1
|
Notarbartolo V, Badiane BA, Angileri VM, Piro E, Giuffrè M. Antioxidant Therapy in Neonatal Hypoxic Ischemic Encephalopathy: Adjuvant or Future Alternative to Therapeutic Hypothermia? Metabolites 2024; 14:630. [PMID: 39590867 PMCID: PMC11596076 DOI: 10.3390/metabo14110630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Oxidative stress-related diseases in newborns arise from pro-oxidant/antioxidant imbalance in both term and preterm neonates. Pro-oxidant/antioxidant imbalance has shown to be present in different pathological conditions such as hypoxic ischemic encephalopathy (HIE), retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), and patent ductus arteriosus (PDA). METHODS AND RESULTS We performed a narrative review according to the most recent available literature (2012-2024), using Scopus and PubMed as electronic databases. Many observational and experimental studies in vitro and in vivo have evaluated the effectiveness of antioxidant therapies such as melatonin, erythropoietin (EPO), allopurinol, N-acetylcisteine (NAS), and nitric oxide synthase (NOS) inhibitors in these diseases. Perinatal asphyxia is one of the most important causes of mortality and morbidity in term and near-term newborns. Therapeutic hypothermia (TH) is the gold standard treatment for neonates with moderate-severe perinatal asphyxia, resulting in a reduction in the mortality and neurodevelopmental disability rates. CONCLUSIONS According to the most recent literature and clinical trials, melatonin, allopurinol, NAS, NOS inhibitors, magnesium sulfate, and stem cells stand out as promising as both adjuvants and future probable alternatives to TH in the treatment of HIE.
Collapse
Affiliation(s)
- Veronica Notarbartolo
- Neonatology and Neonatal Intensive Care Unit, University Hospital “Paolo Giaccone”, 90127 Palermo, Italy
| | - Bintu Ayla Badiane
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (B.A.B.); (E.P.); (M.G.)
| | - Vita Maria Angileri
- Neonatal Intensive Care Unit with Neonatology, “G.F. Ingrassia” Hospital Unit, 90131 Palermo, Italy;
| | - Ettore Piro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (B.A.B.); (E.P.); (M.G.)
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (B.A.B.); (E.P.); (M.G.)
| |
Collapse
|
2
|
Moustakas D, Mani I, Pouliakis A, Iacovidou N, Xanthos T. The Effects of IRL-1620 in Post-ischemic Brain Injury: A Systematic Review and Meta-analysis of Experimental Studies. Neurocrit Care 2024; 41:665-680. [PMID: 38724864 DOI: 10.1007/s12028-024-01994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Sovateltide (IRL-1620), an endothelin B receptor agonist, has previously demonstrated neuroprotective and neuroregenerative effects in animal models of acute ischemic stroke. Recently, clinical trials indicated that it could also be effective in humans with stroke. Here, we systematically investigate whether IRL-1620 may be used for the treatment of ischemia-induced brain injury. METHODS A systematic review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. MEDLINE (PubMed) and Scopus databases were searched for eligible studies up to December 2022. The databases ClinicalTrials.gov and Pharmazz Inc. were screened for unpublished or ongoing trials. Only studies in English were evaluated for eligibility. Meta-analysis of the included studies was also conducted. RESULTS Finally, seven studies were included in the review, all in animal rat models because of scarcity of clinical trials. Six studies, all in middle cerebral artery occlusion (MCAO) models, were selected for meta-analysis. In the two studies assessing mortality, no deaths were reported in the IRL-1620 group 24 h after MCAO, whereas the vehicle group had almost a five times higher mortality risk (risk ratio 5.3, 95% confidence interval 0.7-40.1, I2 = 0%). In all five studies evaluating outcome on day 7 after MCAO, IRL-1620 was associated with statistically significantly lower neurological deficit and improved motor performance compared with the vehicle. Infract volume, differentiation potential of neuronal progenitor cells, and mitochondrial fate also improved with IRL-1620 administration. CONCLUSIONS According to the above, in animal MCAO models, IRL-1620 enhanced neurogenesis and neuroprotection and improved outcome. Future studies are needed to expand our understanding of its effects in human study participants with acute ischemic stroke as well as in other common causes of cerebral ischemia including cardiac arrest.
