1
|
Perucca E, Taglialatela M. Targeting Kv7 Potassium Channels for Epilepsy. CNS Drugs 2025; 39:263-288. [PMID: 39853501 PMCID: PMC11850491 DOI: 10.1007/s40263-024-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Voltage-gated Kv7 potassium channels, particularly Kv7.2 and Kv.7.3 channels, play a critical role in modulating susceptibility to seizures, and mutations in genes that encode these channels cause heterogeneous epilepsy phenotypes. On the basis of this evidence, activation of Kv7.2 and Kv.7.3 channels has long been considered an attractive target in the search for novel antiseizure medications. Ezogabine (retigabine), the first Kv7.2/3 activator introduced in 2011 for the treatment of focal seizures, was withdrawn from the market in 2017 due to declining use after discovery of its association with pigmentation changes in the retina, skin, and mucosae. A novel formulation of ezogabine for pediatric use (XEN496) has been recently investigated in children with KCNQ2-related developmental and epileptic encephalopathy, but the trial was terminated prematurely for reasons unrelated to safety. Among novel Kv7.2/3 openers in clinical development, azetukalner has shown dose-dependent efficacy against drug-resistant focal seizures with a good tolerability profile and no evidence of pigmentation-related adverse effects in early clinical studies, and it is now under investigation in phase III trials for the treatment of focal seizures, generalized tonic-clonic seizures, and major depressive disorder. Another Kv7.2/3 activator, BHV-7000, has completed phase I studies in healthy subjects, with excellent tolerability at plasma drug concentrations that exceed the median effective concentrations in a preclinical model of anticonvulsant activity, but no efficacy data in patients with epilepsy are available to date. Among other Kv7.2/3 activators in clinical development as potential antiseizure medications, pynegabine and CB-003 have completed phase I safety and pharmacokinetic studies, but results have not been yet reported. Overall, interest in targeting Kv7 channels for the treatment of epilepsy and for other indications remains strong. Future breakthroughs in this area could come from exploitation of mechanistic differences in the action of Kv7 activators, and from the development of molecules that combine Kv7 activation with other mechanisms of action.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), Melbourne Brain Center, The University of Melbourne, 245 Burgundy St., Heidelberg, VIC, 3084, Australia.
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
2
|
Time-dependent neuropathology in rats following organophosphate-induced status epilepticus. Neurotoxicology 2022; 91:45-59. [DOI: 10.1016/j.neuro.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/11/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
|
3
|
Yang J, Jia Z, Xiao Z, Zhao J, Lu Y, Chu L, Shao H, Pei L, Zhang S, Chen Y. Baicalin Rescues Cognitive Dysfunction, Mitigates Neurodegeneration, and Exerts Anti-Epileptic Effects Through Activating TLR4/MYD88/Caspase-3 Pathway in Rats. Drug Des Devel Ther 2021; 15:3163-3180. [PMID: 34321866 PMCID: PMC8312624 DOI: 10.2147/dddt.s314076] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose This study aims to evaluate the beneficial effects of anti-epileptic mechanisms of baicalin (BA) on cognitive dysfunction and neurodegeneration in pentylenetetrazol (PTZ)-induced epileptic rats. Methods First, PTZ-induced epileptic rats were administered intraperitoneally a sub-convulsive dose of PTZ (40 mg/kg) daily, and the seizure susceptibility (the degree of seizures and latency) was evaluated using Racine’s criterion. Then, classical behavioral experiments were performed to test whether BA ameliorated cognitive dysfunction. Neurodegeneration was assessed using Fluoro Jade-B (FJB), and NeuN staining was used to determine whether BA offered a neuroprotective role. After BA had been proven to possess anti-epileptic effects, its possible mechanisms were analyzed through network pharmacology. Finally, the key targets for predictive mechanisms were experimentally verified. Results The epileptic model was successfully established, and BA had anti-epileptic effects. Epileptic rats displayed significant cognitive dysfunction, and BA markedly ameliorated cognitive dysfunction. Further, we also discovered that BA treatment mitigated neurodegeneration of the hippocampus CA3 regions, thereby ameliorated cognitive dysfunction of epileptic rats. Subsequent network pharmacology analysis was implemented to reveal a possible mechanism of BA in the anti-epileptic process and the TLR4/MYD88/Caspase-3 pathway was predicted. Finally, experimental studies showed that BA exerted an anti-epileptic effect by activating the TLR4/MYD88/Caspase-3 pathway in PTZ-induced epileptic rats. Conclusion In conclusion, BA had a protective effect against PTZ-induced seizures. BA improved cognitive dysfunction and exerted a neuroprotective action. The anti-epileptic effects of BA may be potentially through activation of the TLR4/MYD88/Caspase-3 pathway.
Collapse
Affiliation(s)
- Jiali Yang
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Zhixia Jia
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Zhigang Xiao
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Jing Zhao
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Ye Lu
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Hui Shao
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China.,Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Lin Pei
- School of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, People's Republic of China.,Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Shaodan Zhang
- Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Yuan Chen
- Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050051, People's Republic of China
| |
Collapse
|