1
|
Fang S, Huang W, Qu X, Chai W. The mitochondria as a potential therapeutic target in cerebral I/R injury. Front Neurosci 2025; 18:1500647. [PMID: 39844858 PMCID: PMC11752919 DOI: 10.3389/fnins.2024.1500647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Ischemic stroke is a major cause of mortality and disability worldwide. Among patients with ischemic stroke, the primary treatment goal is to reduce acute cerebral ischemic injury and limit the infarct size in a timely manner by ensuring effective cerebral reperfusion through the administration of either intravenous thrombolysis or endovascular therapy. However, reperfusion can induce neuronal death, known as cerebral reperfusion injury, for which effective therapies are lacking. Accumulating data supports a paradigm whereby cerebral ischemia/reperfusion (I/R) injury is coupled with impaired mitochondrial function, contributing to the pathogenesis of ischemic stroke. Herein, we review recent evidence demonstrating a heterogeneous mitochondrial response following cerebral I/R injury, placing a specific focus on mitochondrial protein modifications, reactive oxygen species, calcium (Ca2+), inflammation, and quality control under experimental conditions using animal models.
Collapse
Affiliation(s)
- Susu Fang
- The Second Department of Neurology, Jiangxi Provincial People’s Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wenzhou Huang
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Nanchang, Jiangxi, China
| | - Xinhui Qu
- The Second Department of Neurology, Jiangxi Provincial People’s Hospital and The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
- Institute of Geriatrics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Wen Chai
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Capobianco DL, De Zio R, Profico DC, Gelati M, Simone L, D'Erchia AM, Di Palma F, Mormone E, Bernardi P, Sbarbati A, Gerbino A, Pesole G, Vescovi AL, Svelto M, Pisani F. Human neural stem cells derived from fetal human brain communicate with each other and rescue ischemic neuronal cells through tunneling nanotubes. Cell Death Dis 2024; 15:639. [PMID: 39217148 PMCID: PMC11365985 DOI: 10.1038/s41419-024-07005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Pre-clinical trials have demonstrated the neuroprotective effects of transplanted human neural stem cells (hNSCs) during the post-ischemic phase. However, the exact neuroprotective mechanism remains unclear. Tunneling nanotubes (TNTs) are long plasma membrane bridges that physically connect distant cells, enabling the intercellular transfer of mitochondria and contributing to post-ischemic repair processes. Whether hNSCs communicate through TNTs and their role in post-ischemic neuroprotection remains unknown. In this study, non-immortalized hNSC lines derived from fetal human brain tissues were examined to explore these possibilities and assess the post-ischemic neuroprotection potential of these hNSCs. Using Tau-STED super-resolution confocal microscopy, live cell time-lapse fluorescence microscopy, electron microscopy, and direct or non-contact homotypic co-cultures, we demonstrated that hNSCs generate nestin-positive TNTs in both 3D neurospheres and 2D cultures, through which they transfer functional mitochondria. Co-culturing hNSCs with differentiated SH-SY5Y (dSH-SY5Y) revealed heterotypic TNTs allowing mitochondrial transfer from hNSCs to dSH-SY5Y. To investigate the role of heterotypic TNTs in post-ischemic neuroprotection, dSH-SY5Y were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/R) with or without hNSCs in direct or non-contact co-cultures. Compared to normoxia, OGD/R dSH-SY5Y became apoptotic with impaired electrical activity. When OGD/R dSH-SY5Y were co-cultured in direct contact with hNSCs, heterotypic TNTs enabled the transfer of functional mitochondria from hNSCs to OGD/R dSH-SY5Y, rescuing them from apoptosis and restoring the bioelectrical profile toward normoxic dSH-SY5Y. This complete neuroprotection did not occur in the non-contact co-culture. In summary, our data reveal the presence of a functional TNTs network containing nestin within hNSCs, demonstrate the involvement of TNTs in post-ischemic neuroprotection mediated by hNSCs, and highlight the strong efficacy of our hNSC lines in post-ischemic neuroprotection. Human neural stem cells (hNSCs) communicate with each other and rescue ischemic neurons through nestin-positive tunneling nanotubes (TNTs). A Functional mitochondria are exchanged via TNTs between hNSCs. B hNSCs transfer functional mitochondria to ischemic neurons through TNTs, rescuing neurons from ischemia/reperfusion ROS-dependent apoptosis.
