2024; 34:1844-1852.e3. [PMID: 38565141 DOI: 10.1016/j.cub.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The posterior cerebellum is a recently discovered hub of the affective and social brain, with different subsectors contributing to different social functions. However, very little is known about when the posterior cerebellum plays a critical role in social processing. Due to its location and anatomy, it has been difficult to use traditional approaches to directly study the chronometry of the cerebellum. To address this gap in cerebellar knowledge, here we investigated the causal contribution of the posterior cerebellum to social processing using a chronometric transcranial magnetic stimulation (TMS) approach. We show that the posterior cerebellum is recruited at an early stage of emotional processing (starting from 100 ms after stimulus onset), simultaneously with the posterior superior temporal sulcus (pSTS), a key node of the social brain. Moreover, using a condition-and-perturb TMS approach, we found that the recruitment of the pSTS in emotional processing is dependent on cerebellar activation. Our results are the first to shed light on chronometric aspects of cerebellar function and its causal functional connectivity with other nodes of the social brain.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS C. Mondino Foundation, Via Mondino, Pavia 27100, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia 27100, Italy
| | - Chiara Ferrari
- IRCCS C. Mondino Foundation, Via Mondino, Pavia 27100, Italy; Department of Humanities, University of Pavia, Piazza Botta 6, Pavia 27100, Italy
| | - Lorella Battelli
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Kirstein Building KS 158, Boston, MA 02215, USA; Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Corso Bettini 31, Rovereto 38068, Italy
| | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Piazzale S. Agostino 2, Bergamo 24129, Italy.
| |
Collapse
|
4
|
Veldema J, Steingräber T, von Grönheim L, Wienecke J, Regel R, Schack T, Schütz C. Direct Current Stimulation over the Primary Motor Cortex, Cerebellum, and Spinal Cord to Modulate Balance Performance: A Randomized Placebo-Controlled Trial. Bioengineering (Basel) 2024; 11:353. [PMID: 38671775 PMCID: PMC11048454 DOI: 10.3390/bioengineering11040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVES Existing applications of non-invasive brain stimulation in the modulation of balance ability are focused on the primary motor cortex (M1). It is conceivable that other brain and spinal cord areas may be comparable or more promising targets in this regard. This study compares transcranial direct current stimulation (tDCS) over (i) the M1, (ii) the cerebellum, and (iii) trans-spinal direct current stimulation (tsDCS) in the modulation of balance ability. METHODS Forty-two sports students were randomized in this placebo-controlled study. Twenty minutes of anodal 1.5 mA t/tsDCS over (i) the M1, (ii) the cerebellum, and (iii) the spinal cord, as well as (iv) sham tDCS were applied to each subject. The Y Balance Test, Single Leg Landing Test, and Single Leg Squat Test were performed prior to and after each intervention. RESULTS The Y Balance Test showed significant improvement after real stimulation of each region compared to sham stimulation. While tsDCS supported the balance ability of both legs, M1 and cerebellar tDCS supported right leg stand only. No significant differences were found in the Single Leg Landing Test and the Single Leg Squat Test. CONCLUSIONS Our data encourage the application of DCS over the cerebellum and spinal cord (in addition to the M1 region) in supporting balance control. Future research should investigate and compare the effects of different stimulation protocols (anodal or cathodal direct current stimulation (DCS), alternating current stimulation (ACS), high-definition DCS/ACS, closed-loop ACS) over these regions in healthy people and examine the potential of these approaches in the neurorehabilitation.
