1
|
Monteiro ÁB, Alves AF, Ribeiro Portela AC, Oliveira Pires HF, Pessoa de Melo M, Medeiros Vilar Barbosa NM, Bezerra Felipe CF. Pentylenetetrazole: A review. Neurochem Int 2024; 180:105841. [PMID: 39214154 DOI: 10.1016/j.neuint.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Pentylenetetrazole (PTZ), a tetrazole derivative, is commonly used as a chemical agent to induce neurological disorders and replicate the characteristics of human epileptic seizures in animal models. This review offers a comprehensive analysis of the behavioral, neurophysiological, and neurochemical changes induced by PTZ. The epileptogenic and neurotoxic mechanisms of PTZ are associated with an imbalance between the GABAergic and glutamatergic systems. At doses exceeding 60 mg/kg, PTZ exerts its epileptic effects by non-competitively antagonizing GABAA receptors and activating NMDA receptors, resulting in an increased influx of cations such as Na+ and Ca2+. Additionally, PTZ promotes oxidative stress, microglial activation, and the synthesis of pro-inflammatory mediators, all of which are features characteristic of glutamatergic excitotoxicity. These mechanisms ultimately lead to epileptic seizures and neuronal cell death, which depend on the dosage and method of administration. The behavioral, electroencephalographic, and histological changes associated with PTZ further establish it as a valuable preclinical model for the study of epileptic seizures, owing to its simplicity, cost-effectiveness, and reproducibility.
Collapse
Affiliation(s)
- Álefe Brito Monteiro
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | - Alan Ferreira Alves
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | | - Mayara Pessoa de Melo
- Laboratory of Psychopharmacology, Institute of Drugs and Medicines Research, Federal University of Paraíba, Brazil
| | | | | |
Collapse
|
2
|
Sui AR, Piao H, Xiong ST, Zhang P, Guo SY, Kong Y, Gao CQ, Wang ZX, Yang J, Ge BY, Supratik K, Yang JY, Li S. Scorpion venom heat-resistant synthesized peptide ameliorates epileptic seizures and imparts neuroprotection in rats mediated by NMDA receptors. Eur J Pharmacol 2024; 978:176704. [PMID: 38830458 DOI: 10.1016/j.ejphar.2024.176704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Hua Piao
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Si-Ting Xiong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Peng Zhang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Qian Gao
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xue Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jun Yang
- Department of Child Health, Yantaishan Hospital, Yantai, 264008, China
| | - Bi-Ying Ge
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Kundu Supratik
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
3
|
Maternal Hyperhomocysteinemia Produces Memory Deficits Associated with Impairment of Long-Term Synaptic Plasticity in Young Rats. Cells 2022; 12:cells12010058. [PMID: 36611852 PMCID: PMC9818716 DOI: 10.3390/cells12010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Maternal hyperhomocysteinemia (HCY) is a common pregnancy complication caused by high levels of the homocysteine in maternal and fetal blood, which leads to the alterations of the cognitive functions, including learning and memory. In the present study, we investigated the mechanisms of these alterations in a rat model of maternal HCY. The behavioral tests confirmed the memory impairments in young and adult rats following the prenatal HCY exposure. Field potential recordings in hippocampal slices demonstrated that the long-term potentiation (LTP) was significantly reduced in HCY rats. The whole-cell patch-clamp recordings in hippocampal slices demonstrated that the magnitude of NMDA receptor-mediated currents did not change while their desensitization decreased in HCY rats. No significant alterations of glutamate receptor subunit expression except GluN1 were detected in the hippocampus of HCY rats using the quantitative real-time PCR and Western blot methods. The immunofluorescence microscopy revealed that the number of synaptopodin-positive spines is reduced, while the analysis of the ultrastructure of hippocampus using the electron microscopy revealed the indications of delayed hippocampal maturation in young HCY rats. Thus, the obtained results suggest that maternal HCY disturbs the maturation of hippocampus during the first month of life, which disrupts LTP formation and causes memory impairments.
Collapse
|
4
|
Postnikova TY, Trofimova AM, Zakharova MV, Nosova OI, Brazhe AR, Korzhevskii DE, Semyanov AV, Zaitsev AV. Delayed Impairment of Hippocampal Synaptic Plasticity after Pentylenetetrazole-Induced Seizures in Young Rats. Int J Mol Sci 2022; 23:ijms232113461. [PMID: 36362260 PMCID: PMC9657086 DOI: 10.3390/ijms232113461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.