Collapse
Affiliation(s)
- D L Capobianco
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - R De Zio
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - D C Profico
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - M Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - L Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - A M D'Erchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) CNR, Bari, Italy
| | - F Di Palma
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - E Mormone
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - P Bernardi
- Department of Neurosciences, Biomedicine and Movement Sciences. Unit of Human Anatomy, University of Verona, Verona, Italy
| | - A Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences. Unit of Human Anatomy, University of Verona, Verona, Italy
| | - A Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - G Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) CNR, Bari, Italy
| | - A L Vescovi
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
- Faculty of Medicine, Link Campus University, Rome, Italy
| | - M Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) CNR, Bari, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - F Pisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
3
|
Zhang Q, Siyuan Z, Xing C, Ruxiu L. SIRT3 regulates mitochondrial function: A promising star target for cardiovascular disease therapy. Biomed Pharmacother 2024; 170:116004. [PMID: 38086147 DOI: 10.1016/j.biopha.2023.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Dysregulation of mitochondrial homeostasis is common to all types of cardiovascular diseases. SIRT3 regulates apoptosis and autophagy, material and energy metabolism, mitochondrial oxidative stress, inflammation, and fibrosis. As an important mediator and node in the network of mechanisms, SIRT3 is essential to many activities. This review explains how SIRT3 regulates mitochondrial homeostasis and the tricarboxylic acid cycle to treat common cardiovascular diseases. A novel description of the impact of lifestyle factors on SIRT3 expression from the angles of nutrition, exercise, and temperature is provided.
Collapse
Affiliation(s)
- Qin Zhang
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China
| | - Zhou Siyuan
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China
| | - Chang Xing
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China
| | - Liu Ruxiu
- Guang'anmen Hospital, Chinese Academy of traditional Chinese medicine, Beijing, China.
| |
Collapse
|
4
|
Ren K, Pei J, Guo Y, Jiao Y, Xing H, Xie Y, Yang Y, Feng Q, Yang J. Regulated necrosis pathways: a potential target for ischemic stroke. BURNS & TRAUMA 2023; 11:tkad016. [PMID: 38026442 PMCID: PMC10656754 DOI: 10.1093/burnst/tkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/24/2022] [Indexed: 12/01/2023]
Abstract
Globally, ischemic stroke causes millions of deaths per year. The outcomes of ischemic stroke are largely determined by the amount of ischemia-related and reperfusion-related neuronal death in the infarct region. In the infarct region, cell injuries follow either the regulated pathway involving precise signaling cascades, such as apoptosis and autophagy, or the nonregulated pathway, which is uncontrolled by any molecularly defined effector mechanisms such as necrosis. However, numerous studies have recently found that a certain type of necrosis can be regulated and potentially modified by drugs and is nonapoptotic; this type of necrosis is referred to as regulated necrosis. Depending on the signaling pathway, various elements of regulated necrosis contribute to the development of ischemic stroke, such as necroptosis, pyroptosis, ferroptosis, pathanatos, mitochondrial permeability transition pore-mediated necrosis and oncosis. In this review, we aim to summarize the underlying molecular mechanisms of regulated necrosis in ischemic stroke and explore the crosstalk and interplay among the diverse types of regulated necrosis. We believe that targeting these regulated necrosis pathways both pharmacologically and genetically in ischemia-induced neuronal death and protection could be an efficient strategy to increase neuronal survival and regeneration in ischemic stroke.
Collapse
Affiliation(s)
- Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Yuanyuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yuxue Jiao
- Quality Management Department, Henan No. 3 Provincial People’s Hospital, Henan No. 3 Provincial People’s Hospital, Zhengzhou 450052, China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Research Center for Clinical System Biology, Translational Medicine Center, No. 1 Jianshe Dong Road, ErQi District, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, No. 1 Jianshe Dong Road, ErQi District, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
5
|
Huang J, Chen L, Yao ZM, Sun XR, Tong XH, Dong SY. The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed Pharmacother 2023; 162:114671. [PMID: 37037094 DOI: 10.1016/j.biopha.2023.114671] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Stroke is one of the leading causes of death and long-term disability worldwide. More than 80 % of strokes are ischemic, caused by an occlusion of cerebral arteries. Without question, restoration of blood supply as soon as possible is the first therapeutic strategy. Nonetheless paradoxically, reperfusion can further aggravate the injury through a series of reactions known as cerebral ischemia-reperfusion injury (CIRI). Mitochondria play a vital role in promoting nerve survival and neurological function recovery and mitochondrial dysfunction is considered one of the characteristics of CIRI. Neurons often die due to oxidative stress and an imbalance in energy metabolism following CIRI, and there is a strong association with mitochondrial dysfunction. Altered mitochondrial dynamics is the first reaction of mitochondrial stress. Mitochondrial dynamics refers to the maintenance of the integrity, distribution, and size of mitochondria as well as their ability to resist external stimuli through a continuous cycle of mitochondrial fission and fusion. Therefore, improving mitochondrial dynamics is a vital means of treating CIRI. This review discusses the relationship between mitochondria and CIRI and emphasizes improving mitochondrial dynamics as a potential therapeutic approach to improve the prognosis of CIRI.
