1
|
Cabral-Miranda F, Araujo APB, Medinas DB, Gomes FCA. Astrocytic Hevin/SPARCL-1 Regulates Cognitive Decline in Pathological and Normal Brain Aging. Aging Cell 2025:e14493. [PMID: 39935382 DOI: 10.1111/acel.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Dementia, characterized by loss of cognitive abilities in the elderly, poses a significant global health challenge. This study explores the role of astrocytes, one of most representative glial cells in the brain, in mitigating cognitive decline. Specifically, we investigated the impact of Hevin (also known as SPARC-like1/SPARCL-1), a secreted glycoprotein, on cognitive decline in both normal and pathological brain aging. By using adeno-associated viruses, we overexpressed Hevin in hippocampal astrocytes of middle-aged APP/PSEN mice, an established Alzheimer's disease (AD) model. Results demonstrated that Hevin overexpression attenuates cognitive decline, as evidenced by cognitive tests, increased pre- and postsynaptic markers colocalization, and altered expression of synaptic mediators, as revealed by proteomic profiling. Importantly, Hevin overexpression did not influence the deposition of Aβ plaques in the hippocampus, a hallmark of AD pathology. Furthermore, the study extended its findings to middle-aged wild-type animals, revealing improved cognitive performance following astrocytic Hevin overexpression. In conclusion, our results propose astrocytic Hevin as a potential therapeutic target for age-associated cognitive decline.
Collapse
Affiliation(s)
- Felipe Cabral-Miranda
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Bergamo Araujo
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danilo Bilches Medinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
DelaCuesta-Barrutia J, Hidema S, Caldwell HK, Nishimori K, Erdozain AM, Peñagarikano O. In need of a specific antibody against the oxytocin receptor for neuropsychiatric research: A KO validation study. J Psychiatr Res 2024; 173:260-270. [PMID: 38554622 DOI: 10.1016/j.jpsychires.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/22/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Antibodies are one of the most utilized tools in biomedical research. However, few of them are rigorously evaluated, as there are no accepted guidelines or standardized methods for determining their validity before commercialization. Often, an antibody is considered validated if it detects a band by Western blot of the expected molecular weight and, in some cases, if blocking peptides result in loss of staining. Neither of these approaches are unquestionable proof of target specificity. Since the oxytocin receptor has recently become a popular target in neuropsychiatric research, the need for specific antibodies to be used in brain has arisen. In this work, we have tested the specificity of six commercially available oxytocin receptor antibodies, indicated by the manufacturers to be suitable for Western blot and with an available image showing the correct size band (45-55 KDa). Antibodies were first tested by Western blot in brain lysates of wild-type and oxytocin receptor knockout mice. Uterus tissue was also tested as control for putative differential tissue specificity. In brain, the six tested antibodies lacked target specificity, as both wild-type and receptor knockout samples resulted in a similar staining pattern, including the expected 45-55 KDa band. Five of the six antibodies detected a selective band in uterus (which disappeared in knockout tissue). These five specific antibodies were also tested for immunohistochemistry in uterus, where only one was specific. However, when the uterine-specific antibody was tested in brain tissue, it lacked specificity. In conclusion, none of the six tested commercial antibodies are suitable to detect oxytocin receptor in brain by either Western blot or immunohistochemistry, although some do specifically detect it in uterus. The present work highlights the need to develop standardized antibody validation methods, including a proper negative control, in order to grant quality and reproducibility of the generated data.
Collapse
Affiliation(s)
- Jon DelaCuesta-Barrutia
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Shizu Hidema
- Department of Obesity and Inflammation, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Heather K Caldwell
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Ohio, 44242, USA
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Amaia M Erdozain
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Leioa, 48940, Spain
| | - Olga Peñagarikano
- Department of Pharmacology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Leioa, 48940, Spain.