Collapse
Affiliation(s)
- Jitka Veldema
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Teni Steingräber
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Leon von Grönheim
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Jana Wienecke
- Department of Exercise and Health, Paderborn University, 33098 Paderborn, Germany;
| | - Rieke Regel
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Thomas Schack
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| | - Christoph Schütz
- Faculty of Psychology and Sports Science, Bielefeld University, 33615 Bielefeld, Germany; (T.S.); (L.v.G.); (R.R.); (T.S.); (C.S.)
| |
Collapse
|
5
|
Li Y, Li R, Gu J, Yi H, He J, Lu F, Gao J. Enhanced group-level dorsolateral prefrontal cortex subregion parcellation through functional connectivity-based distance-constrained spectral clustering with application to autism spectrum disorder. Cereb Cortex 2024; 34:bhae020. [PMID: 38300216 DOI: 10.1093/cercor/bhae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) assumes a central role in cognitive and behavioral control, emerging as a crucial target region for interventions in autism spectrum disorder neuroregulation. Consequently, we endeavor to unravel the functional subregions within the DLPFC to shed light on the intricate functions of the brain. We introduce a distance-constrained spectral clustering (SC-DW) methodology that leverages functional connection to identify distinctive functional subregions within the DLPFC. Furthermore, we verify the relationship between the functional characteristics of these subregions and their clinical implications. Our methodology begins with principal component analysis to extract the salient features. Subsequently, we construct an adjacency matrix, which is constrained by the spatial properties of the brain, by linearly combining the distance matrix and a similarity matrix. The quality of spectral clustering is further optimized through multiple cluster evaluation coefficient. The results from SC-DW revealed four uniform and contiguous subregions within the bilateral DLPFC. Notably, we observe a substantial positive correlation between the functional characteristics of the third and fourth subregions in the left DLPFC with clinical manifestations. These findings underscore the unique insights offered by our proposed methodology in the realms of brain subregion delineation and therapeutic targeting.
Collapse
Affiliation(s)
- Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Chengdu City, Sichuan Province, Chengdu 610039, China
| | - Rui Li
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Chengdu City, Sichuan Province, Chengdu 610039, China
| | - Jiahe Gu
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Chengdu City, Sichuan Province, Chengdu 610039, China
| | - Hongtao Yi
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Chengdu City, Sichuan Province, Chengdu 610039, China
| | - Junbiao He
- School of Electrical Engineering and Electronic Information, Xihua University, 9999 Hongguang Avenue, Pixian District, Chengdu City, Sichuan Province, Chengdu 610039, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-tech Zone (West Zone), Chengdu City, Sichuan Province, Chengdu 610054, China
| | - Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, High-tech Zone (West Zone), Chengdu City, Sichuan Province, Chengdu 611731, China
| |
Collapse
|
6
|
Petríková D, Marko M, Rovný R, Riečanský I. Electrical stimulation of the cerebellum facilitates automatic but not controlled word retrieval. Brain Struct Funct 2023; 228:2137-2146. [PMID: 37783862 PMCID: PMC10587269 DOI: 10.1007/s00429-023-02712-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
Recent research has indicated that the cerebellum is engaged in language functions, yet the role of the cerebellum in lexical-semantic memory is poorly understood. In a double-blind randomized controlled experiment, we therefore targeted the cerebellum by transcranial direct current stimulation (tDCS) to assess and compare the contribution of the cerebellar processing to automatic and controlled retrieval of words in healthy adults (n = 136). Anodal cerebellar tDCS facilitated retrieval of semantically related words in free-associative chains, which was not due to a non-specific acceleration of processing speed. The stimulation had no influence on controlled word retrieval that employed inhibition or switching. The effect of cathodal tDCS was opposite to the anodal stimulation, but statistically non-significant. Our data show that the cerebellum is engaged extracting associative information from the system of semantic representations, established and strengthened/automated by learning, and indicates a domain-general role of this structure in automation of behavior, cognition and language.
Collapse
Affiliation(s)
- Dominika Petríková
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
| | - Martin Marko
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
- Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Bratislava, Slovakia
| | - Rastislav Rovný
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia
| | - Igor Riečanský
- Department of Behavioural Neuroscience, Centre of Experimental Medicine, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovakia.