Collapse
Affiliation(s)
- Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu, China; Bengbu Medical College Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu, China.
| |
Collapse
|
6
|
Mishra Y, Kumar Kaundal R. Role of SIRT3 in mitochondrial biology and its therapeutic implications in neurodegenerative disorders. Drug Discov Today 2023; 28:103583. [PMID: 37028501 DOI: 10.1016/j.drudis.2023.103583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
Sirtuin 3 (SIRT3), a mitochondrial deacetylase expressed preferentially in high-metabolic-demand tissues including the brain, requires NAD+ as a cofactor for catalytic activity. It regulates various processes such as energy homeostasis, redox balance, mitochondrial quality control, mitochondrial unfolded protein response (UPRmt), biogenesis, dynamics and mitophagy by altering protein acetylation status. Reduced SIRT3 expression or activity causes hyperacetylation of hundreds of mitochondrial proteins, which has been linked with neurological abnormalities, neuro-excitotoxicity and neuronal cell death. A body of evidence has suggested, SIRT3 activation as a potential therapeutic modality for age-related brain abnormalities and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (UP)-226002, India.
| |
Collapse
|
7
|
Zhou Z, Zhang Y, Han F, Chen Z, Zheng Y. Umbelliferone protects against cerebral ischemic injury through selective autophagy of mitochondria. Neurochem Int 2023; 165:105520. [PMID: 36933866 DOI: 10.1016/j.neuint.2023.105520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Effective therapeutic treatments for ischemic stroke are limited. Previous studies suggest selective activation of mitophagy alleviates cerebral ischemic injury while excessive autophagy is detrimental. However, few compounds are available to selectively activate mitophagy without affecting autophagy flux. Here, we found that acute administration of Umbelliferone (UMB) upon reperfusion exerted neuroprotective effects against ischemic injury in mice subjected to transient middle cerebral artery occlusion (tMCAO) and suppressed oxygen-glucose deprivation reperfusion (OGD-R)-induced apoptosis in SH-SY5Y cells. Interestingly, UMB promoted the translocation of mitophagy adaptor SQSTM1 to mitochondria and further reduced the mitochondrial content as well as the expression of SQSTM1 in SHSY5Y cells after OGD-R. Importantly, both the mitochondrial loss and reduction of SQSTM1 expression after UMB incubation can be reversed by autophagy inhibitor chloroquine and wortmannin, proving the mitophagy activation by UMB. Nevertheless, UMB failed to further affect neither LC3 lipidation nor the number of autophagosomes after cerebral ischemia in vivo and in vitro. Furthermore, UMB facilitated OGD-R-induced mitophagy in a Parkin-dependent manner. Inhibition of autophagy/mitophagy either pharmaceutically or genetically abolished the neuroprotective effects of UMB. Taken all, these results suggest that UMB protects against cerebral ischemic injury, both in vivo and in vitro, via promoting mitophagy without increasing the autophagic flux. UMB might serve as a potential leading compound for selectively activating mitophagy and the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feng Han
- Key Lab of Cardiovascular and Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, 210023, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Yang H, Zhou Z, Liu Z, Chen J, Wang Y. Sirtuin-3: A potential target for treating several types of brain injury. Front Cell Dev Biol 2023; 11:1154831. [PMID: 37009480 PMCID: PMC10060547 DOI: 10.3389/fcell.2023.1154831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Sirtuin-3 (SIRT3) is responsible for maintaining mitochondrial homeostasis by deacetylating substrates in an NAD+-dependent manner. SIRT3, the primary deacetylase located in the mitochondria, controls cellular energy metabolism and the synthesis of essential biomolecules for cell survival. In recent years, increasing evidence has shown that SIRT3 is involved in several types of acute brain injury. In ischaemic stroke, subarachnoid haemorrhage, traumatic brain injury, and intracerebral haemorrhage, SIRT3 is closely related to mitochondrial homeostasis and with the mechanisms of pathophysiological processes such as neuroinflammation, oxidative stress, autophagy, and programmed cell death. As SIRT3 is the driver and regulator of a variety of pathophysiological processes, its molecular regulation is significant. In this paper, we review the role of SIRT3 in various types of brain injury and summarise SIRT3 molecular regulation. Numerous studies have demonstrated that SIRT3 plays a protective role in various types of brain injury. Here, we present the current research available on SIRT3 as a target for treating ischaemic stroke, subarachnoid haemorrhage, traumatic brain injury, thus highlighting the therapeutic potential of SIRT3 as a potent mediator of catastrophic brain injury. In addition, we have summarised the therapeutic drugs, compounds, natural extracts, peptides, physical stimuli, and other small molecules that may regulate SIRT3 to uncover additional brain-protective mechanisms of SIRT3, conduct further research, and provide more evidence for clinical transformation and drug development.