Collapse
Affiliation(s)
- Dimitris Moustakas
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iliana Mani
- 2d Department of Internal Medicine, Medical School, Hippokration General Hospital, National and Kapodistrian University of Athens, Vas. Sofias 114, 11527, Athens, Greece.
| | - Abraham Pouliakis
- 2d Department of Pathology, Attikon University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Xanthos
- School of Health Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
3
|
Huo L, Fu J, Wang S, Wang H, Liu X. Emerging ferroptosis inhibitors as a novel therapeutic strategy for the treatment of neonatal hypoxic-ischemic encephalopathy. Eur J Med Chem 2024; 271:116453. [PMID: 38701713 DOI: 10.1016/j.ejmech.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Neonatal hypoxia-ischemia encephalopathy (NHIE), an oxygen deprivation-mediated brain injury due to birth asphyxia or reduced cerebral blood perfusion, often leads to lifelong sequelae, including seizures, cerebral palsy, and mental retardation. NHIE poses a significant health challenge, as one of the leading causes of neonatal morbidity and mortality globally. Despite this, available therapies are limited. Numerous studies have recently demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by lipid peroxidation (LPO) and iron dyshomeostasis, plays a role in the genesis of NHIE. Moreover, recently discovered compounds have been shown to exert potential therapeutic effects on NHIE by inhibiting ferroptosis. This comprehensive review summarizes the fundamental mechanisms of ferroptosis contributing to NHIE. We focus on various emerging therapeutic compounds exhibiting characteristics of ferroptosis inhibition and delineate their pharmacological benefits for the treatment of NHIE. This review suggests that pharmacological inhibition of ferroptosis may be a potential therapeutic strategy for NHIE.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Shimeng Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| |
Collapse
|
4
|
Marques KL, Rodrigues V, Balduci CTN, Montes GC, Barradas PC, Cunha-Rodrigues MC. Emerging therapeutic strategies in hypoxic-ischemic encephalopathy: a focus on cognitive outcomes. Front Pharmacol 2024; 15:1347529. [PMID: 38469401 PMCID: PMC10925695 DOI: 10.3389/fphar.2024.1347529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Perinatal hypoxia-ischemia represents a significant risk to CNS development, leading to high mortality rates, diverse damages, and persistent neurological deficits. Despite advances in neonatal medicine in recent decades, the incidence of HIE remains substantial. Motor deficits can manifest early, while cognitive impairments may be diagnosed later, emphasizing the need for extended follow-up. This review aims to explore potential candidates for therapeutic interventions for hypoxic-ischemic encephalopathy (HIE), with a focus on cognitive deficits. We searched randomized clinical trials (RCT) that tested drug treatments for HIE and evaluated cognitive outcomes. The results included studies on erythropoietin, melatonin, magnesium sulfate, topiramate, and a combination of vitamin C and ibuprofen. Although there are several indications of the efficacy of these drugs among animal models, considering neuroprotective properties, the RCTs failed to provide complete effectiveness in the context of cognitive impairments derived from HIE. More robust RCTs are still needed to advance our knowledge and to establish standardized treatments for HIE.