- Department of Psychiatry, Faculty of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
7
|
Naeije G, Rovai A, Destrebecq V, Trotta N, De Tiège X. Anodal Cerebellar Transcranial Direct Current Stimulation Reduces Motor and Cognitive Symptoms in Friedreich's Ataxia: A Randomized, Sham-Controlled Trial. Mov Disord 2023; 38:1443-1450. [PMID: 37310043 DOI: 10.1002/mds.29453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Friedreich Ataxia is the most common recessive ataxia with only one therapeutic drug approved solely in the United States. OBJECTIVE The aim of this work was to investigate whether anodal cerebellar transcranial direct current stimulation (ctDCS) reduces ataxic and cognitive symptoms in individuals with Friedreich's ataxia (FRDA) and to assess the effects of ctDCS on the activity of the secondary somatosensory (SII) cortex. METHODS We performed a single-blind, randomized, sham-controlled, crossover trial with anodal ctDCS (5 days/week for 1 week, 20 min/day, density current: 0.057 mA/cm2 ) in 24 patients with FRDA. Each patient underwent a clinical evaluation (Scale for the Assessment and Rating of Ataxia, composite cerebellar functional severity score, cerebellar cognitive affective syndrome scale) before and after anodal and sham ctDCS. Activity of the SII cortex contralateral to a tactile oddball stimulation of the right index finger was evaluated with brain functional magnetic resonance imaging at baseline and after anodal/sham ctDCS. RESULTS Anodal ctDCS led to a significant improvement in the Scale for the Assessment and Rating of Ataxia (-6.5%) and in the cerebellar cognitive affective syndrome scale (+11%) compared with sham ctDCS. It also led to a significant reduction in functional magnetic resonance imaging signal at the SII cortex contralateral to tactile stimulation (-26%) compared with sham ctDCS. CONCLUSIONS One week of treatment with anodal ctDCS reduces motor and cognitive symptoms in individuals with FRDA, likely by restoring the neocortical inhibition normally exerted by cerebellar structures. This study provides class I evidence that ctDCS stimulation is effective and safe in FRDA. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gilles Naeije
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Antonin Rovai
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| | - Virginie Destrebecq
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Nicola Trotta
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| |
Collapse
|
8
|
Catoira B, Van Overwalle F, Van Schuerbeek P, Raeymaekers H, Heleven E, Baetens K, Deroost N, Baeken C. The effects of stimulating the cerebellum on social sequences: A tDCS-fMRI pilot study: Los efectos de estimular el cerebelo en secuencias sociales: Un estudio piloto con tDCS y fMRI. Int J Clin Health Psychol 2023; 23:100373. [PMID: 36793338 PMCID: PMC9922820 DOI: 10.1016/j.ijchp.2023.100373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023] Open
Abstract
Research on the involvement of the cerebellum in social behavior and its relationship with social mentalizing has just begun. Social mentalizing is the ability to attribute mental states such as desires, intentions, and beliefs to others. This ability involves the use of social action sequences which are believed to be stored in the cerebellum. In order to better understand the neurobiology of social mentalizing, we applied cerebellar transcranial direct current stimulation (tDCS) on 23 healthy participants in the MRI scanner, immediately followed by measuring their brain activity during a task that required to generate the correct sequence of social actions involving false (i.e., outdated) and true beliefs, social routines and non-social (control) events. The results revealed that stimulation decreased task performance along with decreased brain activation in mentalizing areas, including the temporoparietal junction and the precuneus. This decrease was strongest for true belief sequences compared to the other sequences. These findings support the functional impact of the cerebellum on the mentalizing network and belief mentalizing, contributing to the understanding of the role of the cerebellum in social sequences.