| |
Collapse
|
3
|
Huang J, Shao F, Chen B, Zheng G, Shen J, Qiu S. Serum Secreted Protein Acidic and Rich in Cysteine-Like 1 as a Biochemical Predictor for Prognosticating Clinical Outcomes After Acute Supratentorial Intracerebral Hemorrhage: A Prospective Cohort Study. Neuropsychiatr Dis Treat 2023; 19:2709-2728. [PMID: 38077240 PMCID: PMC10710246 DOI: 10.2147/ndt.s444671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/28/2023] [Indexed: 06/04/2024] Open
Abstract
Background Secreted protein acidic and rich in cysteine-like 1 (SPARCL1) regulates synaptic stability and is up-regulated during axonal regeneration. Here, serum SPARCL1 was determined for estimating severity and prognosticating early neurological deterioration (END) and functional outcomes of acute intracerebral hemorrhage (ICH). Methods In this prospective observational cohort study of 156 patients with supratentorial ICH, blood samples of 53 were acquired not only at admission but also ad days 1, 3, 5, 7 and 10. Another group of 53 healthy controls were recruited. The modified Rankin Scale (mRS) scores of 3-6 at poststroke six months were regarded as poor prognosis. Results As opposed to controls, serum SPARCL1 levels were markedly elevated during the early ten days after ICH, with the highest levels at days 1 and 3. Admission serum SPARCL1 levels were independently correlated with National Institutes of Health Stroke Scale scores and hematoma volume, were significantly increased in the order of six-month mRS scores from 0 to 6 and were independently correlated with six-month mRS scores. Serum SPARCL1 levels were linearly related to risks of poor six-month prognosis and END under restricted cubic spline, had significant efficiency under receiver operating characteristic (ROC) curve and were independently associated with END and poor prognosis. Subgroup analysis confirmed that no interactions existed for associations of serum SPARCL1 levels with other variables, such as age, gender and some specific vascular risk factors. END and poor prognosis prediction models integrating serum SPARCL1 were displayed using the two nomograms. The poor prognosis prediction model, but END prediction model not, performed well under calibration curve, decision curve and ROC curve. Conclusion A substantial elevation of serum SPARCL1 levels during the early period after ICH is independently related to illness severity and poor neurological outcomes, thus signifying that serum SPARCL1 may appear as a prognostic biomarker of ICH.
Collapse
Affiliation(s)
- Jianjun Huang
- Department of Neurosurgery, The First People’s Hospital of Fuyang District of Hangzhou City, Hangzhou, People’s Republic of China
| | - Fangping Shao
- Emergency Department, The First People’s Hospital of Fuyang District of Hangzhou City, Hangzhou, People’s Republic of China
| | - Bin Chen
- Department of Neurosurgery, The First People’s Hospital of Fuyang District of Hangzhou City, Hangzhou, People’s Republic of China
| | - Guanrong Zheng
- Department of Neurosurgery, The First People’s Hospital of Fuyang District of Hangzhou City, Hangzhou, People’s Republic of China
| | - Jia Shen
- Department of Neurosurgery, The First People’s Hospital of Fuyang District of Hangzhou City, Hangzhou, People’s Republic of China
| | - Shenzhong Qiu
- Department of Neurosurgery, The First People’s Hospital of Fuyang District of Hangzhou City, Hangzhou, People’s Republic of China
| |
Collapse
|
4
|
Nuñez-delMoral A, Bianchi PC, Brocos-Mosquera I, Anesio A, Palombo P, Camarini R, Cruz FC, Callado LF, Vialou V, Erdozain AM. The Matricellular Protein Hevin Is Involved in Alcohol Use Disorder. Biomolecules 2023; 13:biom13020234. [PMID: 36830603 PMCID: PMC9953008 DOI: 10.3390/biom13020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Astrocytic-secreted matricellular proteins have been shown to influence various aspects of synaptic function. More recently, they have been found altered in animal models of psychiatric disorders such as drug addiction. Hevin (also known as Sparc-like 1) is a matricellular protein highly expressed in the adult brain that has been implicated in resilience to stress, suggesting a role in motivated behaviors. To address the possible role of hevin in drug addiction, we quantified its expression in human postmortem brains and in animal models of alcohol abuse. Hevin mRNA and protein expression were analyzed in the postmortem human brain of subjects with an antemortem diagnosis of alcohol use disorder (AUD, n = 25) and controls (n = 25). All the studied brain regions (prefrontal cortex, hippocampus, caudate nucleus and cerebellum) in AUD subjects showed an increase in hevin levels either at mRNA or/and protein levels. To test if this alteration was the result of alcohol exposure or indicative of a susceptibility factor to alcohol consumption, mice were exposed to different regimens of intraperitoneal alcohol administration. Hevin protein expression was increased in the nucleus accumbens after withdrawal followed by a ethanol challenge. The role of hevin in AUD was determined using an RNA interference strategy to downregulate hevin expression in nucleus accumbens astrocytes, which led to increased ethanol consumption. Additionally, ethanol challenge after withdrawal increased hevin levels in blood plasma. Altogether, these results support a novel role for hevin in the neurobiology of AUD.
Collapse
Affiliation(s)
- Amaia Nuñez-delMoral
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Paula C. Bianchi
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Augusto Anesio
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Paola Palombo
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Fabio C. Cruz
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Vincent Vialou
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Sorbonne Université, 75005 Paris, France
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| | - Amaia M. Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| |
Collapse
|