Collapse
Affiliation(s)
- Kethely L. Marques
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Rodrigues
- Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cassiana T. N. Balduci
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rare Diseases Sales Force, Daiichi Sankyo Brazil, São Paulo, Brazil
| | - Guilherme C. Montes
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta C. Cunha-Rodrigues
- Laboratory of Neurobiology, Pharmacology and Psychobiology Department, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Ranjan AK, Gulati A. Advances in Therapies to Treat Neonatal Hypoxic-Ischemic Encephalopathy. J Clin Med 2023; 12:6653. [PMID: 37892791 PMCID: PMC10607511 DOI: 10.3390/jcm12206653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a condition that results in brain damage in newborns due to insufficient blood and oxygen supply during or after birth. HIE is a major cause of neurological disability and mortality in newborns, with over one million neonatal deaths occurring annually worldwide. The severity of brain injury and the outcome of HIE depend on several factors, including the cause of oxygen deprivation, brain maturity, regional blood flow, and maternal health conditions. HIE is classified into mild, moderate, and severe categories based on the extent of brain damage and resulting neurological issues. The pathophysiology of HIE involves different phases, including the primary phase, latent phase, secondary phase, and tertiary phase. The primary and secondary phases are characterized by episodes of energy and cell metabolism failures, increased cytotoxicity and apoptosis, and activated microglia and inflammation in the brain. A tertiary phase occurs if the brain injury persists, characterized by reduced neural plasticity and neuronal loss. Understanding the cellular and molecular aspects of the different phases of HIE is crucial for developing new interventions and therapeutics. This review aims to discuss the pathophysiology of HIE, therapeutic hypothermia (TH), the only approved therapy for HIE, ongoing developments of adjuvants for TH, and potential future drugs for HIE.
Collapse
Affiliation(s)
- Amaresh K Ranjan
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
| | - Anil Gulati
- Research and Development, Pharmazz Inc., Willowbrook, IL 60527, USA
- Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA
- College of Pharmacy, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
6
|
Abstract
Sovateltide (Tycamzzi™), a highly selective endothelin-B receptor agonist and synthetic analog of endothelin-1, is being developed by Pharmazz, Inc. as a neural progenitor cell therapeutic agent for the treatment of acute cerebral ischemic stroke (ACIS), hypoxic-ischemic encephalopathy (HIE), spinal cord injuries and Alzheimer's disease. In May 2023, sovateltide was approved in India for the treatment of cerebral ischemic stroke within 24 h of stroke onset. This article summarizes the milestones in the development of sovateltide leading to this first approval for use in patients with ACIS.
Collapse
Affiliation(s)
- Susan J Keam
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
7
|
Monitoring of cerebrovascular pressure reactivity in children may predict neurologic outcome after hypoxic-ischemic brain injury. Childs Nerv Syst 2022; 38:1717-1726. [PMID: 35680685 PMCID: PMC9463308 DOI: 10.1007/s00381-022-05579-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Impaired cerebral blood flow is a first-line reason of ischemic-hypoxic brain injury in children. The principal goal of intensive care management is to detect and prevent further cerebral blood flow deficits. This can be achieved by actively managing cerebral perfusion pressure (CPP) using input from cerebrovascular autoregulation (CAR). The main objective of the current study was to investigate CAR after cardiac arrest in children. METHODS Nineteen consecutive children younger than 18 years after cardiopulmonary resuscitation, in whom intracranial pressure (ICP) was continuously measured, were included. Blood pressure and ICP were continuously monitored via ICM + software and actively managed using the pressure reactivity index (PRx) to achieve and maintain an optimal CPP. Outcome was scored using the extended Glasgow outcome scale (eGOS) at discharge and 6 months. RESULTS Eight children died in hospital. At 6 months, further 4 children had an unfavorable (eGOS1-4) and 7 a favorable (eGOS5-8) outcome. Over the entire monitoring period, we found an elevated ICP (24.5 vs 7.4 mmHg), a lower CPP (50.3 vs 66.2 mmHg) and a higher PRx (0.24 vs - 0.01), indicating impaired CAR, in patients with unfavorable outcome. The dose of impaired autoregulation was significantly higher in unfavorable outcome (54.6 vs 29.3%). Analyzing only the first 72 h after cardiac arrest, ICP ≥ 10 mmHg and PRx > 0.2 correlated to unfavorable outcome. CONCLUSIONS Significant doses of impaired CAR within 72 h after resuscitation are associated with unfavorable outcome. The inability to restore autoregulation despite active attempts to do so as well as an elevated ICP may serve as a bad prognostic sign indicating a severe initial hypoxic-ischemic brain injury.
Collapse
|