Collapse
Affiliation(s)
- Beatriz Catoira
- Department of Psychiatry (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
| | - Frank Van Overwalle
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Elien Heleven
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Natacha Deroost
- Department of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chris Baeken
- Department of Psychiatry (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
- Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Corneel Heymanslaan 10, Ghent 9000, Belgium
- Department of Head and Skin, Psychiatry and Medical Psychology, Ghent University Hospital, Ghent, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
9
|
Maldonado T, Jackson TB, Bernard JA. Time dependent effects of cerebellar tDCS on cerebello-cortical connectivity networks in young adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546626. [PMID: 37425924 PMCID: PMC10327157 DOI: 10.1101/2023.06.26.546626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function and network connectivity in aging or disease may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function. Here, we used transcranial direct current stimulation (tDCS) to temporarily alter cerebellar function and subsequently investigated resting state network connectivity. This allows us to investigate network changes that may parallel what is seen in aging and clinical populations, providing additional insights into these key circuits. Critically, what happens to these circuits if the cerebellum is not functioning optimally remains relatively unknown. We employed a between-subjects design applying anodal (n=25), cathodal (n=25), or sham (n=24) stimulation to the cerebellum to examine the effect of stimulation on cerebello-cortical resting state connectivity in young adults. We predicted increased functional connectivity following cathodal stimulation and decreased functional connectivity following anodal stimulation. We found, anodal stimulation resulted in increased connectivity in both ipsilateral and contralateral regions of the cortex, perhaps indicative of a compensatory response to degraded cerebellar output. Additionally, a sliding window analysis also demonstrated a time dependent nature to the impacts of cerebellar tDCS on connectivity, particularly in cognitive region in the cortex. Assuming the difference in connectivity and network-behavior relationships here parallels what occurs in aging or disease, this may provide a mechanism whereby offloading of function to the cerebellum is negatively impacted, resulting in subsequent differences in prefrontal cortical activation patterns and performance deficits. These results might inform and update existing compensatory models of function to include the cerebellum as a vital structure needed for scaffolding.
Collapse
Affiliation(s)
- Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, United States of America
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - T. Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
10
|
Can transcranial direct current stimulation (tDCS) of the cerebellum improve implicit social and cognitive sequence learning? Int J Clin Health Psychol 2023; 23:100355. [PMID: 36415612 PMCID: PMC9674896 DOI: 10.1016/j.ijchp.2022.100355] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence shows that the posterior cerebellum is involved in mentalizing inferences of social events by detecting sequence information in these events, and building and updating internal models of these sequences. By applying anodal and sham cerebellar transcranial direct current stimulation (tDCS) on the posteromedial cerebellum of healthy participants, and using a serial reaction time (SRT) task paradigm, the current study examined the causal involvement of the cerebellum in implicitly learning sequences of social beliefs of others (Belief SRT) and non-social colored shapes (Cognitive SRT). Apart from the social or cognitive domain differences, both tasks were structurally identical. Results of anodal stimulation (i.e., 2 mA for 20 min) during the social Belief SRT task, did not show significant improvement in reaction times, however it did reveal generally faster responses for the Cognitive SRT task. This improved performance could also be observed after the cessation of stimulation after 30 min, and up to one week later. Our findings suggest a general positive effect of anodal cerebellar tDCS on implicit non-social Cognitive sequence learning, supporting a causal role of the cerebellum in this learning process. We speculate that the lack of tDCS modulation of the social Belief SRT task is due to the familiar and overlearned nature of attributing social beliefs, suggesting that easy and automatized tasks leave little room for improvement through tDCS.
Collapse
|
11
|
Maldonado T, Jackson TB, Bernard JA. Anodal cerebellar stimulation increases cortical activation: Evidence for cerebellar scaffolding of cortical processing. Hum Brain Mapp 2023; 44:1666-1682. [PMID: 36468490 PMCID: PMC9921230 DOI: 10.1002/hbm.26166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022] Open
Abstract
While the cerebellum contributes to nonmotor task performance, the specific contributions of the structure remain unknown. One possibility is that the cerebellum allows for the offloading of cortical processing, providing support during task performance, using internal models. Here we used transcranial direct current stimulation to modulate cerebellar function and investigate the impact on cortical activation patterns. Participants (n = 74; 22.03 ± 3.44 years) received either cathodal, anodal, or sham stimulation over the right cerebellum before a functional magnetic resonance imaging scan during which they completed a sequence learning and a working memory task. We predicted that cathodal stimulation would improve, and anodal stimulation would hinder task performance and cortical activation. Behaviorally, anodal stimulation negatively impacted behavior during late-phase sequence learning. Functionally, we found that anodal cerebellar stimulation resulted in increased bilateral cortical activation, particularly in parietal and frontal regions known to be involved in cognitive processing. This suggests that if the cerebellum is not functioning optimally, there is a greater need for cortical resources.