Collapse
Affiliation(s)
- Tatyana Y. Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Alina M. Trofimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Maria V. Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
| | - Olga I. Nosova
- Institute of Experimental Medicine, Saint Petersburg 197022, Russia
| | - Alexey R. Brazhe
- Faculty of Biology, Moscow State University, Moscow 119234, Russia
| | | | - Alexey V. Semyanov
- Faculty of Biology, Moscow State University, Moscow 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Clinical Pharmacology, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS, Saint Petersburg 194223, Russia
- Correspondence:
| |
Collapse
|
5
|
Li S, Huang H, Wei X, Ye L, Ma M, Ling M, Wu Y. The recycling of AMPA receptors/GABAa receptors is related to neuronal excitation/inhibition imbalance and may be regulated by KIF5A. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1103. [PMID: 36388788 PMCID: PMC9652568 DOI: 10.21037/atm-22-4337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 09/01/2023]
Abstract
BACKGROUND Excitation/inhibition imbalance (E/I imbalance), which involves an increase of alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) receptors (AMPARs) and decrease of gamma-aminobutyric acid type A (GABA) type A receptors (GABAaRs) on the neuron surface, has been documented in the pathogenesis of seizures. Notably, it has been established that both the glutamate receptor subunit 2 (GluR2) of AMPARs and beta 2/3 subunits of GABAaRs (Gabrb2+3) participate in the recycling mechanism mediated by the kinesin heavy chain isoform 5A (KIF5A), which determines the number of neuron surface receptors. However, it remains unclear whether receptor recycling is involved in the pathogenesis of seizures. METHODS Twelve adult male Sprague-Dawley rats were randomly allocated to the normal control (Ctl) group (n=6) and the pentylenetetrazol (PTZ)-induced seizure (Sez) group (n=6). The rats in the Ctl group were treated with saline. The rats in the Sez group received an intraperitoneal injection of PTZ at an initial dose of 40 mg/kg. Primary cultured neurons were obtained from newborn rats (24-hour-old). The neurons were exposed to magnesium-free (Mg2+-free) extracellular fluid for 3 hours to establish the seizure model in vitro. We detected the electrophysiology of the seizure model, the expression levels of KIF5A, GluR2, and Gabrb2+3, the recycling ratio of GluR2 and Gabrb2+3, the interaction between KIF5A and GluR2, and the interaction between KIF5A and Gabrb2+3. RESULTS In the Sez group, the expression of GluR2 on the cell surface was increased and the expression of Gabrb2+3 on the cell surface was decreased. The amplitude and frequency of action potentials were significantly increased in the Mg2+-free group. The amplitude and decay time of AMPAR-mediated miniature excitatory postsynaptic currents were increased in the Mg2+-free group. The amplitude and decay time of miniature inhibitory postsynaptic currents were decreased in the Mg2+-free group. The recycling ratio of GluR2 was increased and the recycling ratio of Gabrb2+3 was decreased in the Mg2+-free group. The interaction between KIF5A and GluR2 was increased, and the interaction between KIF5A and Gabrb2+3 was decreased in the seizure model in vivo and in vitro. CONCLUSIONS The recycling of AMPA receptors/GABAa receptors is related to E/I imbalance and may be regulated by KIF5A.
Collapse
Affiliation(s)
- Sijun Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hongmi Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lin Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Min Ling
- Department of Biotechnology, Guangxi Medical University, Nanning, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
The Role of the NMDA Receptor in the Anticonvulsant Effect of Ellagic Acid in Pentylenetetrazole-Induced Seizures in Male Mice. Behav Neurol 2022; 2022:9015842. [PMID: 35600241 PMCID: PMC9117013 DOI: 10.1155/2022/9015842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Methods In this experimental study, 64 mice were divided into 8 groups and received the following: normal saline; EA at doses of 6.25, 12.5, and 25 mg/kg; NMDA agonist at a dose of 75 mg/kg; NMDA antagonist (ketamine) at a dose of 0.5 mg/kg; an effective dose of EA plus NMDA agonist; and a subeffective dose of EA plus ketamine. We induced seizure using intravenous administration of PTZ. 60 minutes before induction of seizure, drugs were administrated. Duration lasts to seizure-induced was measured. Finally, the gene expression of NMDA receptor subunits (Nr2a and Nr2b) was assessed in the prefrontal cortex. Results Results showed that EA increased the seizure threshold and decreased the expression of Nr2a and Nr2b. We determined that ketamine potentiated and NMDA attenuated the effects of subeffective and effective doses of EA. Conclusion EA probably via attenuation of the NMDA-R pathway possesses an anticonvulsant effect in PTZ-induced seizure in mice.