Collapse
Affiliation(s)
| | | | | | | | - Yuhai Wang
- *Correspondence: Junhui Chen, ; Yuhai Wang,
| |
Collapse
|
9
|
Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2022:10.1007/s10571-022-01287-4. [PMID: 36180651 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
|
10
|
Cheng X, Hu J, Liu X, Tibenda JJ, Wang X, Zhao Q. Therapeutic targets by traditional Chinese medicine for ischemia-reperfusion injury induced apoptosis on cardiovascular and cerebrovascular diseases. Front Pharmacol 2022; 13:934256. [PMID: 36060007 PMCID: PMC9437626 DOI: 10.3389/fphar.2022.934256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 12/02/2022] Open
Abstract
Traditional Chinese medicine (TCM) has a significant role in treating and preventing human diseases. Ischemic heart and cerebrovascular injuries are two types of diseases with different clinical manifestations with high prevalence and incidence. In recent years, it has been reported that many TCM has beneficial effects on ischemic diseases through the inhibition of apoptosis, which is the key target to treat myocardial and cerebral ischemia. This review provides a comprehensive summary of the mechanisms of various TCMs in treating ischemic cardiovascular and cerebrovascular diseases through anti-apoptotic targets and pathways. However, clinical investigations into elucidating the pharmacodynamic ingredients of TCM are still lacking, which should be further demystified in the future. Overall, the inhibition of apoptosis by TCM may be an effective strategy for treating ischemic cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiuli Cheng
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jin Hu
- Department of Preparation Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaofeng Liu
- Department of Pharmacy, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | | | - Xiaobo Wang
- Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| | - Qipeng Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education (Ningxia Medical University), Yinchuan, China
- *Correspondence: Xiaobo Wang, ; Qipeng Zhao,
| |
Collapse
|
11
|
Mitochondrial DNA Efflux Maintained in Gingival Fibroblasts of Patients with Periodontitis through ROS/mPTP Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1000213. [PMID: 35720188 PMCID: PMC9201712 DOI: 10.1155/2022/1000213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022]
Abstract
Mitochondria have their own mitochondrial DNA (mtDNA). Aberrant mtDNA is associated with inflammatory diseases. mtDNA is believed to induce inflammation via the abnormal mtDNA release. Periodontitis is an infectious, oral inflammatory disease. Human gingival fibroblasts (HGFs) from patients with chronic periodontitis (CP) have shown to generate higher reactive oxygen species (ROS) that cause oxidative stress and have decreased mtDNA copy number. Firstly, cell-free mtDNA was identified in plasma from CP mice through qRT-PCR. Next, we investigated whether mtDNA efflux was maintained in primary cultures of HGFs from CP patients and the possible underlying mechanisms using adenovirus-mediated transduction live cell imaging and qRT-PCR analysis. Here, we reported that mtDNA was increased in plasma from the CP mice. Additionally, we confirmed that CP HGFs had significant mtDNA efflux from mitochondria compared with healthy HGFs. Furthermore, lipopolysaccharide (LPS) from Porphyromonas gingivalis can also cause mtDNA release in healthy HGFs. Mechanistically, LPS upregulated ROS levels and mitochondrial permeability transition pore (mPTP) opening by inhibition of pyruvate dehydrogenase kinase (PDK)2 expression, resulting in mtDNA release. Importantly, mtDNA efflux was even persistent in HGFs after LPS was removed and cells were passaged to the next three generations, indicating that mtDNA abnormalities were retained in HGFs in vitro, similar to the primary hosts. Taken together, our results elucidate that mtDNA efflux was maintained in HGFs from periodontitis patients through abnormal ROS/mPTP activity. Therefore, our work indicates that persistent mtDNA efflux may be a possible diagnostic and therapeutic target for patients with periodontitis.
Collapse
|