Collapse
Affiliation(s)
- Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, Indiana, USA.,Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Trevor Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.,Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
12
|
Modulating mental state recognition by anodal tDCS over the cerebellum. Sci Rep 2022; 12:22616. [PMID: 36585436 PMCID: PMC9803656 DOI: 10.1038/s41598-022-26914-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence from neuroimaging and clinical studies has demonstrated cerebellar involvement in social cognition components, including the mentalizing process. The aim of this study was to apply transcranial direct current stimulation (tDCS) to modulate cerebellar excitability to investigate the role the cerebellum plays in mental state recognition. Forty-eight healthy subjects were randomly assigned to different groups in which anodal, cathodal, or sham tDCS (2 mA for 20 min) was delivered centering the electrode on the vermis to stimulate the posterior portion of the cerebellum. The ability to attribute mental states to others was tested before and after tDCS using a digital version of the 'Reading the Mind in the Eyes test', which includes visual perceptive and motor stimuli as control conditions. Correct response and reaction times (RTs) were recorded. The results revealed a significant reduction in RTs between the baseline and post-stimulation sessions after cerebellar anodal tDCS only for mental state stimuli (Wilcoxon test p = 0.00055), whereas no significant effect was found in the cathodal or sham conditions or for visual perceptive and motor stimuli. Overall, our study suggests that cerebellar anodal tDCS might selectively improve mental state recognition and constitute an effective strategy to positively modulate the mentalizing process.
Collapse
|
13
|
Liu X, Shu Y, Yu P, Li H, Duan W, Wei Z, Li K, Xie W, Zeng Y, Peng D. Classification of severe obstructive sleep apnea with cognitive impairment using degree centrality: A machine learning analysis. Front Neurol 2022; 13:1005650. [PMID: 36090863 PMCID: PMC9453022 DOI: 10.3389/fneur.2022.1005650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we aimed to use voxel-level degree centrality (DC) features in combination with machine learning methods to distinguish obstructive sleep apnea (OSA) patients with and without mild cognitive impairment (MCI). Ninety-nine OSA patients were recruited for rs-MRI scanning, including 51 MCI patients and 48 participants with no mild cognitive impairment. Based on the Automated Anatomical Labeling (AAL) brain atlas, the DC features of all participants were calculated and extracted. Ten DC features were screened out by deleting variables with high pin-correlation and minimum absolute contraction and performing selective operator lasso regression. Finally, three machine learning methods were used to establish classification models. The support vector machine method had the best classification efficiency (AUC = 0.78), followed by random forest (AUC = 0.71) and logistic regression (AUC = 0.77). These findings demonstrate an effective machine learning approach for differentiating OSA patients with and without MCI and provide potential neuroimaging evidence for cognitive impairment caused by OSA.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yongqiang Shu
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Pengfei Yu
- Big Data Center, the Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Haijun Li
- Department of PET Center, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wenfeng Duan
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhipeng Wei
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kunyao Li
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Wei Xie
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yaping Zeng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Dechang Peng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Jiangxi, China
- *Correspondence: Dechang Peng
| |
Collapse
|
14
|