Collapse
|
7
|
Dyomina AV, Kovalenko AA, Zakharova MV, Postnikova TY, Griflyuk AV, Smolensky IV, Antonova IV, Zaitsev AV. MTEP, a Selective mGluR5 Antagonist, Had a Neuroprotective Effect but Did Not Prevent the Development of Spontaneous Recurrent Seizures and Behavioral Comorbidities in the Rat Lithium-Pilocarpine Model of Epilepsy. Int J Mol Sci 2022; 23:ijms23010497. [PMID: 35008924 PMCID: PMC8745728 DOI: 10.3390/ijms23010497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium–pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium–pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy.
Collapse
|
8
|
Sánchez-Hernández J, Aguilera P, Manjarrez-Marmolejo J, Franco-Pérez J. Fructose ingestion modifies NMDA receptors and exacerbates the seizures induced by kainic acid. Neurosci Lett 2022; 772:136476. [DOI: 10.1016/j.neulet.2022.136476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022]
|
9
|
Postnikova TY, Diespirov GP, Amakhin DV, Vylekzhanina EN, Soboleva EB, Zaitsev AV. Impairments of Long-Term Synaptic Plasticity in the Hippocampus of Young Rats during the Latent Phase of the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms222413355. [PMID: 34948152 PMCID: PMC8705146 DOI: 10.3390/ijms222413355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Status epilepticus (SE) causes persistent abnormalities in the functioning of neuronal networks, often resulting in worsening epileptic seizures. Many details of cellular and molecular mechanisms of seizure-induced changes are still unknown. The lithium–pilocarpine model of epilepsy in rats reproduces many features of human temporal lobe epilepsy. In this work, using the lithium–pilocarpine model in three-week-old rats, we examined the morphological and electrophysiological changes in the hippocampus within a week following pilocarpine-induced seizures. We found that almost a third of the neurons in the hippocampus and dentate gyrus died on the first day, but this was not accompanied by impaired synaptic plasticity at that time. A diminished long-term potentiation (LTP) was observed following three days, and the negative effect of SE on plasticity increased one week later, being accompanied by astrogliosis. The attenuation of LTP was caused by the weakening of N-methyl-D-aspartate receptor (NMDAR)-dependent signaling. NMDAR-current was more than two-fold weaker during high-frequency stimulation in the post-SE rats than in the control group. Application of glial transmitter D-serine, a coagonist of NMDARs, allows the enhancement of the NMDAR-dependent current and the restoration of LTP. These results suggest that the disorder of neuron–astrocyte interactions plays a critical role in the impairment of synaptic plasticity.
Collapse
|
10
|
da Silva Fiorin F, de Araújo E Silva M, Rodrigues AC. Electrical stimulation in animal models of epilepsy: A review on cellular and electrophysiological aspects. Life Sci 2021; 285:119972. [PMID: 34560081 DOI: 10.1016/j.lfs.2021.119972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/24/2023]
Abstract
Epilepsy is a debilitating condition, primarily refractory individuals, leading to the search for new efficient therapies. Electrical stimulation is an important method used for years to treat several neurological disorders. Currently, electrical stimulation is used to reduce epileptic crisis in patients and shows promising results. Even though the use of electricity to treat neurological disorders has grown worldwide, there are still many caveats that must be clarified, such as action mechanisms and more efficient stimulation treatment parameters. Thus, this review aimed to explore the comprehension of the main stimulation methods in animal models of epilepsy using rodents to develop new experimental protocols and therapeutic approaches.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil.
| | - Mariane de Araújo E Silva
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| | - Abner Cardoso Rodrigues
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| |
Collapse
|