Baroni A, Magro G, Martinuzzi C, Brondi L, Masiero S, Milani G, Zani G, Bergonzoni A, Basaglia N, Straudi S. Combined effects of cerebellar tDCS and task-oriented circuit training in people with multiple sclerosis: A pilot randomized control trial. Restor Neurol Neurosci 2022; 40:85-95. [DOI: 10.3233/rnn-211245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: Balance and mobility impairments are frequent in people with multiple sclerosis, partly due to cerebellar dysfunctions. Task-oriented behavioural approaches were previously shown to promote physical function. The possibility exists that cerebellar transcranial direct current stimulation (ctDCS) applied during training, known to increase the excitability of the brain, can boost rehabilitation effects through modulation of cerebellum-brain inhibition. Objective: To test the efficacy of cerebellar ctDCS stimulation combined with motor training on mobility and balance in people with multiple sclerosis. Methods: 16 subjects were randomly assigned to receive real- or sham-ctDCS and task-oriented training daily over two weeks in a double-blind, randomised clinical pilot trial. Functional mobility, balance, walking performance and quality of life were tested before and after treatment and at two-week follow-up. Effects of cerebellar stimulation on psychological and executive functions were also recorded. Results: Walking performance, balance and quality of life improved for both groups at post-treatment assessment which was maintained at 2-weeks follow up. A two-way ANOVA revealed a significant time effect for balance and walking performance. A significant interaction effect of time–treatment (F = 3.12, df = 2,26; p = 0.03) was found for motor aspects of quality of life assessment in patients who received real-ctDCS. Conclusions: Task-oriented training improves balance and mobility in people with multiple sclerosis, but ctDCS does not boost motor training effects.
Collapse
Affiliation(s)
- Andrea Baroni
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - Giacomo Magro
- Physical Medicine and Rehabilitation School, Department of Neuroscience, University of Padova, Padova, Italy
| | - Carlotta Martinuzzi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - Laura Brondi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - Stefano Masiero
- Rehabilitation Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Giada Milani
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
- Ferrara University, Doctoral Program in Translational Neurosciences and Neurotechnologies, Ferrara, Italy
| | - Giulia Zani
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - Antonella Bergonzoni
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - Nino Basaglia
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Bongaerts FLP, Schutter DJLG, Klaus J. Cerebellar tDCS does not modulate language processing performance in healthy individuals. Neuropsychologia 2022; 169:108206. [PMID: 35278462 DOI: 10.1016/j.neuropsychologia.2022.108206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Clinical and neuroscientific studies in healthy volunteers have established that the cerebellum contributes to language comprehension and production. Yet most evidence is correlational and the exact role of the cerebellum remains unclear. The aim of this study was to investigate the role of the right cerebellum in unimpaired language comprehension and production using non-invasive brain stimulation. In this double-blind, sham-controlled experiment, thirty-six healthy participants received anodal or sham transcranial direct current (tDCS) stimulation to the right cerebellum while performing a lexical decision, sentence comprehension, verbal fluency and a non-language control task. Active tDCS did not modulate performance in any of the tasks. Additional exploratory analyses suggest difficulty-specific performance modulation in the sentence comprehension and lexical decision task, with tDCS improving performance in easy trials of the sentence comprehension task and difficult trials in the lexical decision task. Overall, our findings provide no evidence for the involvement of the right posterior cerebellum in language processing. Further research is needed to dissociate the influence of task difficulty of the underlying cognitive processes.
Collapse
Affiliation(s)
| | | | - Jana Klaus
- Utrecht University, Helmholtz Institute, the Netherlands.
| |
Collapse
|
16
|
Nagao S, Hirai H, Kano M, Yuzaki M. Masao Ito-A Visionary Neuroscientist with a Passion for the Cerebellum. Neuroscience 2021; 462:1-3. [PMID: 33892899 DOI: 10.1016/j.neuroscience.2021.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Soichi Nagao
- Laboratory for Integrative Brain Function, Nozomi Hospital, Saitama 362-0806, Japan; Laboratory for Memory Neuroscience, Tokyo Metropolitan Institute for Gerontology, Tokyo 173-0015, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Masanobu Kano
- Depertment of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|